Czech Technical University In Prague Faculty Of Mechanical Engineering

1y ago
2 Views
1 Downloads
7.73 MB
95 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Kian Swinton
Transcription

CZECH TECHNICALUNIVERSITY IN PRAGUEFACULTY OF MECHANICALENGINEERINGMASTER’S THESISCONTROL STRATEGIES FORBLDC MOTORS2019SHAWN MOSESCARDOZO

AbstractShawn Moses Cardozo: Control Strategies for Brushless DC motorsMaster’s Thesis (Supervisor: Ing. Zdeněk Novák)Department of Instrumentation and Control Engineering, Faculty of MechanicalEngineering – Czech Technical University in Prague, Prague 2019. 94 pagesMaster’s Thesis researching the various control strategies available for BLDC motor controlthat can then be employed in the speed control of electric vehicle drive systems. The taskinvolved studying the various control algorithms, finding ways to optimize theirperformance and simulate them as a proof of concept. The final stage of the thesisinvolved the preparation of an implementable control algorithm that was then run on atest bench with an active PID feedback-based control system and HMI for easy interactionin runtime.Keywords: Brushless DC Motor, Space vector modulation, Feedback Control, LabView FPGA,Third Harmonic, Start-Up controlAbstraktShawn Moses Cardozo: Strategie řízení bezkartáčovzch DC motorůDiplomová práce (Vedoucí práce: Ing. Zdeněk Novák)Ústav přístrojové a řídicí techniky, Fakulta strojní – ČVUT v Praze, Praha 2019. 94 stranTato diplomová práce se zabzvá strategiemi řízení, které jsou dostupné pro bezkartáčovéDC motory, a které mohou bzt použity pro řízení rychlosti pohonů elektrickzch vozidel.Úkolem práce je studium rozličnzch řídicích algoritmů, nalezení způsobů, jakoptimalizovat jejich vzkon, a zároveň simulovat jejich chování pro ověření jejichvlastností. Závěrečná etapa práce spočívá v přípravě implementovatelného řídicíhoalgoritmu, kterz je poté spuštěn na laboratorním stanovišti s aktivním řídicím systémemzaloženzm na zpětné vazbě PID regulátoru a uživatelského rozhraní (HMI) pro snadnouinterakci v průběhu testu.Klíčová slova: Střídavz DC motor, Prostorová vektorová modulace, LabView FPGA,Řízení zpětné vazby, Třetí harmonickz, Ovládání spouštění

AcknowledgementsI would like to thank my supervisor for his help and guidance in developing this research. Iam also grateful to the Mechanical Faculty at ČVUT, Prague for lending me thecomponents and access to a laboratory for developing my test bench for this research.I would like to thank my colleagues at Ricardo s.r.o. for advising me throughout thisresearch and Ricardo plc. for providing me with this opportunity to participate in thisresearch program.I would also like to thank my parents for their ever enduring support and my friends thatthat have stood by my side.Thank You.

Table of Contents1. Introduction .61.1.Overview of Chapters . 72. State of the art .82.1.Basic functionality of BLDC Motor . 82.2.BLDC Motor model . 102.2.1.State Equations . 122.2.2.Hall Effect Sensors . 142.2.3.Mechanical model . 142.3.Principle of the Hall Effect sensor control. 162.4.Principle of Sensor-less control . 182.5.Start-up control . 202.5.1.Prepositioning Phase . 202.5.2.Starting Ramp . 212.5.3.Switching To Auto-Commutated Mode . 222.6.Space Vector Pulse Width Modulation . 242.6.1.Vector Notation for SV-PWM . 242.6.2.Synthesizing the required output voltage . 272.7.Third Harmonic Injection. 312.7.1.Purpose. 312.7.2.Strategy for optimization . 322.7.3.Modulation index . 332.7.4.Over-Modulation and its purpose . 333. Proposed Control Strategies . 343.1.Using reference active and reactive current . 343.1.1.Control Process . 343.1.2.Advantage . 353.2.Using reference speed (Direct voltage modulation) . 363.2.1.Advantage . 363.2.2.Disadvantage . 36

4. Simulation of control strategies. 374.1.Simulink model for control with Hall Effect sensor. 374.1.1.Result . 414.2.Simulink model for Sensor-less control. 424.3.Simulink model for Startup control . 464.3.1.Transition from Startup control to the standard control . 464.3.2.Transition between stages of the start-up control . 474.4.Simulink model for Sine wave PWM with third harmonic injection control. 504.5.Simulink model for Space vector modulation with PWM control . 534.6.Future Prospects . 564.6.1.Optimization of Power supply . 565. Practical Realization . 605.1.Hardware Setup . 615.1.1.PMSM Motor . 625.1.2.DC Power Source . 625.1.3.Six step Inverter. 635.1.4.MyRIO Student Embedded Device . 655.1.5.Angular position Resolver . 665.2.Labview algorithm . 675.2.1.LabView FPGA VI Component . 675.2.2.Labview VI . 725.2.3.Results from Practical implementation . 736. Conclusion. 756.1.Proposed research for Future . 767. Appendix A - Hardware specifications. 778. Appendix B – LabView Block Diagram . 83References . 84

Table of FiguresFigure 2.1 – Cross-Sectional representation of a BLDC Motor[3] . 8Figure 2.2 - BLDC Motor Functional Diagram with 6 – Step Inverter[1] . 9Figure 2.3 – Internal magnetic force[3] . 9Figure 2.4 - Permanent magnet synchronous machine . 10Figure 2.5 - PMSM Parameter setup . 10Figure 2.6 - Phase BEMF[4] . 10Figure 2.7 - Simulink PMSM motor model[4] . 11Figure 2.8 - Simulink model for Electrical Aspects[4]. 12Figure 2.9 - Simplified Electrical Circuit. 12Figure 2.10 - State Model[4] . 13Figure 2.11 - Phase Current Calculator[4] . 13Figure 2.12 - Hall Effect Signal Generator[4]. 14Figure 2.13 - Simulink model for Mechanical Aspects[4] . 15Figure 2.14 - Hall sensor[1]. 16Figure 2.15 - Six-step control and PWM wave[1]. 17Figure 2.16 - Hall-effect sensor waveforms with back-EMF trapezoidal waveforms [11]. 18Figure 2.17 – Zero-crossing detection[11] . 19Figure 2.18 - Prepositioning rotor alignment[11] . 20Figure 2.19 - Prepositioning current ramp[11] . 20Figure 2.20 – Starting ramp[11] . 21Figure 2.21 - Stator BEMF during starting ramp[11] . 22Figure 2.22 – Switching to Auto-commutated mode[11]. 23Figure 2.23 - Two Level Inverter Schematic. 24Figure 2.24 - Vector Representation . 25Figure 2.25 - Gate configurations for Vector Combinations . 26Figure 2.26 – Input Reference and Trigonometric Wave. 27Figure 2.27 - Switching State Vectors . 28Figure 2.28 – Switching State Pattern . 28Figure 2.29 - Relative time on for switching state . 29Figure 2.30 - Space Vector Hexagon . 31Figure 2.31 - Control without Third harmonic injection. 32Figure 2.32 - Control without Third harmonic injection. 32Figure 2.33 - Superposition of three phases . 32Figure 3.1 - Using reference active and reactive current . 34Figure 3.2 - Transformation process . 35Figure 4.1 - Encoder . 37Figure 4.2 - De-coder. 38Figure 4.3 - Brushless DC Motor fed by Six Step inverter and Hall Effect sensor base control . 391

Figure 4.4 - Output Rotor Angle . 40Figure 4.5 - Hall Effect Signal . 40Figure 4.6 - Output Rotor Speed . 41Figure 4.7 - Back EMF cross over pulse detection Signal . 42Figure 4.8 - Edge Detection . 42Figure 4.9 - Top edge detection. 43Figure 4.10 - Pulse generator . 43Figure 4.11 - Rising edge detector . 43Figure 4.12 - Edge signals . 43Figure 4.13 - Back EMF gate signal generator. 44Figure 4.14 - Brushless DC Motor fed by 6 - step inverter and Senso-rless control algorithm . 45Figure 4.15 - Gate Signals . 46Figure 4.16 - Transition from Startup control to the standard control . 46Figure 4.17 - Phase transition . 47Figure 4.18 - Phase 1 gate signal generator . 47Figure 4.19 – Phase transition . 48Figure 4.20 – Phase 2 Signal Generator . 48Figure 4.21 - Brushless DC Motor fed by 6 - step inverter and Start-up control algorithm . 49Figure 4.22 – Third harmoninc Modulation in phases. 50Figure 4.23 - Sine wave PWM with third harmonic injection control . 51Figure 4.24 - Sine wave PWM with third harmonic injection . 51Figure 4.25 - BLDC Motor with SW-PWM and Third harmonic control . 52Figure 4.26 -Triangle wave generator Figure 4.27 - Sector Generator . 53Figure 4.28 - Time ratio generator . 53Figure 4.29 - PID controller. 53Figure 4.30 - Vector Generator . 54Figure 4.31 - Final Stage . 54Figure 4.32 - Gate signal Generator . 54Figure 4.33 - BLDC Motor with SV-PWM controller . 55Figure 4.34 – Schematic of power management system . 57Figure 4.35 - Final model of proposed power management system . 57Figure 4.36 - Difference in current load at start-up . 58Figure 4.37 - Difference in current load at 6- step control. 58Figure 5.1 –Test bench. 61Figure 5.2 – Block Diagram of components . 61Figure 5.3 – DC source and PMSM Motor . 62Figure 5.4 – Six-pack Driver . 63Figure 5.5 – IGBT Module . 63Figure 5.6 – AC/DC transformers . 64Figure 5.7 – Current Sensors . 64Figure 5.8 – Cooling Fin for Heat dissipation . 642

Figure 5.9 - MyRio Student Embedded Device . 65Figure 5.10 - Block Diagram . 65Figure 5.11 – A, B, Z Signal lines . 66Figure 5.12 – Resolver Schematic[26] . 66Figure 5.13 - FPGA VI front Panel. 67Figure 5.14 - PID Controller loop . 68Figure 5.15 - Angle and time generator loop. 69Figure 5.16 - Sector and vector generator loop . 70Figure 5.17 - Phase signal generator loops . 71Figure 5.18 - FIFO Generator loop. 71Figure 5.19 - LabView VI Front panel . 72Figure 5.20 – Real measured value from oscilloscope . 73Figure 5.21 – Real vs. Simulated result . 73Figure 7.1 - 2AML406B-S PMSM Motor[35] . 77Figure 7.2 - Technical data for 2AML406B[38] . 78Figure 7.3 - Manson NP-9625 . 78Figure 7.4 - Semikron SKHI 61[41]. 79Figure 7.5 - Chip Back-view[41]. 79Figure 7.6 - Schematic of SKHI 61[41] . 79Figure 7.7- Characteristics of SKHI 61 . 80Figure 7.8 - SKM 75 GD 124 D[3] . 81Figure 7.9 - Schematic of SKM[3] . 81Figure 7.10 - Characteristics of SKM 75[3] . 81Figure 7.11 - BV EI 481 1184 transformer[45]. 82Figure 7.12 - LEM LA-55-P Current sensor[46] . 82Figure 8.1 –Block diagram for LabView Section . 83Figure 8.2 – Block Diagram for FPGA Section. 833

List of TablesTable 1 – List of variables . 11Table 2 - Commutation Table . 17Table 3 – Look-up table data . 70Table 4 - Pin description . 804

List of AbbreviationsBLDCBrushless Direct Current motorPIDProportional-Integral-DerivativeHMIHuman Machine InterfacePMSMPermanent Magnet Synchronous MotorAC/DCAlternating Current / Direct CurrentBEMFBack Electromotive ForceSV-PWMSpace Vector- Pulse Width ModulationIGBTInsulated-Gate Bipolar TransistorFPGAField Programmable Gate ArrayVIVirtual InstrumentFIFOFirst In First OutMCUMotor Control UnitDSCDigital Speed ControllerSPDTSingle Pole Double ThrowRMSRoot Mean SquareMOSFETMetal Oxide Semiconductor Field Effect TransistorSRSet ResetLEDLight Emitting DiodeICIntegrated CircuitPROMProgrammable Read Only MemoryLCDLiquid Crystal DisplayCMOSComplementary Metal–Oxide–Semiconductor5

1. IntroductionThe central objective of this research is to understand, simulate and optimize thecontrol strategies for the control of BLDC motors and compare their results. The end goalof this project undertaken by Ricardo plc. is to develop a complete motor and controlsystem for installation in electric vehicles for their partner firms.The focus in terms of control strategies shall include the below control algorithms andrespective control circuits Hall Effect sensor controlSensor-less controlSVM based controlThe brushless DC motor (BLDC) is also referred to as an electronically commutatedmotor. BLDC Motors have no brushes on the rotor and the commutation is performedelectronically at certain rotor positions by a Controller/Driver circuitry.The replacement of a DC motor by a BLDC motor places a higher requirement for acontrol algorithm and a control circuit.1. The general BLDC motors are normally in three-phase system configurations. Theymust therefore be supplied with a three-phase power supply.2. The rotor position must be known exactly to align the applied voltage. [1]For the purpose of developing an understanding of BLDC motor performance and alsogenerating computer algorithms for predicting calibratable parameters, the proposedsimulations form a core of the research.The simulation of the various control algorithms to be used in with BLDC motor modelshave been implemented using the MATLAB tool Simulink in conjunction with the featuresoffered by SimScape. This allows for a further clarity in verifying the differences in thecontrol strategies. In addition to this, the models generated shall also give a referenceplatform for generating a Calibration system and control program Library for furtherfuture usage.As shall be further shown in the research, the various control strategies shall bestudied, and the overall output efficiencies shall be mapped.Another major focus of this work shall include the generation of a control systemacross an inverter power supply pack for reducing load fluctuations generated across thesupply.The final stage for this research will also include a complete workbench with atestable control algorithm to verify if the predicted model results match those obtainedin the real world system.6

1.1. Overview of Chapters Chapter 2 – State of the artThis chapter includes a study of the functionality and modeling of BLDC motors andthe principles of their control algorithms. The main control strategies addressed include Hall Effect sensor controlSensor-less controlSVM based controlStart-u

Keywords: Brushless DC Motor, Space vector modulation, Feedback Control, LabView FPGA, Third Harmonic, Start-Up control Abstrakt Shawn Moses Cardozo: Strategie řízení ezkartáčovzh D motorů Diplomová práe (Vedouí práe: Ing. Zdeněk Novák) Ústav přístrojové a řídií tehniky, Fakulta strojní - ČVUT v Praze, Praha 2019. 94 stran

Related Documents:

Malicons: Detecting Payload in Favicons Tomáš Pevný1 ;2, Martin Kopp 3, Jakub Kroustekˇ 4, Andrew D. Ker5 1Department of Computer Science, Czech Technical University in Prague, Czech Republic 2Cisco R&D Center in Prague, Cisco Systems, Inc. 3Faculty of Information Technology, Czech Technical University in Prague, Czech Republic 4AVG Technologies, Inc., Czech Republic

Prague - Brussels exciting living spaces and cultural life. The City never 1h 30 / 7 flights a day Prague - London 2 h / 9 flights a day Prague - Dubai 6 h / 1 flight a day Prague - Shanghai 11 h 50 Prague - Moscow 2 h 45 Prague - New York 8 h 15 Prague - Amsterdam 1 h 30 / 3 flights a

— The best source of information about Prague is www.prague.eu and Prague City Tourism information centres (see page 42). — Prague is a city made for sightseeing by foot, but its beautiful his-torical cobblestones can be challenging for

Prague-Vienna-Budapest 11 days / 10 nights Day 1 ORIGIN - PRAGUE At arrival to Prague Airport, meet and greet and shared transfer to your hotel. Check in. Free day at leisure. Accommodation in Prague Day 2 PRAGUE Breakfast Buffet. Free day at leisure Optional City tour (approx. 3hours).

Prague, Czech Republic Contact i U.S. Embassy Prague, Czech Republic Tržiště15 118 01 Prague 1 Phone: 420-257-022-000 Email: consprague@state.gov Website: cz.usembassy.gov Cancel and Reschedule Appt: ustraveldocs.com Map: nformation Social media Diversity visa instructions After your interview

profiles of selected Czech trumpet soloists who contributed to the Czech trumpet repertoire by recording and commissioning works by Czech composers. A concluding discussion addresses the definition of Czech musical style, and explores compositional aspects and the playing style that make the music "Czech." This document includes a

Technical and Test Institute for Construction Prague Prosecká 811/76a 190 00 Prague Czech Republic eota@tzus.cz Member of www.eota.eu ETA 14/0138 of 20/05/2018 - Page 1 of 19 090-031673 European Technical Assessment ETA 14/0138 of 20/05/2018 Technical Assessment Body issuing the ETA: Technical and Test Institute for Construction Prague

DAy 1 ARRIvE In PRAguE, CzECH REPublIC You are met on arrival at the Prague airport and trans - ferred to our hotel. Remainder of day at leisure. This eve-ning, we have our dinner and orientation at a downtown restaurant located near our hotel. Overnight in Prague. DAy 2 PRAguE