A First Course In Quasi-Linear Partial Di Erential Equations For .

1y ago
12 Views
3 Downloads
950.43 KB
203 Pages
Last View : 30d ago
Last Download : 3m ago
Upload by : Samir Mcswain
Transcription

A First Course in Quasi-Linear PartialDifferential Equationsfor Physical Sciences and EngineeringSolution ManualMarcel B. FinanArkansas Tech Universityc All Rights Reserved

2PrefaceThis manuscript provides the complete and detailed solutions to A FirstCourse in Partial Differential Equations for Physical Sciences and Engineering. Distribution of this book in any form is prohibited.Marcel B FinanAugust 2009

ContentsPreface . . . . . . . . .Solutions to Section 1Solutions to Section 2Solutions to Section 3Solutions to Section 4Solutions to Section 5Solutions to Section 7Solutions to Section 8Solutions to Section 9Solutions to Section 10Solutions to Section 11Solutions to Section 12Solutions to Section 13Solutions to Section 14Solutions to Section 15Solutions to Section 16Solutions to Section 17Solutions to Section 18Solutions to Section 19Solutions to Section 20Solutions to Section 21Solutions to Section 22Solutions to Section 23Solutions to Section 24Solutions to Section 9171182191197

4CONTENTSSolutions to Section 1Problem 1.1Classify the following equations as either ODE or PDE.(a) (y 000 )4 (b) u xt2(y 0 )2 4 y u y 0.y x.y x(c) y 00 4y 0.Solution.(a) ODE with dependent variable y and independent variabe x.(b) PDE with dependent variable u and independent variabes x and y.(c) ODE with dependent variable y and independent variabe xProblem 1.2Write the equationuxx 2uxy uyy 0in the coordinates s x, t x y.Solution.We haveuxuxxuxyuyuyy us sx ut tx us ut uss sx ust tx ust sx utt tx uss 2ust utt uss sy ust ty ust sy utt ty ust utt us sy ut ty ut ust sy utt ty utt .Substituting these expressions into the given equation we finduss 0Problem 1.3Write the equationuxx 2uxy 5uyy 0in the coordinates s x y, t 2x.

SOLUTIONS TO SECTION 15Solution.We haveuxuxxuxyuyuyy us sx ut tx us 2ut uss sx ust tx 2ust sx 2utt tx uss 4ust 4utt uss sy ust ty 2ust sy 2utt ty uss 2ust us sy ut ty us uss sy ust ty uss .Substituting these expressions into the given equation we finduss utt 0Problem 1.4For each of the following PDEs, state its order and whether it is linear ornon-linear. If it is linear, also state whether it is homogeneous or nonhomogeneous:(a) uux x2 uyyy sin x 0.2(b) ux ex uy 0.(c) utt (sin y)uyy et cos y 0.Solution.(a) Order 3, non-linear.(b) Order 1, linear, homogeneous.(c) Order 2, linear, non-homogeneousProblem 1.5For each of the following PDEs, determine its order and whether it is linearor not. For linear PDEs, state also whether the equation is homogeneous ornot; For nonlinear PDEs, circle all term(s) that are not linear.(a) x2 uxx ex u xuxyy .(b) ey uxxx ex u sin y 10xuy .(c) y 2 uxx ex uux 2xuy u.(d) ux uxxy ex uuy 5x2 ux .(e) ut k 2 (uxx uyy ) f (x, y, t).Solution.(a) Linear, homogeneous, order 3.

6CONTENTS(b) Linear, non-homogeneous, order 3. The inhomogeneity is sin y.(c) Non-linear, order 2. The non-linear term is ex uux .(d) Non-linear, order 3. The non-linear terms are ux uxxy and ex uuy .(e) Linear, non-homogeneous, order 2. The inhomogeneity is f (x, y, t)Problem 1.6Which of the following PDEs are linear?(a) Laplace’s equation: uxx uyy 0.(b) Convection (transport) equation: ut cux 0.(c) Minimal surface equation: (1 Zy2 )Zxx 2Zx Zy Zxy (1 Zx2 )Zyy 0.(d) Korteweg-Vries equation: ut 6uux uxxx .Solution.(a) Linear.(b) Linear.(c) Non-linear where all the terms are non-linear.(d) Non-linear with non-linear term 6uuxProblem 1.7Classify the following differential equations as ODEs or PDEs, linear ornon-linear, and determine their order. For the linear equations, determinewhether or not they are homogeneous.(a) The diffusion equation for u(x, t) :ut kuxx .(b) The wave equation for w(x, t) :wtt c2 wxx .(c) The thin film equation for h(x, t) :ht (hhxxx )x .(d) The forced harmonic oscillator for y(t) :ytt ω 2 y F cos (ωt).(e) The Poisson Equation for the electric potential Φ(x, y, z) :Φxx Φyy Φzz 4πρ(x, y, z).

SOLUTIONS TO SECTION 17where ρ(x, y, z) is a known charge density.(f) Burger’s equation for h(x, t) :ht hhx νhxx .Solution.(a) PDE, linear, second order, homogeneous.(b) PDE, linear, second order, homogeneous.(c) PDE, quasi-linear (non-linear), fourth order.(d) ODE, linear, second order, non-homogeneous.(e) PDE, linear, second order, non-homogeneous.(f) PDE, quasilinear (non-linear), second orderProblem 1.8Write down the general form of a linear second order differential equation ofa function in three variables.Solution.A(x, y, z)uxx B(x, y, z)uxy C(x, y, z)uyy E(x, y, z)uxz F (x, y, z)uyz G(x, y, z)uzz H(x, y, z)ux I(x, y, z)uy J(x, y, z)uz K(x, y, z)u L(x, y, z)Problem 1.9Give the orders of the following PDEs, and classify them as linear or nonlinear. If the PDE is linear, specify whether it is homogeneous or nonhomogeneous.(a) x2 uxxy y 2 uyy log (1 y 2 )u 0(b) ux u3 1(c) uxxyy ex ux y(d) uuxx uyy u 0(e) uxx ut 3u.Solution.(a) Order 3, linear, homogeneous.(b) Order 1, non-linear.(c) Order 4, linear, non-homogeneous(d) Order 2, non-linear.(e) Order 2, linear, homogeneous

8CONTENTSProblem 1.10Consider the second-order PDEuxx 4uxy 4uyy 0.Use the change of variables v(x, y) y 2x and w(x, y) x to show thatuww 0.Solution.Using the chain rule we finduxuxxuyuyyuxy 2uv uw 4uvv 4uvw uww uv uvv 2uvv uvw .Substituting these into the given PDE we find uww 0Problem 1.11Write the one dimensional wave equation utt c2 uxx in the coordinatesv x ct and w x ct.Solution.We haveututtuxuxx cuv cuw c2 uvv 2c2 uwv c2 uww uv uw uvv 2uvw uww .Substituting we find uvw 0Problem 1.12Write the PDEuxx 2uxy 3uyy 0in the coordinates v(x, y) y 3x and w(x, y) x y.

SOLUTIONS TO SECTION 19Solution.We haveuxuxxuxyuyuyy 3uv uw 3( 3uv uw )v ( 3uv uw )w 9uvv 6uvw uww 3uvv uvw 3uvw uww 3uvv 2uvw uww uv uw (uv uw )v (uv uw )w uvv 2uvw uww .Substituting into the PDE we find uvw 0Problem 1.13Write the PDEaux buy 0in the coordinates s(x, y) ax by and t(x, y) bx ay. Assume a2 b2 0.Solution.According to the chain rule for the derivative of a composite function, wehaveux us sx ut tx aus butuy us sy ut ty bus aut .Substituting these into the given equation to obtaina2 us abut b2 us abut 0or(a2 b2 )us 0and since a2 b2 0 we obtainus 0Problem 1.14Write the PDEux uy 1in the coordinates s x y and t x y.

10CONTENTSSolution.Using the chain rule we findux us sx ut tx us utuy us sy ut ty us ut .Substituting these into the PDE to obtain us 12Problem 1.15Write the PDEaut bux u, a, b 6 0in the coordinates v ax bt and w a1 t.Solution.We have ut buv a1 uw and ux auv . Substituting we find uw u

SOLUTIONS TO SECTION 211Solutions to Section 2Problem 2.1Determine a and b so that u(x, y) eax by is a solution to the equationuxxxx uyyyy 2uxxyy 0.Solution.We have uxxxx a4 eax by , uyyyy b4 eax by , and uxxyy a2 b2 eax by . Thus,substituting these into the equation we find(a4 2a2 b2 b4 )eax by 0.Since eax by 6 0, we must have a4 2a2 b2 b4 0 or (a2 b2 ) 0. This istrue only when a b 0. Thus, u(x, y) 1Problem 2.2Consider the following differential equationtuxx ut 0.Suppose u(t, x) X(x)T (t). Show that there is a constant λ such thatX 00 λX and T 0 λtT.Solution.Substituting into the differential equation we findtX 00 T XT 0 0orX 00T0 .XtTThe LHS is a function of x only whereas the RHS is a function of t only.This is true only when both sides are constant. That is, there is λ such thatX 00T0 λXtTand this leads to the two ODEs X 00 λX and T 0 λtT

12CONTENTSProblem 2.3Consider the initial value problemxux (x 1)yuy 0, x, y 1u(1, 1) e.Show that u(x, y) xexyis the solution to this problem.Solution. xexx xxWe have xux (x 1)yuy y (e xe ) (x 1)y y2 0 and u(1, 1) eProblem 2.4Show that u(x, y) e 2y sin (x y) is the solution to the initial value problemux uy 2u 0, x, y 1u(x, 0) sin x.Solution.We have ux uy 2u e 2y cos (x y) 2e 2y sin (x y) e 2y cos (x y) 2e 2y sin (x y) 0 and u(x, 0) sin xProblem 2.5Solve each of the following differential equations:(a) du 0 where u u(x).dx 0 where u u(x, y).(b) u xSolution.(a) The general solution to this equation is u(x) C where C is an arbitraryconstant.(b) The general solution is u(x, y) f (y) where f is an arbitrary function ofyProblem 2.6Solve each of the following differential equations:2(a) ddxu2 0 where u u(x). 2u(b) x y 0 where u u(x, y).

SOLUTIONS TO SECTION 213Solution.(a) The general solution to this equation is u(x) C1 x C2 where C1 andC2 are arbitrary constants.(b) We have uy R f (y) where f is an arbitrary differentiable function of y.Hence, u(x, y) f (y)dy g(x)Problem 2.7Show that u(x, y) f (y 2x) xg(y 2x), where f and g are two arbitrarytwice differentiable functions, satisfy the equationuxx 4uxy 4uyy 0.Solution.Let v(x, y) y 2x. Thenuxuxxuyuyyuxy 2fv (v) g(v) 2xgv (v) 4fvv (v) 4gv (v) 4xgvv (v) fv (v) xgv (v) fvv (v) xgvv (v) 2fvv (v) gv (v) 2xgvv (v).Hence,uxx 4uxy 4uyy 4fvv (v) 4gv (v) 4xgvv (v) 8fvv (v) 4gv (v) 8xgvv (v) 4fvv (v) 4xgvv (v) 0Problem 2.8Find the differential equation whose general solution is given by u(x, t) f (x ct) g(x ct), where f and g are arbitrary twice differentiable functionsin one variable.Solution.Let v x ct and w x ct. We haveuxuxxututt fv vx gw wx fv gw fvv vx gww wx fvv gww fv vt gw wt cfv cgw cfvv vt cgww wt c2 fvv c2 gwwHence, u satisfies the wave equation utt c2 uxx

14CONTENTSProblem 2.9Let p : R R be a differentiable function in one variable. Prove thatut p(u)uxhas a solution satisfying u(x, t) f (x p(u)t), where f is an arbitrarydifferentiable function. Then find the general solution to ut (sin u)ux .Solution.Let v x p(u)t. Using the chain rule we findut fv · vt fv · (p(u) pu ut t).Thus(1 tfv pu )ut fv p.If 1 tfv pu 0 on any t interval I then fv p 0 on I which implies thatfv 0 or p 0 on I. But either condition will imply that tfv pu 0 andthis will imply that 1 1 tfv pu 0, a contradiction. Hence, we must have1 tfv pu 6 0. In this case,ut fv p.1 tfv puLikewise,ux fv · (1 pu ux t)orux fv.1 tfv puIt follows that ut p(u)ux .If ut (sin u)ux then p(u) sin u so that the general solution is given byu(x, t) f (x t sin u)where f is an arbitrary differentiable function in one variableProblem 2.10Find the general solution to the pdeuxx 2uxy uyy 0.Hint: See Problem 1.2.

SOLUTIONS TO SECTION 215Solution.Using Problem 1.2, we found uss 0. Hence, u(s, t) sf (t) g(t) wheref and g are arbitrary differentiable functions. In terms of x and y we findu(x, y) xf (x y) g(x y)Problem 2.11Let u(x, t) be a function such that uxx exists and u(0, t) u(L, t) 0 for allt R. Prove thatZ Luxx (x, t)u(x, t)dx 0.0Solution.Using integration by parts, we computeZ LZLuxx (x, t)u(x, t)dx ux (x, t)u(x, t) x 0 0Lu2x (x, t)dx0Z L ux (L, t)u(L, t) ux (0, t)u(0, t) u2x (x, t)dx0Z L u2 (x, t)dx 00Note that we have used the boundary conditions u(0, t) u(L, t) 0 andthe fact that u2x (x, t) 0 for all x [0, L]Problem 2.12Consider the initial value problemut uxx 0, x R, t 0u(x, 0) 1.(a) Show that u(x, t) 1 is a solution to this problem.n2 t(b) Show that un (x, t) 1 e n sin nx is a solution to the initial valueproblemut uxx 0, x R, t 0sin nxu(x, 0) 1 .n(c) Find sup{ un (x, 0) 1 : x R}.(d) Find sup{ un (x, t) 1 : x R, t 0}.(e) Show that the problem is ill-posed.

16CONTENTSSolution.(a) This can be done by plugging in the equations.(b) Plug in.(c) We have sup{ un (x, 0) 1 : x R} n1 sup{ sin nx : x R} n1 .(d) We have sup{ un (x, t) 1 : x R} 2en t.n(e) We have limt sup{ un (x, t) 1 : x R, t 0} limt Hence, the solution is unstable and thus the problem is ill-posed2en tn .Problem 2.13Find the general solution of each of the following PDEs by means of directintegration.(a) ux 3x2 y 2 , u u(x, y).(b) uxy x2 y, u u(x, y).(c) uxtt e2x 3t , u u(x, t).Solution.(a) u(x, y) x3 xy 2 f (y), where f is an arbitrary differentiable function.R3 2(b) u(x, y) x 6y F (x) g(y), where F (x) f (x)dx and g(y) is anarbitrary differentiable function.RR1 2x 3te t f1 (x)dx f2 (x)dx g(t)(c) u(x, t) 18Problem 2.14Consider the second-order PDEuxx 4uxy 4uyy 0.(a) Use the change of variables v(x, y) y 2x and w(x, y) x to showthat uww 0.(b) Find the general solution to the given PDE.Solution.(a) Using the chain rule we finduxuxxuyuyyuxy 2uv uw 4uvv 4uvw uww uv uvv 2uvv uvw .

SOLUTIONS TO SECTION 217Substituting these into the given PDE we find uww 0.(b) Solving the equation uww 0 we find uw f (v) and u(v, w) wf (v) g(v). In terms of x and y the general solution is u(x, y) xf (y 2x) g(y 2x)Problem 2.15Derive the general solution to the PDEutt c2 uxxby using the change of variables v x ct and w x ct.Solution.We haveututtuxuxx cuv cuw c2 uvv 2c2 uwv c2 uww uv uw uvv 2uvw uwwSubstituting we find uvw 0 and solving Rthis equation we find uv f (v)and u(v, w) F (v) G(w) where F (v) f (v)dv.Finally, using the fact that v x ct and w x ct; we get d’Alembert’ssolution to the one-dimensional wave equation:u(x, t) F (x ct) G(x ct)where F and G are arbitrary differentiable functions

18CONTENTSSolutions to Section 3Problem 3.1Solve the IVP: y 0 2ty t, y(0) 0Solution.R2Since p(t) 2t, we find µ(t) e 2tdt et . Multiplying the given equation2by et to obtain 2 02et y tetIntegrating both sides with respect to t and using substitution on the righthand integral to obtain1 22et y et C22Dividing the last equation by et to obtain2y(t) Ce t 12Since y(0) 0, we find C 12 . Thus, the unique solution to the IVP isgiven by12y (1 e t )2Problem 3.2Find the general solution: y 0 3y t e 2tSolution.Since p(t) 3, the integrating factor is µ(t) e3t . Thus, the general solutionisRy(t) e 3t Re3t (t e 2t )dt Ce 3t3tt 3t e 3t 3t (te e )dt Ce e 3t e9 (3t 1) et Ce 3t3t 1 e 2t Ce 3t9Problem 3.3Find the general solution: y 0 1t y 3 cos t, t 0

SOLUTIONS TO SECTION 319Solution.R dtSince p(t) 1t , the integrating factor is µ(t) e t eln t t. Using themethod of integrating factor we findR1y(t) 3t cos tdt Ctt 3t (t sin t cos t) Ctt 3 sin t 3 cos CttProblem 3.4Find the general solution: y 0 2y cos (3t).Solution.We have p(t) 2 so that µ(t) e2t . Thus,Z 2ty(t) ee2t cos (3t)dt Ce 2tButZ2e2te cos (3t)dt sin (3t) e2t sin (3t)dt33Ze2t2 e2t2 sin (3t) ( cos (3t) e2t cos (3t)dt)3333Z13e2te2t cos (3t)dt (3 sin (3t) 2 cos (3t))99Ze2te2t cos (3t)dt (3 sin (3t) 2 cos (3t))13Z2tHence,y(t) 1(3 sin (3t) 2 cos (3t)) Ce 2t13Problem 3.5Find the general solution: y 0 (cos t)y 3 cos t.Solution.Since p(t) cos t we have µ(t) esin t . Thus,Z sin ty(t) eesin t ( 3 cos t)dt Ce sin t 3e sin t esin t Ce sin t Ce sin t 3

20CONTENTSProblem 3.6Given that the solution to the IVP ty 0 4y αt2 , y(1) 13 exists on theinterval t . What is the value of the constant α?Solution.Solving this equation with the integrating factor method with p(t) find µ(t) t4 . Thus,Z1Cy 4 t4 (αt)dt 4ttα 2 C t 46t4tweSince the solution is assumed to be defined for all t, we must have C 0.On the other hand, since y(1) 13 we find α 2Problem 3.7Suppose that y(t) Ce 2t t 1 is the general solution to the equationy 0 p(t)y g(t). Determine the functions p(t) and g(t).Solution.RThe integrating factor is µ(t) e2t . Thus, p(t)dt 2t and this implies thatp(t) 2. On the other hand, the function t 1 is the particular solutionto the nonhomogeneous equation so that (t 1)0 2(t 1) g(t). Hence,g(t) 2t 3Problem 3.8Suppose that y(t) 2e t et sin t is the unique solution to the IVPy 0 y g(t), y(0) y0 . Determine the constant y0 and the function g(t).Solution.First, we find y0 : y0 y(0) 2 1 0 1. Next, we find g(t) : g(t) y 0 y ( 2e t et sin t)0 ( 2e t et sin t) 2e t et cos t 2e t et sin t 2et cos t sin tProblem 3.9Find the value (if any) of the unique solution to the IVP y 0 (1 cos t)y 1 cos t, y(0) 3 in the long run?

SOLUTIONS TO SECTION 321Solution.RThe integrating factor is µ(t) e (1 cos t)dt et sin t . Thus, the general solution isZ (t sin t)y(t) eet sin t (1 cos t)dt Ce (t sin t) 1 Ce (t sin t)Since y(0) 3, we find C 2 and therefore y(t) 1 2e (t sin t) . Finally,lim y(t) lim (1 2e sin t e t ) 1t t Problem 3.10Solve the initial value problem ty 0 y t, y(1) 7Solution.Rewriting the equation in the form1y0 y 1twe find p(t) 1t and µ(t) 1t . Thus, the general solution is given byy(t) t ln t CtBut y(1) 7 so that C 7. Hence,y(t) t ln t 7tProblem 3.11Show that if a and λ are positive constants, and b is any real number, thenevery solution of the equationy 0 ay be λthas the property that y 0 as t . Hint: Consider the cases a λ anda 6 λ separately.Solution.Since p(t) a we find µ(t) eat . Suppose first that a λ. Theny 0 ay be at

22CONTENTSand the corresponding general solution isy(t) bte at Ce atThus,limt y(t) limt ( ebtat eCat ) limt aebat 0Now, suppose that a 6 λ theny(t) b λte Ce ata λThus,lim y(t) 0t Problem 3.12Solve the initial-value problem y 0 y et y 2 , y(0) 1 using the substitution1u(t) y(t)Solution.Substituting into the equation we findu0 u et , u(0) 1Solving this equation by the method of integrating factor with µ(t) e t wefindu(t) tet CetSince u(0) 1, C 1 and therefore u(t) tet et . Finally, we havey(t) ( tet et ) 1Problem 3.13Solve the initial-value problem ty 0 2y t2 t 1, y(1) Solution.Rewriting the equation in the form12y0 y t 1 tt12

SOLUTIONS TO SECTION 3Since p(t) 2t23we find µ(t) t2 . The general solution is then given byy(t) Since y(1) 12we find C 1.12y(t) t2t 1 C 243 2 tHence,t2t 11 43 2 12t2Problem 3.14Solve y 0 1t y sin t, y(1) 3. Express your answer in terms of the sineRtintegral, Si(t) 0 sins s ds.Solution.Since p(t) 1t we find µ(t) 1t . Thus, R 0t sin s 0 s1y(t) Si(t) Cty(t) tSi(t) Ct 01ytSince y(1) 3, C 3 Si(1). Hence, y(t) tSi(t) (3 Si(1))t

24CONTENTSSolutions to Section 4Problem 4.1Solve the (separable) differential equation2 ln y 2y 0 tet.Solution.At first, this equation may not appear separable, so we must simplify theright hand side until it is clear what to do.2 ln y 2y 0 tett2 ln te · e12 tet · 2yt 2 2 et .y1y2 Separating the variables and solving the equation we find2y 2 y 0 tetZZ123 0(y ) dt tet dt31 3 1 t2y e C323 23y et C2Problem 4.2Solve the (separable) differential equationy0 t2 y 4y.t 2

SOLUTIONS TO SECTION 425Solution.Separating the variables and solving we findy 0 t2 4 t 2yt 2ZZ0(ln y ) dt (t 2)dtln y t2 2t C2t2y(t) Ce 2 2tProblem 4.3Solve the (separable) differential equationty 0 2(y 4).Solution.Separating the variables and solving we findy02 y 4 tZZ20(ln y 4 ) dt dttln y 4 ln t2 Cy 4ln 2 Cty(t) Ct2 4Problem 4.4Solve the (separable) differential equationy 0 2y(2 y).Solution.Separating the variables and solving (using partial fractions in the process)

26CONTENTSwe findy0 2y(2 y)y0y0 22y 2(2 y)ZZZ1100(ln y ) dt (ln 2 y ) dt 2dt22yln 4t C2 yy Ce4t2 y2Ce4ty(t) 1 Ce4tProblem 4.5Solve the IVPy0 4 sin (2t), y(0) 1.ySolution.Separating the variables and solving we findyy 0 4 sin (2t)(y 2 )0 8 sin (2t)ZZ2 0(y ) dt 8 sin (2t)dty 2 4 cos (2t) Cpy(t) C 4 cos (2t).Since y(0) 1, we find C 5 and hencepy(t) 5 4 cos (2t)Problem 4.6Solve the IVP:πyy 0 sin t, y( ) 2.2

SOLUTIONS TO SECTION 427Solution.Separating the variables and solving we findZ y22 0Zdt sin tdty2 cos t C2y 2 2 cos t C.pSince y( π2 ) 2, we find C 4. Thus, y(t) ( 2 cos t 4). Fromy( π2 ) 2, we havepy(t) ( 2 cos t 4)Problem 4.7Solve the IVP:y 0 y 1 0, y(1) 0.Solution.Separating the variables and solving we find(ln (y 1))0 1ln (y 1) t Cy 1 Ce ty(t) Ce t 1.Since y(1) 0, we find C e. Thus, y(t) e1 t 1Problem 4.8Solve the IVP:y 0 ty 3 0, y(0) 2.

28CONTENTSSolution.Separating the variables and solving we findZ0 3Zy y dt tdtZ 2 0yt2dt C 221t2 2 C2y21y2 2. t CSince y(0) 2, we find C have y(t) 1.4Thus, y(t) q4. 4t2 1Since y(0) 2, we 2 4t2 1Problem 4.9Solve the IVP:πy 0 1 y 2 , y( ) 1.4Solution.Separating the variables and solving we findy0 11 y2arctan y t Cy(t) tan (t C).Since y( π4 ) 1, we find C π2 . Hence, y(t) tan (t π2 ) cot tProblem 4.10Solve the IVP:1y 0 t ty 2 , y(0) .2

SOLUTIONS TO SECTION 429Solution.Separating the variables and solving we findy0y2 10yy0 y 1 y 1y 1lny 1y 1y 1 t 2t t2 C2 Ce t21 Ce ty(t) .1 Ce t2Since y(0) 12 , we find C 31 . Thus,23 e ty(t) 3 e t2Problem 4.11Solve the equation 3uy uxy 0 by using the substitution v uy .Solution.Letting v uy we obtain 3v vx 0. Solving this ODE by the method ofseparation of variables we findvx 3vln v(x, y) 3x f (y)v(x, y) f (y)e 3x .Hence, u(x, y) Rf (y)e 3x dy F (y)e 3x G(x) where F (y) Problem 4.12Solve the IVP(2y sin y)y 0 sin t t, y(0) 0.Rf (y)dy

30CONTENTSSolution.Separating the variables and solving we findZZ 3x0f (y)e(2y sin y)y dt (sin t t)dtf (y)e 3x y 2 cos y cos t t2 C.2(4.1)(4.2)Since y(0) 0, we find C 2. Thus,y 2 cos y cos t t2 22Problem 4.13State an initial value problem, with initial condition imposed at t0 2,having implicit solution y 3 t2 sin y 4.Solution.Differentiating both sides of the given equation we find3y 2 y 0 cos y 2t 0, y(2) 0Problem 4.14Can the differential equationdy x2 xydxbe solved by the method of separation of variables? Explain.Solution.If we try to factor the right side of the ODE, we getdy x(x y).dxThe second factor is a function of both x and y. The ODE is not separable

SOLUTIONS TO SECTION 531Solutions to Section 5Problem 5.1Classify each of the following PDE as linear, quasi-linear, semi-linear, or nonlinear.(a) xux yuy sin (xy).(b) ut uux 0(c) u2x u3 u4y 0.(d) (x 3)ux xy 2 uy u3Solution.(a) Linear (b) Quasi-linear, non-linear (c) Non-linear (d) Semi-linear, nonlinearProblem 5.2Show that u(x, y) ex f (2x y), where f is a differentiable function of onevariable, is a solution to the equationux 2uy u 0.Solution.Let w 2x y. Then ux 2uy u ex f (w) 2ex fw (w) 2ex fw (w) ex f (w) 0Problem 5.3 Show that u(x, y) x xy satisfies the equationxux yuy usubject to the constraintu(y, y) y 2 , y 0.Solution. 1 1 3 1 3 2 2We have xux yuy x 2 x y y 21 x 2 y 2 x xy u. Also, u(y, y) y2Problem 5.4Show that u(x, y) cos (x2 y 2 ) satisfies the equation yux xuy 0subject to the constraintu(0, y) cos y 2 .

32CONTENTSSolution.We have yux xuy 2xy sin (x2 y 2 ) 2xy sin (x2 y 2 ) 0. Moreover,u(0, y) cos y 2Problem 5.5Show that u(x, y) y 12 (x2 y 2 ) satisfies the equation111ux uy xyysubject to u(x, 1) 21 (3 x2 ).Solution.We have x1 ux y1 uy x1 ( x) y1 (1 y) y1 . Moreover, u(x, 1) 12 (3 x2 )Problem 5.6Find a relationship between a and b if u(x, y) f (ax by) is a solution to theequation 3ux 7uy 0 for any differentiable function f such that f 0 (x) 6 0for all x.Solution.Let v ax by. We haved(ax by) afv (v)dxd(ax by)uy fv (v) bfv (v).dyux fv (v)Hence, by substitution we find 3a 7b 0Problem 5.7Reduce the partial differential equationaux buy cu 0to a first order ODE by introducing the change of variables s ax by andt bx ay.

SOLUTIONS TO SECTION 533Solution.By the chain rule we findux us sx ut tx aus butuy us sy ut ty bus aut .Thus,0 aux buy cu (a2 b2 )us cuorus a2cu 0. b2This is a first order linear ODE that can be solved using the method ofseparation of variablesProblem 5.8Solve the partial differential equationux uy 1by introducing the change of variables s x y and t x y.Solution.Using the chain rule we findux us sx ut tx us utuy us sy ut ty us utSubstituting these into the PDE to obtain us 21 . Solving this ODE wefind u(s, t) 12 s f (t) where f is an arbitrary differentiable function in onevariable. Now substituting for s and t we find u(x, y) 21 (x y) f (x y)Problem 5.9Show that u(x, y) e 4x f (2x 3y) is a solution to the first-order PDE3ux 2uy 12u 0.

34CONTENTSSolution.We haveux 4e 4x f (2x 3y) 2e 4x f 0 (2x 3y)uy 3e 4x f 0 (2x 3y)Thus,3ux 2uy 12u 12e 4x f (2x 3y) 6e 4x f 0 (2x 3y) 6e 4x f 0 (2x 3y) 12e 4x f (2x 3y) 0Problem 5.10Derive the general solution of the PDEaut bux u, a, b 6 0by using the change of variables v ax bt and w a1 t.Solution.We have ut buv a1 uw and ux auv . Substituting we find uw uand solving this equation we find u(v, w) f (v)ew where f is an arbitrarytdifferentiable function in one variable. Thus, u(x, t) f (ax bt)e aProblem 5.11Derive the general solution of the PDEaux buy 0, a, b 6 0by using the change of variables s(x, y) ax by and t(x, y) bx ay.Assume a2 b2 0.Solution.According to the chain rule for the derivative of a composite function, wehaveux us sx ut tx aus butuy us sy ut ty bus autSubstituting these into the given equation to obtaina2 us abut b2 us abut 0

SOLUTIONS TO SECTION 535or(a2 b2 )us 0and since a2 b2 0 we obtainus 0.Solving this equation, we findu(s, t) f (t)where f is an arbitrary differentiable function of one variable. Now, in termsof x and y we findu(x, y) f (bx ay)Problem 5.12Write the equationut cux λu f (x, t)in the coordinates v x ct, w t.Solution.Using the chain rule, we findut uv vt uw wt cuv uwux uv vx uw wx uvSubstituting these into the original equation we obtain the equationuw λu f (v cw, w)Problem 5.13Suppose that u(x, t) w(x ct) is a solution to the PDExux tut Auwhere A and c are constants. Let v x ct. Write the differential equationwith unknown function w(v).

36CONTENTSSolution.Using the chain rule we findut cwvandux w v .Substititution into the original PDE givesvwv (v) Aw(v)

SOLUTIONS TO SECTION 737Solutions to Section 7Problem 7.1Solve ux yuy y 2 with the initial condition u(0, y) siny.Solution.We have a 1, b y, and f y 2 . Solvingk2dydx y we find y k1 ex . Solving y 2 k12 e2x we find u 21 e2x f (k1 ) 21 y 2 f (k1 ) 21 y 2 f (ye x ).Using the initial condition u(0, y) sin y we find sin y 21 y 2 f (y). Hence,u(x, y) 21 y 2 21 y 2 e 2x e2x sin (ye x )dudxProblem 7.2Solve ux yuy u2 with the initial condition u(0, y) sin y.Solution.dyWe have a 1, b y, and f u2 . Solving dx y we find y k1 ex . Solvingdu1 u2 we find x u1 k2 . Thus, u(x, y) f (ye x. Using the initialdx) xcondition u(0, y) sin y we find f (y) csc y. Hence, u(x, y) csc (ye1 x ) xProblem 7.3Find the general solution of yux xuy 2xyu.Solution.The system of ODEs isx dudy , 2xu.dxy dxSolving the first equation, we find x2 y 2 k1 . Solving the second equation,22we find u k2 ex . Hence, u(x, y) ex f (x2 y 2 ) where f is an arbitrarydifferentiable function in one variableProblem 7.4Find the integral surface of the IVP: xux yuy u, u(x, 1) 2 e x .Solution.The system of ODEs isy duudy , .dxx dxx

38CONTENTSSolving the first equation, we find y k1 x. Solving the second equation, weyfind u k2 x. Hence, u(x, y) xf x where f is an arbitrary differentiablefunction in one variable. From the initial condition u(x, 1) 2 e x we1find f (x) x(2 e x . Hence, the integral surface isu(x, y) y(2 e y )xProblem 7.5Find the unique solution to 4ux uy u2 , u(x, 0) 1.1 x2Solution.The system of ODEs can be written asdxdydu 2.41u dywe find x 4y k1 . Solving the equationSolving the equation dx41dydu11 u2 we find u(x, y) f (x 4y) y . Using the initial condition u(x, 0) 1 x2112we find f (x) 1 x . Hence, u(x, y) (x 4y)2 1 yProblem 7.62Find the unique solution to e2y ux xuy xu2 , u(x, 0) ex .Solution.The system of ODEs can be written asdydudx 2.2yexxuThus, xdx e2y dy which implies x2 e2y k1 . Solving the equationwe find y u1 k2 f (x2 e2y ). Hence,u(x, y) duu21.f (x2 e2y ) y2Using the initial condition u(x, 0) ex we find f (x) e (x 1) . Hence,u(x, y) 1e x2 e2y 1 y dy

SOLUTIONS TO SECTION 739Problem 7.

For each of the following PDEs, state its order and whether it is linear or non-linear. If it is linear, also state whether it is homogeneous or nonhomo-geneous: (a) uu x x2u yyy sinx 0: (b) u x ex 2u y 0: (c) u tt (siny)u yy etcosy 0: Solution. (a) Order 3, non-linear. (b) Order 1, linear, homogeneous. (c) Order 2, linear, non .

Related Documents:

2. Determine when a group action by quasi-M obius maps is conjugate to a group action by M obius maps. 3. Describe the group of quasi-M obius self-maps of a given metric space. 4. Classify metric spaces with large groups of quasi-M obius maps. 5. Use quasi-M obius group actions to describe the geometry of the spaces on which they act.

Locally convex quasi *-algebras, in particular Banach quasi *-algebras, . like tensor products (see [5, 36, 37, 41, 43, 52, 53, 59]). In [2] we construct the tensor product of two Banach quasi *-algebras in order to obtain again a Banach quasi *-algebra tensor

quasi-experimental study design used, (2) justification of the use of the design, (3) use of correct nomenclature to describe the design, and (4) statistical methods used. Criterion 1: Type of Quasi-experimental Study Design Used The hierarchy for quasi-experimental designs in the field of infectious diseases was

randomization (quasi-experimental design). This re-search has taken advantage of public pension pro-grams in Europe, which have been shown to increase retirement [19-21]. These quasi-experimental studies have found neutral to positive effects for physical health [12, 22, 23]. The quasi-experimental study designs described

Quasi-Experimental Designs That Either Lack a Control Group or Lack Pretest Observations on the Outcome Qua si (kwa'zt, st, kwii'zi, sr): [Middle Engli l;l as if, from Old French from Latin quasi: quam, as; see kwo-in lp.do-European Roots s, if; see swo-in Indo-European Roots.] adj. Having a likeness to something; resembling: a quasi success.

Quasi Monte Carlo has been developed. While the convergence rate of classical Monte Carlo (MC) is O(n¡1 2), the convergence rate of Quasi Monte Carlo (QMC) can be made almost as high as O(n¡1). Correspondingly, the use of Quasi Monte Carlo is increasing, especially in the areas where it most readily can be employed. 1.1 Classical Monte Carlo

Poisson-like assumptions (that we call the quasi-Poisson from now on) or a negative binomial model. The objective of this statistical report is to introduce some concepts that will help an ecologist choose between a quasi-Poisson regression model and a negative binomial regression model for overdispersed count data.

The last section of the paper is devoted to actions of quasi-M obius groups on compact sets homeomorphic to the Sierpinski carpet. This compact set has a very large group of homeomorphisms and we show that, depending on the gauge, the group of quasi-Mobius maps may have very di erent nature.