Spectrum Of Eleven-dimensional Supergravity On A PP-wave Background

1y ago
5 Views
1 Downloads
1.68 MB
51 Pages
Last View : 16d ago
Last Download : 3m ago
Upload by : Adele Mcdaniel
Transcription

Spectrum of Eleven-dimensional Supergravity on a PP-wave Background KEK/ hep-th/0307193, to appear in Phys. Rev. D in collaboration with Kentaroh Yoshida (KEK) . – p.1/36

Introduction 11-dimensional Supergravity: 32 Maximal supersymmetry, non-chiral theory . – p.2/36

Introduction 11-dimensional Supergravity: 32 Maximal supersymmetry, non-chiral theory First construction by Cremmer, Julia and Scherk (1978) 25th Anniversary! . – p.2/36

Introduction 11-dimensional Supergravity: 32 Maximal supersymmetry, non-chiral theory First construction by Cremmer, Julia and Scherk (1978) 25th Anniversary! Various dimensional supergravities appear Kaluza-Klein mechanism 10-dim. type IIA (non-chiral), type IIB (chiral), etc. AdS4 S 7 (with cosmological constant) singular G2 compactification 4-dimensional N 1 chiral supergravity . – p.2/36

Introduction 11-dimensional Supergravity: 32 Maximal supersymmetry, non-chiral theory First construction by Cremmer, Julia and Scherk (1978) 25th Anniversary! Various dimensional supergravities appear Kaluza-Klein mechanism 10-dim. type IIA (non-chiral), type IIB (chiral), etc. AdS4 S 7 (with cosmological constant) singular G2 compactification 4-dimensional N 1 chiral supergravity only a classical theory . – p.2/36

Towards Quantum Theory Supermembrane theory in 11-dimensions: Bergshoeff, Sezgin and Townsend (1987) . – p.3/36

Towards Quantum Theory Supermembrane theory in 11-dimensions: Bergshoeff, Sezgin and Townsend (1987) Quantum Mechanics of Supermembrane on FLAT background: de Wit, Hoppe and Nicolai (1988) 15th Anniversary! . – p.3/36

Towards Quantum Theory Supermembrane theory in 11-dimensions: Bergshoeff, Sezgin and Townsend (1987) Quantum Mechanics of Supermembrane on FLAT background: de Wit, Hoppe and Nicolai (1988) 15th Anniversary! Continuous spectrum, etc. UNSTABLE as a single object de Wit, Lüscher and Nicolai (1989) . – p.3/36

Towards Quantum Theory Supermembrane on PP-wave background Nakayama, Sugiyama and Yoshida (2002) discretized spectrum, supersymmetric, etc. STABLE as a single object . – p.4/36

Towards Quantum Theory Supermembrane on PP-wave background Nakayama, Sugiyama and Yoshida (2002) discretized spectrum, supersymmetric, etc. STABLE as a single object Does this theory contain supergravity? (Zero-mode spectrum should correspond to that of supergravity on PP-wave background.) . – p.4/36

Towards Quantum Theory Supermembrane on PP-wave background Nakayama, Sugiyama and Yoshida (2002) discretized spectrum, supersymmetric, etc. STABLE as a single object Does this theory contain supergravity? (Zero-mode spectrum should correspond to that of supergravity on PP-wave background.) We construct supergravity on PP-wave background and check the spectrum of fields. . – p.4/36

Field Contents eM A : vielbein ΨM : gravitino (Majorana spinor) CM N P : three-form gauge field . – p.5/36

Lagrangian of Eleven-dimensional Supergravity L eR 1 1 2 e ΨM 1 MNP b e FM N P Q F M N P Q Γ D N ΨP 48 e M N P QRS ΨN FP QRS e ΨM Γ 192 1 (144) M N P QRSU V W XY ε FM N P Q FRSU V CW XY 2 various conventions: D N ΨP N ΨP 1 4 b AB ΨP ωN AB Γ b N P QR M 8δ [N Γ e N P QR M Γ b P QR] Γ M e M N P QRS Γ b QR g S]N b M N P QRS 12g M [P Γ Γ ε012···10 1 weight 1 invariant tensor density . – p.6/36

Classical Field Equations 0 1 2 gM N R R M N 1 96 gM N FP QRS F P QRS 1 12 FM P QR FN P QR 1 e M N P QRS MNP b Γ 0 Γ D N ΨP ΨN FP QRS 96 ª 0 Q e FQM N P 18 (144)2 gM Z gN K gP L εZKLQRSU V W XY FQRSU FV W XY . – p.7/36

Spectrum on AdS4 S 7 hFµνρσ i 3m ²µνρσ X I Φµν···mn··· (x, y) φIµν··· (x) · Ymn··· (y) I d 11 AdS4 spin S 7 (SO(8)) number gM N (x, y) hµν (x) 2 1 1 Vµ[IJ] (x) 1 [IJ] Km (y) 28 S [IJKL] (x) 0 19 gmn Kp[IJ K KL]p 35 CM N P (x, y) P [IJKL] (x) 0 ΨM (x, y) I ψµ (x) 3/2 χ[IJK] (x) 1/2 [IJ] Km (y) : Killing vector [IJ KL] K(m Kn) [IJKL] K[mnp] (y) [IJK] ηm η I (y) b m η/ [IJK] 1Γ 9 35 8 56 η I (y) : Killing spinor (I 1, · · · , 8) . – p.8/36

Maximally Supersymmetric Spaces AdS4 S 7 Penrose Limit Flat Limit Kowalski-Glikman AdS7 S 4 Minkowski Penrose Limit . – p.9/36

Penrose Limit of AdS4 S 7 AdS4 S 7 coordinates: n o 2 ds2 RA cosh2 ρ · dt2 dρ2 sinh2 ρ · dΩ22 n o RS2 cos2 θ · dϕ2 dθ 2 sin2 θ · dΩ05 2 We choose a null geodesics of AdS4 S 7 as RS 2RA t 2ϕ ρ θ 0 . – p.10/36

Along this null direction we take RA : ds2 2dx dx G (dx )2 9 X (dxI )2 I 1 G 3 h³ µ 2 X 3 Ie 2 (x ) e I 1 9 ³ µ 2 X 6 I 0 4 I0 (x )2 i µ F 123 6 0 where x RA ρ x 1 2 (t 2ϕ) · 3 µ y 2RA θ x 2 RA (t 2ϕ) · µ 3 . – p.11/36

Fluctuation Fields gM N gM N hM N ΨM 0 ψ M CM N P CM N P C M N P gM N : pp-wave background 4 [ C123] F 123 µ . – p.12/36

Field Equations for Fluctuations From classical equation for gM N : 1 n o 0 g M N h P Q R P Q P Q h P Q P P h Q Q 2 o 1n P P P P M h N P N h M P M N h P P h M N 2 n o 1 gM N 2F P QRS P C QRS FP QRS FU QRS hP U 24 1 1 FM P QR [N C P QR] FN P QR [M C P QR] 3 3 1 FM P QR FN U QR hP U 4 (A-1) . – p.13/36

Field Equations for Fluctuations From classical equation for ΨM : 1 b M N 123 MNP b D N ψP µ Γ ψN 0 Γ 4 1 n M b 12 3N b 23 g 1N Γ b 31 g 2N ) µ g (Γ g Γ 4 b 23 g N Γ b 3 g 2N Γ b 2 g 3N ) g M 1 (Γ b 3 g 1N Γ b 1 g 3N Γ b 13 g N ) g M 2 (Γ o b 1 g 2N Γ b 12 g N Γ b 2 g 1N ) ψN g M 3 (Γ (A-2) . – p.14/36

Field Equations for Fluctuations From classical equation for CM N P : n S C Γ 0 4g QR R [Q C M N P ] ΓS RQ [S M N P ] RM [Q C SN P ] o S ΓS C Γ [Q M SP ] RN RP [Q C M N S] 1 QR n FSM N P ( R hQ S Q hR S S hRQ ) g 2 FQSN P ( R hM S M hR S S hRM ) FQM SP ( R hN S N hR S S hRN ) o FQM N S ( R hP S P hR S S hRP ) 1 144 gM Z gN K gP L εZKLQRSU V W XY FQRSU V C W XY (A-3) . – p.15/36

Gauge-fixing Conditions N h M h 0 ψ 0 C N P 0 light-cone gauge-fixing . – p.16/36

Hamiltonian We will encounter Klein-Gordon type equations of motion and have to evaluate its energy spectrum: ¡ α µ i φ(x , x , xI ) 0 x : evolution parameter α : arbitrary constant We express the Hamiltonian H i : H 1 3 µ X Ie Ie a a Ie 1 6 µ X I0 I0 I0 a a 1 2 µ (2 α) Last term zero-point energy E0 of the system (eigenvalue of H): E0 1 2 µ E 0 (φ) E 0 (φ) 2 α . – p.17/36

Bosonic Fields ( ) component of (A-1): 0 hII traceless condition . – p.18/36

Bosonic Fields ( ) component of (A-1): 0 hII traceless condition Substitute this into ( I) component of (A-1): hI 1 J hIJ non-dynamical . – p.18/36

Bosonic Fields ( ) component of (A-1): 0 hII traceless condition Substitute this into ( I) component of (A-1): hI 1 J hIJ non-dynamical ( IJ ) component of (A-3): C IJ 1 K C IJK non-dynamical . – p.18/36

Bosonic Fields ( ) component of (A-1): 0 hII traceless condition Substitute this into ( I) component of (A-1): 1 hI J hIJ non-dynamical ( IJ ) component of (A-3): C IJ 1 K C IJK non-dynamical Trace of (A-1) under the above conditions: h 1 ( )2 I J hIJ 1 3 µ C 123 non-dynamical . – p.18/36

Non-trivial Equations (IeJe) of (A-1) : e 0 ) of (A-1) : (IJ 0 0 (I J ) of (A-1) : f of (A-3) : (IeJeK) (IeJeK 0 ) of (A-3) : e 0 K 0 ) of (A-3) : (IJ (I 0 J 0 K 0 ) of (A-3) : 0 hIeJe 0 hIJ e 0 0 h I0J 0 2 µ δIeJe C 3 µ C IJ e 0 1 (1-a) (1-b) µ δ I 0 J 0 C (1-c) 3 0 C 2µ hIeIe (1-d) 0 C IJ e 0 µ hIJ e 0 (1-e) 0 C IJ e 0K0 (1-f) 0 CI0J 0K0 C IJ e 0 1 2 εIeK fL e CK fLJ e 0 1 6 µ εI 0 J 0K0W 0X0Y 0 C W 0 X 0 Y 0 (1-g) C 2C 123 . – p.19/36

(1-f): 0 CIeJeK 0 We find the zero-mode energy E0 (C IJ e 0 K 0 ) and degrees of freedom D(C IJ e 0 K 0 ): E0 (C IJ e 0K0 ) 2 D(C IJ e 0 K 0 ) 45 . – p.20/36

(1-b), (1-e): 0 hIJ e 0 µ CIJ e 0 CIJ e 0 µ hIJ e 0 Diagonalize hIJ e 0 and C IJ e 0: HIJ e 0 hIJ e 0 iC IJ e 0 Thus modified(1-b) and (1-e) are ¡ 0 µ i HIJ e 0 E 0 (HIJ e 0) 1 H IJ e 0 hIJ e 0 iC IJ e 0 0 ¡ µ i H IJ e 0 E 0 (H IJ e 0) 3 D(HIJ e 0 ) D(H IJ e 0 ) 18 . – p.21/36

(1-a), (1-c), (1-d): Apply similar consideration to (1-a), (1-c) and (1-d): h IeJe hIeJe 1 δIeJe hK fK f 3 h hIeIe iC h I0J 0 hI 0 J 0 1 6 h hIeIe iC δI 0 J 0 h K 0 K 0 Then we find ) E (h E 0 (h 0 e e I0J 0 ) 2 IJ E 0 (h) 0 D(h ) 5 IeJe E 0 (h) 4 D(h I 0 J 0 ) 20 D(h) D(h) 1 . – p.22/36

(1-g): Decomposing into self-dual part C I 0 J 0 K 0 and anti-self-dual part Cª I0J 0K0 : C I0J 0K0 Cª I0J 0K0 i 3! ε I0J 0K0W 0X0Y 0 i 3! ε C W 0X0Y 0 I0J 0K0W 0X0Y 0 Cª W 0X0Y 0 They satisfy the following equations: ¡ ª ¡ µ i C I 0 J 0 K 0 0 µ i C I 0 J 0 K 0 0 E 0 (C I0J 0K0 ) 3 E 0 (C ª I0J 0K0 ) 1 ª D(C ) D(C 0 0 0 I J K I 0 J 0 K 0 ) 10 . – p.23/36

Results We have fully solved the field equations for bosonic fluctuations and have derived the spectrum of graviton hM N and three-form gauge field CM N P . The resulting spectrum is splitting with a certain energy difference in contrast to the flat case. energy bosonic fields 4 h 3 H IJ e 0 C I0J 0K0 2 C IJ e 0K0 h ee 1 HIJ e 0 0 h degrees of freedom 1 IJ Cª I0J 0K0 18 10 h I0J 0 45 5 20 18 10 1 . – p.24/36

Fermionic Fields M component of (A-2): b P ψP 0 Γ Lorentz-type gauge-fixing condition . – p.25/36

Fermionic Fields M component of (A-2): b P ψP 0 Γ Lorentz-type gauge-fixing condition M component of (A-2): P ψP 0 ψ 1 I ψI non-dynamical . – p.25/36

M Ie component of (A-2): 0 n ³ 1 o b Γ b K K ψ e b G Γ Γ I 2 1 b 123 ³ b e ψe b eΓ δIeJe Γ µΓ I J J 4 We decompose ψI e 1 b b Γ Γ ψIe 2 ψIª e 1 b b Γ Γ ψIe 2 Then we obtain 1 b bK Γ Γ K ψI non-dynamical e 2 1 b 123 ¡ b b 0 ψIe µΓ δIeJe ΓIeΓJe ψJ e 2 ψIª e . – p.26/36

we shall introduce the following fields: ³ 1 b b Γ Γ δ ψ ψ e e IeJe Ie 3 I J Je k Ie b ψ Γ ψ 1 Ie b Ie or (δ f e 1 Γ b fΓ b e): Acting Γ I 3 K KI 0 k ψ1 k I k ψ1R b Γ-parallel mode 1 b 123 k 123 b µ Γ ψ1 0 ψ f µΓ ψ f K K 2 Decompose ψ and ψ1 e ψ e IR b Γ-transverse mode b 123 1 iΓ 2 b 123 1 iΓ 2 according to the chirality: ψ Ie ψ e IL k ψ1 k ψ1L b 123 1 iΓ 2 b 123 1 iΓ 2 ψ e I k ψ1 . – p.27/36

b 123 ): Multiplying chiral projection operator 12 (1 iΓ ³ ³ k k 0 µ i ψ1L 0 µ i ψ1R ³ ³ 1 1 ψ µ i 0 µ i ψIR 0 e e IL 2 2 Zero-mode energies and degrees of freedom of ψIR and ψ e e : IL E 0 (ψIR e ) 5 E 0 (ψIL e ) 3 2 2 ) D(ψ D(ψIR e e ) 8 (3 1) 16 IL . – p.28/36

M I 0 component of (A-2): o n ³ 1 b Γ b K K ψI 0 b G Γ 0 Γ 2 1 b 123 ³ bI0 Γ b J 0 ψJ 0 δI 0 J 0 Γ µΓ 4 b b The Γ-transverse mode and Γ-parallel mode are defined as ψI 0 ψI 0R k ψ2R b 123 1 iΓ 2 b 123 1 iΓ 2 1 b b Γ Γ ψI 0 2 ψI 0 k ψ2 ψI 0L k ψ2L b 123 1 iΓ 2 b 123 1 iΓ 2 ψI 0 k ψ2 . – p.29/36

b b Equations for the Γ-parallel mode and Γ-transverse mode: ³ ³ 5 5 k k 0 µ i ψ2R 0 µ i ψ2L 2 2 ³ ³ 1 1 ψ µ i 0 µ i ψI 0 0R I0L 2 2 We find that the zero-mode energiesand degrees of freedom: E 0 (ψI 0R ) 3 E 0 (ψI 0L ) 5 2 2 D(ψI 0 R ) D(ψI 0 L ) 8 (6 1) 40 . – p.30/36

b Linear combination of Γ-parallel modes: k ψR 2 5 k ψ1R k ψ2R k ψL 2 5 k k ψ1L ψ2L We can easily see that the re-defined fermions satisfy: ³ ³ 3 3 k k 0 µ i ψL 0 µ i ψR 2 2 k E 0 (ψR ) 1 k E 0 (ψL ) 2 k k D(ψR ) D(ψL ) 8 7 2 . – p.31/36

Results We have solved and derived the spectrum of gravitino ψM in the case of pp-wave background. As a result, we have found that the spectrum is splitting with a certain energy difference in the same manner with the spectrum of bosons. energy fermionic fields degrees of freedom k 7/2 ψL 5/2 ψIR e ψI 0L 16 40 3/2 ψIL e ψI 0R 16 40 1/2 ψR k 8 8 . – p.32/36

Results energy 4 bosons fermions h 1 k ψL 7/2 3 H IJ e 0 28 ψIR e C IJ e 0K0 h IeJe HIJ e 0 56 70 Cª I0J 0K0 ψI 0R 56 28 k ψR 1/2 0 ψI 0L h I0J 0 ψIL e 3/2 1 8 C I0J 0K0 5/2 2 D.O.F. h 8 1 . – p.33/36

Towards Quantum Theory, revisited Supermembrane as a matrix model: Nakayama, Sugiyama and Yoshida (2002), etc. discrete spectrum, STABLE as a single object . – p.34/36

Towards Quantum Theory, revisited Supermembrane as a matrix model: Nakayama, Sugiyama and Yoshida (2002), etc. discrete spectrum, STABLE as a single object Zero-mode spectrum corresponds to that of Supergravity . – p.34/36

Towards Quantum Theory, revisited Supermembrane as a matrix model: Nakayama, Sugiyama and Yoshida (2002), etc. discrete spectrum, STABLE as a single object Zero-mode spectrum corresponds to that of Supergravity WE SHOWED HERE! . – p.34/36

Conclusion 11-dim. Supergravity on KK Zero-mode(?) AdS4 S 7 M2-brane in M-theory on Zero-Mode PP-wave Penrose Limit 11-dim. Supergravity on Penrose Limit PP-wave 11-dim. Supergravity on AdS7 S 4 KK Zero-mode(?) ? M5-brane in M-theory on PP-wave . – p.35/36

Discussions, Future Problems Comparison with KK zero-modes and algebras of AdS4(7) S 7(4) . – p.36/36

Discussions, Future Problems Comparison with KK zero-modes and algebras of AdS4(7) S 7(4) Propagators and energy-momentum tensors of hM N , C M N P and ψM . – p.36/36

Discussions, Future Problems Comparison with KK zero-modes and algebras of AdS4(7) S 7(4) Propagators and energy-momentum tensors of hM N , C M N P and ψM Dimensional reduction to type IIA supergravity (only 24 supercharges) . – p.36/36

Spectrum of Eleven-dimensional Supergravity on a PP-wave Background KEK/ hep-th/0307193, to appear in Phys. Rev. D in collaboration with Kentaroh Yoshida (KEK). - p.1/36. Introduction 11-dimensional Supergravity: . AdS4 S7 (with cosmological constant) singular G2 compactification

Related Documents:

3D CONCEPTS Stephen Gregory Devine 60 Calendars, Games & Toys Mark Geeta 7 Days Convenience Inc. (formerly Bostonian OneStopRolande Alexandre 7-Eleven, Inc. 7-Eleven, Inc. 7-Eleven, Inc. 7-Eleven, Inc. 7-Eleven #37403h 7-Eleven, Inc., Richard M. Blau MANUPELLI JR, RICHARD A. A CLEAN SWEEP HOME IMPROVEMENT SPEC Karen Wallace A FRESH START Jazna .

4 Eleven Rack User Guide 2 Connect your guitar to the Guitar Input on the front panel of Eleven Rack. 3 Connect the power cable. 4 Make sure any connected amplifiers or pow-ered monitors are turned off or muted. 5 Set the Eleven Rack Power switch to On. The Eleven Rack logo will ap

of 7-Eleven, Inc., was founded in Texas, U.S. in 1927. In 1946, the store name was changed to "7-Eleven" to reflect the store opening hours of 7:00am to 11:00pm. Since then, 7-Eleven has been growing as a convenience store chain. In 2005, it became a wholly-owned subsidiary of Seven-Eleven Japan Co., Ltd. As of the end of 2008,

The 7-Eleven Franchise Opportunity An opportunity for diverse business owners to build their futures. Can you guess how many 7-Eleven stores we operate worldwide? B. 45,000 A. 35,000 C. 55,000 D. 65,000 Who is 7-Eleven. 7-Eleven in U.S. & North America. 7-Eleven's Legacy - Innovation.

2;3Fachbereich Physik, Martin-Luther-Universit at Halle-Wittenberg Friedemann-Bach-Platz 6, D-06099 Halle, Germany Abstract We construct the general form of matter coupled N 4 gauged supergravity in ve dimensions. Depending on the structure of the gauge group, these theor

paperwere an important step toward obtaining the correspondingamplitude in N 8 supergravity, . needed for the gravity computation may be found by cutting the gauge-theory amplitude. . that N 8 supergravity might be a perturbatively UV finite theory of quantum gravity. String dualities [43] and non-renormalization theorems [44] have .

We will begin with an overview of spectrum analysis. In this section, we will define spectrum analysis as well as present a brief introduction to the types of tests that are made with a spectrum analyzer. From there, we will learn about spectrum analyzers in term s of File Size: 1MBPage Count: 86Explore furtherSpectrum Analysis Basics, Part 1 - What is a Spectrum .blogs.keysight.comSpectrum Analysis Basics (AN150) Keysightwww.keysight.comSpectrum Analyzer : Working Principle, Classfication & Its .www.elprocus.comFundamentals of Spectrum Analysis - TU Delftqtwork.tudelft.nlRecommended to you b

criminal case process; the philosophies and alterna-tive methods of corrections; the nature and processes of treating the juvenile offender; the causes of crime; and the role of government and citizens in finding solutions to America’s crime problems. 2. Develop, state, and defend positions on key issues facing the criminal justice system, including the treatment of victims, police-community .