V.Simoncini - Unibo.it

1y ago
12 Views
1 Downloads
6.84 MB
33 Pages
Last View : Today
Last Download : 3m ago
Upload by : Aarya Seiber
Transcription

Computational methods for linear matrix equations V. Simoncini Dipartimento di Matematica, Università di Bologna valeria.simoncini@unibo.it 1

Abstract The numerical solution of possibly large dimensional algebraic linear systems permeates scientific modelling. Often systems with multiple right-hand sides arise, whose efficient numerical solution usually requires ad-hoc procedures. In the past decades a new class of linear equations has shown to be the natural algebraic framework in the discretization of mathematical models in a variety of scientific applications. These problems are given by multiterm linear matrix equations of the form A1 XB1 A2 XB2 . Ak XBk C, where all appearing terms are matrices of conforming dimensions, and X is the (unknown) matrix solution. The case k 2 is called the Sylvester equation, and computational methods for its solution are well established for small dimensions. Efficient methods for large scale Sylvester equations have recently been developed, under certain hypotheses on the data. The general multiterm case is the current challenge, and it turns out to be a key ingredient in problems such as time-space, stochastic and parametric partial differential equations. We survey various methodologies for addressing the efficient and reliable solution of linear matrix equations. We focus on the algorithmic aspects as well as on the mathematical properties underlying the developed approaches. Typical application problems will be pinpointed. 2

Outline Linear systems with multiple right-hand sides Shifted linear systems Two-term linear matrix equations (Sylvester, Lyapunov, special cases) General multi-term linear matrix equations: applications and algorithms Systems of linear matrix equations If time allows: Algebraic Riccati equation 3

Multiple right-hand side algebraic linear systems AX C, C [c1 , . . . , cs ] Rn s A Cn n , C full column rank, s n A large and sparse A large and structured: blocks, banded, . A functional: A D1 S 1 D2 , preconditioned, integral, . . 4

The Block Arnoldi iteration for AX C [V(1:n,1:s), ] qr(C,0); for j 1:m jms (j-1)*s 1; j1s (j 1)*s; js j*s;js1 js 1; Vp A*V(:,jms:js); %new bases block (modified gram) for kk 1:j k1 (kk-1)*s 1; k2 kk*s; H(k1:k2,jms:js) V(1:n,k1:k2)’*Vp; Vp Vp - V(:,k1:k2)*H(k1:k2,jms:js); end [V(1:n,js1:j1s),H(js1:j1s,jms:js)] qr(Vp,0); end 5 % (j,m) orth coeffs % deflation %orth within block

The Block Conjugate Gradient method R0 B AX0 , P0 R0 Cn s for i 0, 1, . . . α i (Pi APi ) 1 (Ri Ri ) Cs s Xi 1 Xi Piα i Ri 1 Ri APiα i β i 1 (Pi APi ) 1 (Ri 1 APi ) Cs s Pi 1 Ri Piβ i 1 end 6

Applications Eigenvalue problems and tracking Control of dynamical systems Assignment problems Within Riccati equation solvers . Examples as motivation for using linear matrix equations 7

The Poisson equation uxx uyy f, in Dirichlet b.c. (zero b.c. for simplicity) 8 Ω (0, 1)2

The Poisson equation uxx uyy f, in Ω (0, 1)2 Dirichlet zero b.c. FD Discretization: Ui,j u(xi , yj ), with (xi , yj ) interior nodes, so that uxx (xi , yj ) Ui 1,j 2Ui,j Ui 1,j h2 Ui 1,j 1 2 [1, 2, 1] Ui,j h Ui 1,j 1 Ui,j 1 2Ui,j Ui,j 1 1 2 [Ui,j 1 , Ui,j , Ui,j 1 ] uyy (xi , yj ) 2 2 h h 1 T1 U UT1 F, Lexicographic ordering: Au f Fij f (xi , yj ), T1 1 tridiag(1, 2, 1) h2 U u [U11 , Un,1 , U1,2 , . . . , Un,2 , . . .] A I T1 T1 I, f vec(F ), ((M N ) Kronecker product, (M N ) (Mi,j N )) 9

The Poisson equation uxx uyy f, in Ω (0, 1)2 Dirichlet zero b.c. FD Discretization: Ui,j u(xi , yj ), with (xi , yj ) interior nodes, so that uxx (xi , yj ) Ui 1,j 2Ui,j Ui 1,j h2 Ui 1,j 1 2 [1, 2, 1] Ui,j h Ui 1,j 1 Ui,j 1 2Ui,j Ui,j 1 1 2 [Ui,j 1 , Ui,j , Ui,j 1 ] uyy (xi , yj ) 2 2 h h 1 T1 U UT1 F, Lexicographic ordering: Au f Fij f (xi , yj ), T1 1 tridiag(1, 2, 1) h2 U u [U11 , Un,1 , U1,2 , . . . , Un,2 , . . .] A I T1 T1 I, f vec(F ), ((M N ) Kronecker product, (M N ) (Mi,j N )) 10

Numerical considerations Ti Rni ni T1 U UT2 F, A I T1 T2 I Rn1 n2 n1 n2 Au f 0 0 1 10 2 20 3 30 4 40 5 50 6 60 7 70 8 80 9 90 10 100 11 0 2 4 6 8 10 0 nz 28 20 40 60 nz 460 T1 A 11 80 100

Discretization of more complex domains polar grid uxx uyy f, in Ω (x, y) Ω, x r cos θ, y r sin θ π (r, θ) [r0 , r1 ] [0, ] 4 Transformed equation in polar coordinates: 2 r ũrr rũr ũθθ π (r, θ) [r0 , r1 ] [0, ] 4 f , Matrix equation after mapping to the rectangle: e U e T ΦB U e Fe Φ2 T U 12 e U e T Fe (Φ2 T ΦB)U

Transformed equation in log-polar coordinates (r eρ ): ûρρ ûθθ fˆ, (r, θ) [r0 , r1 ] [0, Matrix equation after mapping to the rectangle: b U b T Fb TU 13 π ] 4

Poisson equation in a polygon with more than 4 edges Schwarz-Christoffel conformal mappings between polygon and rectangle uxx uyy f, (x, y) Ω 3 2 e uξξ u eηη J fe, 1 (ξ, η) Π 0 -1 -2 -3 -3 -2 -1 0 1 2 3 With finite diff. discretization: T1 U U T2 F , Fe b.c., and Fei,j (J fe)(ξi , ηj ), 1 i n1 , 1 j n2 (J Jacobian determinant of SC mapping) Poisson equation is the ideal setting for SC mappings! 14

Convection-diffusion eqns in a rectangle ε u φ1 (x)ψ1 (y)ux φ2 (x)ψ2 (y)uy γ1 (x)γ2 (y)u f (x, y) Ω R2 , φi , ψi , γi , i 1, 2 sufficiently regular func’s b.c. Problem discretization by means of a tensor basis Multiterm linear matrix equation: εT1 U εUT2 Φ1 B1 UΨ1 Φ2 UB2 Ψ2 Γ1 UΓ2 F Finite Diff.: Ui,j U(xi , yj ) approximate solution at the nodes . A classical approach, Bickley & McNamee, 1960, Wachspress, 1963 (Early literature on difference equations) 15

Broader applicability Isogeometric Analysis (IGA) Certain spectral methods Space-Time discretizations Parameter dependent problems PDEs with stochastic inputs PDE-constrained optimization etc 16

System of Reaction-diffusion PDEs u ℓ (u) f (u, v), t 1 1 vt ℓ2 (v) f2 (u, v), with (x, y) Ω R2 , t ]0, T ] with u(x, y, 0) u0 (x, y), v(x, y, 0) v0 (x, y), and appropriate b.c. on Ω ℓi : diffusion operator linear in u fi : nonlinear reaction terms Applications: chemistry, biology, ecology, and more recently in metal growth by electrodeposition, tumor growth, biomedicine and cell motility spatial patterns such as labyrinths, spots, stripes Joint work with M.C. D’Autilia & I. Sgura, Università di Lecce 17

Long term spatial patterns Labyrinths, spots, stripes, etc. 18

Numerical modelling issues u ℓ (u) f (u, v), t 1 1 vt ℓ2 (v) f2 (u, v), with (x, y) Ω R2 , Problem is stiff – Use appropriate time discretizations – Time stepping constraints Pattern visible only after long time period (transient unstable phase) Pattern visible only if domain is well represented 19 t ]0, T ]

Space discretization of the reaction-diffusion PDE ℓi : elliptic operator ℓi (u) Ai u, so that u̇ A u f (u, v), 1 1 v̇ A2 v f2 (u, v), u(0) u0 , v(0) v0 Key fact: Ω simple domain, e.g., Ω [0, ℓx ] [0, ℓy ]. Therefore Ai Iy T1i T2i Ix RNx Ny Nx Ny , i 1, 2 Au vec(T1 U U T2 ) 20

Matrix-oriented formulation of reaction-diffusion PDEs U̇ T U U T F (U, V ), 11 12 1 V̇ T21 V V T22 F2 (U, V ), U (0) U0 , V (0) V0 Fi (U, V ) nonlinear vector function f (u, v) evaluated componentwise vec(U0 ) u0 , vec(V0 ) v0 , initial conditions Remark: Computational strategies for time stepping can exploit this setting ———————— For simplicity of exposition, we consider U̇ T1 U U T2 F (U ), 21 u̇ Au f (u), that is (x, y) Ω, t ]0, T ]

Time stepping Matrix-oriented methods IMEX methods 1. First order Euler: un 1 un ht (Aun 1 f (un )) so that (I ht A)un 1 un ht f (un ), n 0, . . . , Nt 1 Matrix-oriented form: Un 1 Un ht (T1 Un 1 Un 1 T2 ) ht F (Un ), so that (I ht T1 )Un 1 Un 1 ( ht T2 ) Un ht F (Un ), n 0, . . . , Nt 1. Second order SBDF, known as IMEX 2-SBDF method 3un 2 4un 1 un 2ht Aun 2 2ht (2f (un 1 ) f (un )), n 0, 1, . . . , Nt Matrix-oriented form: for n 0, . . . , Nt 2, (3I 2ht T1 ) Un 2 Un 2 ( 2ht T2 ) 4Un 1 Un 2ht (2F (Un 1 ) F (Un )) 22

Time stepping Matrix-oriented methods IMEX methods 1. First order Euler: un 1 un ht (Aun 1 f (un )) so that (I ht A)un 1 un ht f (un ), n 0, . . . , Nt 1 Matrix-oriented form: Un 1 Un ht (T1 Un 1 Un 1 T2 ) ht F (Un ), so that (I ht T1 )Un 1 Un 1 ( ht T2 ) Un ht F (Un ), n 0, . . . , Nt 1. 2. Second order SBDF, known as IMEX 2-SBDF method 3un 2 4un 1 un 2ht Aun 2 2ht (2f (un 1 ) f (un )), n 0, 1, . . . , Nt Matrix-oriented form: for n 0, . . . , Nt 2, (3I 2ht T1 ) Un 2 Un 2 ( 2ht T2 ) 4Un 1 Un 2ht (2F (Un 1 ) F (Un )) 23

Time stepping Matrix-oriented methods Exponential integrator Exponential first order Euler method: un 1 eht A un ht ϕ1 (ht A)f (un ) eht A : matrix exponential, ϕ1 (z) (ez 1)/z first “phi” function That is, un 1 eht A un ht vn , where Avn eht A f (un ) f (un ) n 0, . . . , Nt 1. ——————————— T h T h A h T t t t 1 u vec(eht T1 U eht T2 ) 2 e Matrix-oriented form: since e u e T 1. Compute E1 eht T1 , E2 eht T2 2. For each n Solve Compute T1 Vn Vn T2 E1 F (Un )E2T F (Un ) Un 1 E1 Un E2T ht Vn 24 (1)

Time stepping Matrix-oriented methods Exponential integrator Exponential first order Euler method: un 1 eht A un ht ϕ1 (ht A)f (un ) eht A : matrix exponential, ϕ1 (z) (ez 1)/z first “phi” function That is, un 1 eht A un ht vn , where Avn eht A f (un ) f (un ) n 0, . . . , Nt 1. ——————————— T h T h A h T t t t 1 u vec(eht T1 U eht T2 ) 2 e Matrix-oriented form: since e u e T 1. Compute E1 eht T1 , E2 eht T2 2. For each n Solve Compute T1 Vn Vn T2 E1 F (Un )E2T F (Un ) Un 1 E1 Un E2T ht Vn 25 (2)

Time stepping Matrix-oriented methods Computational issues: Dimensions of T1 , T2 very modest T1 , T2 quasi-symmetric (non-symmetry due to b.c.) T1 , T2 do not depend on time step Matrix-oriented form all in spectral space (after eigenvector transformation) 26

A numerical example of system of RD-PDEs Model describing an electrodeposition process for metal growth f1 (u, v) ρ α1 (1 v)u α2 u3 β(v α) f2 (u, v) ρ (γ1 (1 k2 u)(1 v)[1 γ(1 v)] δ1 v(1 k3 u)(1 γv))) Turing pattern lx 100, Nx 50 0.2 90 0.15 y 80 70 0.1 60 0.05 50 0 40 -0.05 30 -0.1 20 -0.15 10 -0.2 10 20 30 40 50 x 27 60 70 80 90

A numerical example of system of RD-PDEs Model describing an electrodeposition process for metal growth f1 (u, v) ρ α1 (1 v)u α2 u3 β(v α) f2 (u, v) ρ (γ1 (1 k2 u)(1 v)[1 γ(1 v)] δ1 v(1 k3 u)(1 γv))) Turing pattern y l x 10, N x 50 9 0.2 8 0.15 7 0.1 6 0.05 5 0 4 -0.05 3 -0.1 2 -0.15 -0.2 1 -0.25 2 4 6 x 28 8

references * V.S., Computational methods for linear matrix equations SIAM Rev., 58(2016) * Maria Chiara D’Autilia, Ivonne Sgura and V. S. Matrix-oriented discretization methods for reaction-diffusion PDEs: comparisons and applications. Computers and Mathematics with Applications, 2020. * Davide Palitta and V. S. Matrix-equation-based strategies for convection-diffusion equations. BIT Numerical Math., 56-2, (2016) * Yue Hao and V. S. Matrix equation solving of PDEs in polygonal domains using conformal mappings, To appear in J. Numerical Mathematics, 2021. 29

Typical convergence rates 10 -3 -8 10 -10 10 -12 10 10 -6 10 -16 10 -8 10 -18 0 10 20 number of iterations 30 10 -9 cg std krylov eksm cg std krylov eksm 10 -1 10 -5 10 -7 cond 100000 10 0 10 -1 -4 10 -14 cond 10000 10 0 cg std krylov eksm rate of convergence 10 -6 rate of convergence rate of convergence 10 -2 10 cg std krylov eksm 10 -1 10 -4 cond 1000 10 0 10 -2 10 -3 rate of convergence cg std krylov eksm 10 -2 cond 100 10 0 rate of convergence cond 10 10 0 10 -2 10 -1 10 -4 0 10 20 30 10 -5 0 number of iterations 10 20 number of iterations 30 30 10 -3 0 10 20 number of iterations 30 0 10 20 number of iterations 30

Typical experimental results 31

CG algorithm for multiterm linear matrix equations L(X) C Pℓ i 1 Ai XBi C Require: Matrix function L: Rn n Rn n , right-hand side C Rn n Ensure: Matrix X Rn n fulfilling L(X) C F / C F tol. 1: X (0) 0, R(0) C, P (0) R(0) , Q(0) L(P (0) ) 2: ξ0 P (0) , Q(0) , k 0 3: while Rk F tol do do 4: ωk R(k) , P (k) /ξk 5: X (k 1) X (k) ωk P (k) 6: R(k 1) C L(X (k 1) ) 7: βk R(k 1) , Q(k) /ξk 8: P (k 1) R(k 1) βk P (k) 9: Q(k 1) L(P (k 1) ) 10: ξk 1 P (k 1) , Q(k 1) 11: k k 1 12: end while 13: X X (k) 32

TCG algorithm for multiterm linear matrix equations L(X) C Pℓ i 1 Ai XBi C Require: Matrix function L: Rn n Rn n , right-hand side C Rn n in low-rank format. Truncation operator T . Ensure: Matrix X Rn n fulfilling L(X) C F / C F tol. 1: X (0) 0, R(0) C, P (0) R(0) , Q(0) L(P (0) ) 2: ξ0 P (0) , Q(0) , k 0 3: while Rk F tol do do 4: ωk R(k) , P (k) /ξk 5: X (k 1) X (k) ωk P (k) X (k 1) T (X (k 1) ) 6: R(k 1) C L(X (k 1) ) Optionally: R(k 1) T (R(k 1) ) 7: βk R(k 1) , Q(k) /ξk 8: P (k 1) R(k 1) βk P (k) P (k 1) T (P (k 1) ) 9: Q(k 1) L(P (k 1) ) Optionally: Q(k 1) T (Q(k 1) ) 10: ξk 1 P (k 1) , Q(k 1) 11: k k 1 12: end while 13: X X (k) X (k) Xk,1 Xk,2 low rank format! Similarly for all involved matrices Kressner-Tobler, 2011-2012. 33

valeria.simoncini@unibo.it 1. Abstract The numerical solution of possibly large dimensional algebraic linear systems permeates scientific modelling. Often systems with multiple right-hand sides arise, whose efficient numerical solution usually requires ad-hoc procedures. In the past decades a new class of linear

Related Documents:

Even More Confident predictions with deep machine-learning Matteo Poggi, Fabio Tosi, Stefano Mattoccia University of Bologna Department of Computer Science and Engineering (DISI) Viale del Risorgimento 2, Bologna, Italy matteo.poggi8@unibo.it, fabio.tosi5@unibo.it, stefano.mattoccia@unibo

cancer is a fungus . table of contents: the seven stages of disease: stage 7: fungation . yeast and fungi invaders . cancer and fungus: beating back late stage infections with sodium bicarbonate . bicarbonate and rapid ph shifts . understanding the condition of cancer . the simoncini treatment of cancer . cancer is a fungus by dr. simoncini .

onventional medicine regards cancer as a multitude of diseases with different causes and treatments. But what if they all have the same underlying cause and similar treatments, as suggested by Dr Tullio Simoncini?1 Dr Simoncini believes that cancer is mainly due to Candida albicans, the most common and aggressive fungus in the human body,

Stories of practice: Privileging Aboriginal . perspectives in early childhood curriculum Gender-bender: Challenging historical . and socio-cultural views of men in early childhood Screen time use in the family day : care environment. Emma Cooke & Dr Sandy Houen. Associate Professor : Kym Simoncini. Dr Sally St

The Cancer Microbe The Simoncini Treatment of Cancer Yeast and Fungi Invaders Tough Little Creatures Pathogen Differentiation and Infectious Processes Cancer and Heavy Metals . Magnesium the Lamp of Life Medical Marijuana and Cancer Cannabinoid System Bowel Tolerance Dosages .

K. Simoncini, J. Cartmel & A. Young: Children's Voices in Australian School Age Care 115 Bioecological model (1995) posits that children's development occurs within social, cultural and historical contexts. Children are viewed as active participants in their re - lationships and in creating their environments, and both biological .

2 V. SIMONCINI AND T. STYKEL of the same type, then solving this equation and projecting back the result. The small size equation is obtained by imposing an extra condition on the required approximate solution. All methods proposed for the standard Lyapunov equation di er either for

xeach gene is a section of DNA with a specific sequence of bases that acts as the 'instructions' or code for the production of a specific protein. xthe human genome has 20 000-25 000 genes xthe average gene has about 3000 bases xthe genes make up only 2%* of the human genome; the rest of the DNA is