Optimizing Convex Functions Over Non-Convex Domains - Columbia University

11m ago
8 Views
1 Downloads
2.02 MB
70 Pages
Last View : 16d ago
Last Download : 3m ago
Upload by : Vicente Bone
Transcription

Optimizing Convex Functions over Non-Convex Domains Daniel Bienstock and Alexander Michalka Columbia University Berlin 2012 Bienstock, Michalka Convex obj non-convex domain Columbia

Introduction Generic Problem: min Q(x), Bienstock, Michalka Convex obj non-convex domain s.t. x F, Columbia

Introduction Generic Problem: min Q(x), s.t. x F, Q(x) convex, especially: convex quadratic Bienstock, Michalka Convex obj non-convex domain Columbia

Introduction Generic Problem: min Q(x), s.t. x F, Q(x) convex, especially: convex quadratic F nonconvex Bienstock, Michalka Convex obj non-convex domain Columbia

Introduction Generic Problem: min Q(x), s.t. x F, Q(x) convex, especially: convex quadratic F nonconvex Examples: F is a mixed-integer set Bienstock, Michalka Convex obj non-convex domain Columbia

Introduction Generic Problem: min Q(x), s.t. x F, Q(x) convex, especially: convex quadratic F nonconvex Examples: F is a mixed-integer set F is constrained in a nasty way, e.g. x1 3 sin(x2 ) 2 cos(x3 ) 4 Bienstock, Michalka Convex obj non-convex domain Columbia

Or, Convex constraint: Q(x) q, and x F , Q(x) convex, especially: convex quadratic F nonconvex Examples: F is a mixed-integer set F is constrained in a nasty way, e.g. x1 3 sin(x2 ) 2 cos(x3 ) 4 Bienstock, Michalka Convex obj non-convex domain Columbia

Exclude-and-cut min z, s.t. z Q(x), x F 0. Let F̂ be a convex relaxation of F Bienstock, Michalka Convex obj non-convex domain Columbia

Exclude-and-cut min z, s.t. z Q(x), x F 0. Let F̂ be a convex relaxation of F 1. Let (x , z ) argmin{ z : z Q(x), x F̂ } Bienstock, Michalka Convex obj non-convex domain Columbia

Exclude-and-cut min z, s.t. z Q(x), x F 0. Let F̂ be a convex relaxation of F 1. Let (x , z ) argmin{ z : z Q(x), x F̂ } 2. Find an open set S s.t. x S and S F . Examples: lattice-free sets, geometry Bienstock, Michalka Convex obj non-convex domain Columbia

Exclude-and-cut min z, s.t. z Q(x), x F 0. Let F̂ be a convex relaxation of F 1. Let (x , z ) argmin{ z : z Q(x), x F̂ } 2. Find an open set S s.t. x S and S F . Examples: lattice-free sets, geometry 3. Add to the formulation an inequality az αT x α0 valid for { (x, z) : x Rn S, z Q(x) } but violated by (x , z ). Bienstock, Michalka Convex obj non-convex domain Columbia

The SUV problem given full-dimensional polyhedra P 1 , . . . , P K in Rd , find a point closest to the origin not contained inside any of the P h . Bienstock, Michalka Convex obj non-convex domain Columbia

The SUV problem given full-dimensional polyhedra P 1 , . . . , P K in Rd , find a point closest to the origin not contained inside any of the P h . min kxk2 s.t. x Rd K [ int(P h ), h 1 Bienstock, Michalka Convex obj non-convex domain Columbia

The SUV problem given full-dimensional polyhedra P 1 , . . . , P K in Rd , find a point closest to the origin not contained inside any of the P h . min kxk2 s.t. x Rd K [ int(P h ), h 1 (application: X-ray lythography; see Ahmadia (2010)) (yes, it is NP-hard) Bienstock, Michalka Convex obj non-convex domain Columbia

Bienstock, Michalka Convex obj non-convex domain Columbia

Typical values for d (dimension): less than 20; usually even smaller Typical values for K (number of polyhedra): possibly hundreds, but often less than 50 Very hard problem Bienstock, Michalka Convex obj non-convex domain Columbia

First problem setting Let Q(x) be a strongly convex function on Rd , Let P Rd be such that each connected component is homeomorphic to a (positive radius) ball or a half-plane so, closed and nonempty interior We also assume that Rd P 6 . Bienstock, Michalka Convex obj non-convex domain Columbia

First problem setting Let Q(x) be a strongly convex function on Rd , Let P Rd be such that each connected component is homeomorphic to a (positive radius) ball or a half-plane so, closed and nonempty interior We also assume that Rd P 6 . Want to produce a linear inequality description for: n o (x, q) Rd 1 : Q(x) q, x Rd int(P) . Bienstock, Michalka Convex obj non-convex domain Columbia

First-order cut: Given y Rd , q Q(y ) T Q(y )(x y ) Bienstock, Michalka Convex obj non-convex domain Columbia

First-order cut: Given y Rd , q Q(y ) T Q(y )(x y ) is valid for all x Rd , Bienstock, Michalka Convex obj non-convex domain Columbia

First-order cut: Given y Rd , q Q(y ) T Q(y )(x y ) is valid for all x Rd , does not cut anything off Bienstock, Michalka Convex obj non-convex domain Columbia

First-order cut: Given y Rd , q Q(y ) T Q(y )(x y ) is valid for all x Rd , does not cut anything off How can we use the structure of P to strengthen the inequality? Bienstock, Michalka Convex obj non-convex domain Columbia

Definition: Given y P, say P is locally flat at y if B(µ, ρ) P with kµ y k2 ρ and ρ 0. ρ µ P y d R P Bienstock, Michalka Convex obj non-convex domain Columbia

Suppose P is locally flat at y . Write: a µ y . Bienstock, Michalka Convex obj non-convex domain Columbia

Suppose P is locally flat at y . Write: a µ y . Lemma: For real α 0 small enough the inequality q Q(y ) T Q(y )(x y ) αaT (x y ) is valid, Bienstock, Michalka Convex obj non-convex domain Columbia

Suppose P is locally flat at y . Write: a µ y . Lemma: For real α 0 small enough the inequality q Q(y ) T Q(y )(x y ) αaT (x y ) is valid, i.e., for all (x, q) with x Rd P and q Q(x). Bienstock, Michalka Convex obj non-convex domain Columbia

Suppose P is locally flat at y . Write: a µ y . Lemma: For real α 0 small enough the inequality q Q(y ) T Q(y )(x y ) αaT (x y ) is valid, i.e., for all (x, q) with x Rd P and q Q(x). Inequality is tight at (y , Q(y )), and cuts-off points (x, Q(x)) and x int(P). Bienstock, Michalka Convex obj non-convex domain Columbia

Suppose P is locally flat at y . Write: a µ y . Lemma: For real α 0 small enough the inequality q Q(y ) T Q(y )(x y ) αaT (x y ) is valid, i.e., for all (x, q) with x Rd P and q Q(x). Inequality is tight at (y , Q(y )), and cuts-off points (x, Q(x)) and x int(P). Largest possible α: “lifted first-order inequality”. Bienstock, Michalka Convex obj non-convex domain Columbia

n o (x, q) Rd 1 : Q(x) q, x Rd int(P) Bienstock, Michalka Convex obj non-convex domain Columbia

n o (x, q) Rd 1 : Q(x) q, x Rd int(P) Theorem. Any linear inequality valid for S is dominated by a lifted first-order inequality. More precisely, conv (x, q) Rd 1 : Q(x) q, x Rd int(P) {(x, q) Rd 1 : LFO FO } Bienstock, Michalka Convex obj non-convex domain Columbia

n o (x, q) Rd 1 : Q(x) q, x Rd int(P) Theorem. Any linear inequality valid for S is dominated by a lifted first-order inequality. More precisely, conv (x, q) Rd 1 : Q(x) q, x Rd int(P) {(x, q) Rd 1 : LFO FO } How do we make this computationally practicable? Bienstock, Michalka Convex obj non-convex domain Columbia

First problem setting Let Q(x) is a positive definite quadratic on Rd , P {x Rd : aiT x bi , 1 i m} full dimensional Bienstock, Michalka Convex obj non-convex domain Columbia

First problem setting Let Q(x) is a positive definite quadratic on Rd , P {x Rd : aiT x bi , 1 i m} full dimensional Want to produce a linear inequality description for: n o (x, q) Rd 1 : Q(x) q, x Rd int(P) . Bienstock, Michalka Convex obj non-convex domain Columbia

First problem setting Let Q(x) is a positive definite quadratic on Rd , P {x Rd : aiT x bi , 1 i m} full dimensional Want to produce a linear inequality description for: n o (x, q) Rd 1 : Q(x) q, x Rd int(P) . change in coordinates d X . S (x, q) Rd 1 : xj2 q, x Rd int(P) . j 1 Bienstock, Michalka Convex obj non-convex domain Columbia

{(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} Here P {x Rd : aiT x bi , 1 i m} P is locally flat at any y iff aiT y bi but ajT y bj j 6 i for some i. Bienstock, Michalka Convex obj non-convex domain Columbia

{(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} Here P {x Rd : aiT x bi , 1 i m} P is locally flat at any y iff aiT y bi but ajT y bj j 6 i for some i. Lifted “first-order” inequality: q 2y T x ky k2 α (aiT x bi ) for α 0 appropriately chosen. Bienstock, Michalka Convex obj non-convex domain Columbia

{(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} Here P {x Rd : aiT x bi , 1 i m} P is locally flat at any y iff aiT y bi but ajT y bj j 6 i for some i. Lifted “first-order” inequality: q 2y T x ky k2 α (aiT x bi ) for α 0 appropriately chosen. Theorem: Let (x̂, q̂) Rd 1 with v̂ int(P). We can compute a lifted first-order inequality maximally violated by (x̂, q̂), by solving m linearly constrained convex quadratic programs on O(d) variables. Bienstock, Michalka Convex obj non-convex domain Columbia

When does a point x̂, d X x̂j2 j 1 violate a lifted first-order inequality q 2y T x ky k2 α (aiT x bi ) ? Bienstock, Michalka Convex obj non-convex domain Columbia

When does a point x̂, d X x̂j2 j 1 violate a lifted first-order inequality q 2y T x ky k2 α (aiT x bi ) ? It does, if and only if: d X x̂j2 2y T x̂ αaiT x̂ ky k2 αb j 1 Bienstock, Michalka Convex obj non-convex domain Columbia

When does a point x̂, d X x̂j2 j 1 violate a lifted first-order inequality q 2y T x ky k2 α (aiT x bi ) ? It does, if and only if: d X x̂j2 2y T x̂ αaiT x̂ ky k2 αb j 1 This describes the interior of a ball, Bienstock, Michalka Convex obj non-convex domain Columbia

When does a point x̂, d X x̂j2 j 1 violate a lifted first-order inequality q 2y T x ky k2 α (aiT x bi ) ? It does, if and only if: d X x̂j2 2y T x̂ αaiT x̂ ky k2 αb j 1 This describes the interior of a ball, which must be contained in int(P) Bienstock, Michalka Convex obj non-convex domain Columbia

Geometrical characterization int(P) cut off region y Bienstock, Michalka Convex obj non-convex domain Columbia

Geometrical characterization int(P) cut off region y Characterization: x Rd int(P) iff, for each ball B(µ, R) P, Bienstock, Michalka Convex obj non-convex domain Columbia

Geometrical characterization int(P) cut off region y Characterization: x Rd int(P) iff, for each ball B(µ, R) P, kx µk2 R 2 Bienstock, Michalka Convex obj non-convex domain Columbia

S {(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} P {x Rd : aiT x bi , 1 i m} Bienstock, Michalka Convex obj non-convex domain Columbia

S {(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} P {x Rd : aiT x bi , 1 i m} conv (S) conv (Q1 Q2 . . . Qm ) , where Qi Bienstock, Michalka Convex obj non-convex domain (x, q) Rd 1 : d X j 1 xj2 q, aiT x bi . Columbia

S {(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} P {x Rd : aiT x bi , 1 i m} conv (S) conv (Q1 Q2 . . . Qm ) , where Qi (x, q) Rd 1 : d X j 1 xj2 q, aiT x bi . Ceria and Soares (1999) min { q : (x, q) S} is an SOCP Bienstock, Michalka Convex obj non-convex domain Columbia

S {(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} P {x Rd : aiT x bi , 1 i m} conv (S) conv (Q1 Q2 . . . Qm ) , where Qi (x, q) Rd 1 : d X xj2 q, aiT x bi j 1 . Ceria and Soares (1999) min { q : (x, q) S} is an SOCP with O(md) variables and m conic constraints Bienstock, Michalka Convex obj non-convex domain Columbia

S {(x, q) Rd 1 : Pd 2 j 1 xj q, x Rd int(P)} P {x Rd : aiT x bi , 1 i m} conv (S) conv (Q1 Q2 . . . Qm ) , where Qi (x, q) Rd 1 : d X xj2 q, aiT x bi j 1 . Ceria and Soares (1999) min { q : (x, q) S} is an SOCP with O(md) variables and m conic constraints Separation: solve SOCP, use SOCP “Farkas Lemma”, get linear cut Bienstock, Michalka Convex obj non-convex domain Columbia

Second setting: separating across a quadratic set For A 0, polynomially separable linear inequality description for: {(x, q) Rd 1 : d X xj2 q, x T Ax 2c T x b 0} j 1 P {x Rd : x T Ax 2c T x b 0} . Bienstock, Michalka Convex obj non-convex domain Columbia

Second setting: separating across a quadratic set For A 0, polynomially separable linear inequality description for: {(x, q) Rd 1 : d X xj2 q, x T Ax 2c T x b 0} j 1 P {x Rd : x T Ax 2c T x b 0} . P Bienstock, Michalka Convex obj non-convex domain µ ρ Columbia

Second setting: separating across a quadratic set For A 0, polynomially separable linear inequality description for: {(x, q) Rd 1 : d X xj2 q, x T Ax 2c T x b 0} j 1 P {x Rd : x T Ax 2c T x b 0} . P µ ρ Separation problem: given(x̂, q̂) Rd 1 , Find a ball B(µ, ρ) P, so as to maximize Bienstock, Michalka Convex obj non-convex domain Columbia

Second setting: separating across a quadratic set For A 0, polynomially separable linear inequality description for: {(x, q) Rd 1 : d X xj2 q, x T Ax 2c T x b 0} j 1 P {x Rd : x T Ax 2c T x b 0} . P µ ρ Separation problem: given(x̂, q̂) Rd 1 , Find a ball B(µ, ρ) P, so as to maximize T ρ (q̂ 2µ x̂ µT µ) Bienstock, Michalka Convex obj non-convex domain Columbia

Second setting: separating across a quadratic set For A 0, polynomially separable linear inequality description for: {(x, q) Rd 1 : d X xj2 q, x T Ax 2c T x b 0} j 1 P {x Rd : x T Ax 2c T x b 0} . P µ ρ Separation problem: given(x̂, q̂) Rd 1 , Find a ball B(µ, ρ) P, so as to maximize T ρ (q̂ 2µ x̂ µT µ) ρ kx̂ µk2 q̂ kx̂k2 Bienstock, Michalka Convex obj non-convex domain Columbia

Separation problem: min µ,ρ Subject to: Bienstock, Michalka Convex obj non-convex domain kµk2 ρ 2x̄ T µ {x : kx µk2 ρ} P Columbia

Separation problem: min µ,ρ Subject to: kµk2 ρ 2x̄ T µ {x : kx µk2 ρ} P Theorem: Optimal choices for µ and ρ are given by: µ̂ θ̂b (I θ̂A)x̄ and ρ̂ kµ̂k2 2x̄ T µ̂ kx̄k2 θ̂(x̄ T Ax̄ 2b T x̄ c). Here, θ̂ 1 λmax A . Bienstock, Michalka Convex obj non-convex domain Columbia

Separating accross general quadratics . Π { (x, w , z) Rd R R : z x T Qx q T x, w x T Ax } (A 0, Q 0). Bienstock, Michalka Convex obj non-convex domain Columbia

Separating accross general quadratics . Π { (x, w , z) Rd R R : z x T Qx q T x, w x T Ax } (A 0, Q 0). Linear transformation Π is the set of points Rd R R s.t. z kxk2 q T x, w x T Λx (Λ 0). . Write P {(x, w ) Rd R : x T Λx w 0}, and for µ Rd , ν R, . M(µ, ν) {(x, w ) Rd R : λmax kx µk2 (ν w ) 0}. Then x Rd int(P) iff x Rd int(M(µ, ν)), for all µ, ν with M(µ, ν) P. Bienstock, Michalka Convex obj non-convex domain Columbia

Π { (x, w , z) Rd R R : z kxk2 q T x, w x T Λ x}, P {(x, w ) Rd R : x T Λx w 0}, M(µ, ν) {(x, w ) Rd R : λmax kx µk2 (ν w ) 0}. Bienstock, Michalka Convex obj non-convex domain Columbia

Π { (x, w , z) Rd R R : z kxk2 q T x, w x T Λ x}, P {(x, w ) Rd R : x T Λx w 0}, M(µ, ν) {(x, w ) Rd R : λmax kx µk2 (ν w ) 0}. x Rd int(P) iff x Rd int(M(µ, ν)), µ, ν with M(µ, ν) P. Bienstock, Michalka Convex obj non-convex domain Columbia

Π { (x, w , z) Rd R R : z kxk2 q T x, w x T Λ x}, P {(x, w ) Rd R : x T Λx w 0}, M(µ, ν) {(x, w ) Rd R : λmax kx µk2 (ν w ) 0}. x Rd int(P) iff x Rd int(M(µ, ν)), µ, ν with M(µ, ν) P. So, valid inequality for any µ, ν with M(µ, ν) P: λmax kµk2 λmax (2µ q)T x (ν w ) λmax z 0 Separation problem, given (x̄, w̄ ) int(P) w̄ ν λmax kµk2 2λmax x̄ T µ 2λmax q T x̄ subject to: Bienstock, Michalka Convex obj non-convex domain ν min{ λmax kx µk2 x T Λx } 0. x Columbia

Separation problem, given (x̄, w̄ ) int(P) w̄ ν λmax kµk2 2λmax x̄ T µ 2λmax q T x̄ subject to: ν min{ λmax kx µk2 x T Λx } 0. x Lemma: This problem can be explicitly solved in polynomial time. Bienstock, Michalka Convex obj non-convex domain Columbia

Separation problem, given (x̄, w̄ ) int(P) w̄ ν λmax kµk2 2λmax x̄ T µ 2λmax q T x̄ subject to: ν min{ λmax kx µk2 x T Λx } 0. x Lemma: This problem can be explicitly solved in polynomial time. But we started with . Π { (x, w , z) Rd R R : z x T Qx q T x, w x T Ax } and transformed it into: Π { (x, w , z) Rd R R : z kxk2 q T x, w x T Λ x}, Bienstock, Michalka Convex obj non-convex domain Columbia

Separation problem, given (x̄, w̄ ) int(P) w̄ ν λmax kµk2 2λmax x̄ T µ 2λmax q T x̄ subject to: ν min{ λmax kx µk2 x T Λx } 0. x Lemma: This problem can be explicitly solved in polynomial time. But we started with . Π { (x, w , z) Rd R R : z x T Qx q T x, w x T Ax } and transformed it into: Π { (x, w , z) Rd R R : z kxk2 q T x, w x T Λ x}, Theorem. Eigenspace not necessary for poly-time separation (only max eigenvalue of A). Bienstock, Michalka Convex obj non-convex domain Columbia

. Example: f (x) 2(x1 x2 x1 x3 x2 x3 ) over [0, 1]3 . McCormick relaxation gives zero lower bound on f (x̄), where x̄ (1/2, 1/2, 1/2)T . Bienstock, Michalka Convex obj non-convex domain Columbia

. Example: f (x) 2(x1 x2 x1 x3 x2 x3 ) over [0, 1]3 . McCormick relaxation gives zero lower bound on f (x̄), where x̄ (1/2, 1/2, 1/2)T . (Kilinc, Linderoth, Luedtke) Bienstock, Michalka Convex obj non-convex domain Columbia

. Example: f (x) 2(x1 x2 x1 x3 x2 x3 ) over [0, 1]3 . McCormick relaxation gives zero lower bound on f (x̄), where x̄ (1/2, 1/2, 1/2)T . (Kilinc, Linderoth, Luedtke) However, f (x) U(x) L(x), where . U(x) (x1 x2 )2 (x1 x3 )2 (x2 x3 )2 , . L(x) 2(x12 x22 x32 ). Bienstock, Michalka Convex obj non-convex domain Columbia

. Example: f (x) 2(x1 x2 x1 x3 x2 x3 ) over [0, 1]3 . McCormick relaxation gives zero lower bound on f (x̄), where x̄ (1/2, 1/2, 1/2)T . (Kilinc, Linderoth, Luedtke) However, f (x) U(x) L(x), where . U(x) (x1 x2 )2 (x1 x3 )2 (x2 x3 )2 , . L(x) 2(x12 x22 x32 ). Above techniques, plus (for example) one disjunction prove f (x̄) .43599, using linear inequalities. Bienstock, Michalka Convex obj non-convex domain Columbia

. Example: f (x) 2(x1 x2 x1 x3 x2 x3 ) over [0, 1]3 . McCormick relaxation gives zero lower bound on f (x̄), where x̄ (1/2, 1/2, 1/2)T . (Kilinc, Linderoth, Luedtke) However, f (x) U(x) L(x), where . U(x) (x1 x2 )2 (x1 x3 )2 (x2 x3 )2 , . L(x) 2(x12 x22 x32 ). Above techniques, plus (for example) one disjunction prove f (x̄) .43599, using linear inequalities. Probably not best possible. Bienstock, Michalka Convex obj non-convex domain Columbia

. Example: f (x) 2(x1 x2 x1 x3 x2 x3 ) over [0, 1]3 . McCormick relaxation gives zero lower bound on f (x̄), where x̄ (1/2, 1/2, 1/2)T . (Kilinc, Linderoth, Luedtke) However, f (x) U(x) L(x), where . U(x) (x1 x2 )2 (x1 x3 )2 (x2 x3 )2 , . L(x) 2(x12 x22 x32 ). Above techniques, plus (for example) one disjunction prove f (x̄) .43599, using linear inequalities. Probably not best possible. Vielen Dank! Bienstock, Michalka Convex obj non-convex domain Columbia

Convex obj non-convex domain. Introduction Generic Problem: min Q(x); s:t: x 2F; Q(x) convex, especially: convex quadratic F nonconvex Examples: F is a mixed-integer set F is constrained in a nasty way, e.g. x 1 3 sin(x 2) 2cos(x 3) 4 Bienstock, Michalka Columbia Convex obj non-convex domain.

Related Documents:

Solution. We prove the rst part. The intersection of two convex sets is convex. There-fore if Sis a convex set, the intersection of Swith a line is convex. Conversely, suppose the intersection of Swith any line is convex. Take any two distinct points x1 and x2 2 S. The intersection of Swith the line through x1 and x2 is convex.

What is convex projective geometry? Motivation from hyperbolic geometry Nice Properties of Hyperbolic Space Convex: Intersection with projective lines is connected. Properly Convex: Convex and closure is contained in an affine patch ()Disjoint from some projective hyperplane. Strictly Convex: Properly convex and boundary contains

3 convex-convex n [DK85] convex-convex (n;lognp lognq) [DK90] INTERSECTION DETECTION OF CONVEX POLYGONS Perhaps the most easily understood example of how the structure of geometric objects can be exploited to yield an e cient intersection test is that of detecting the intersection of two convex polygons. There are a number of solutions to this .

Proof:Let us denote the set of all convex combinations of ppoints of Sby Cp(S). Then the set of all possible convex combinations of points of S is C(S) : [1 p 1Cp(S). If x2 C(S) then it is a convex com

The optimization problem (1.1) is convex if every function involved f 0;f 1;:::;f m, is convex. The examples presented in section (1.1.2) are all convex. Examples of non-convex problems include combinatorial optimization problems, where (some if not all) variables are constrained to be bo

Convex optimization – Boyd & Vandenberghe Nonlinear programming – Bertsekas Convex Analysis – Rockafellar Fundamentals of convex analysis – Urruty, Lemarechal Lectures on modern convex optimization – Nemirovski Optimization for Machine Learning – Sra, Nowozin, Wright Theory of Convex Optimization for Machine Learning – Bubeck .

Convex Optimization Theory Athena Scientific, 2009 by Dimitri P. Bertsekas Massachusetts Institute of Technology Supplementary Chapter 6 on Convex Optimization Algorithms This chapter aims to supplement the book Convex Optimization Theory, Athena Scientific, 2009 with material on convex optimization algorithms. The chapter will be .

uqc103s/UFCE47-20-1 PHP-mySQL 7 Why PHP and mySQL „ MySQL is a key part of LAMP (Linux, Apache, MySQL, PHP / Perl / Python), a fast growing open source enterprise software stack. More and more companies are using LAMP as an alternative to expensive proprietary software stacks because of its lower cost and freedom from lock-in.