Small Parts Machining (External) - KYOCERA Asia-Pacific

10m ago
14 Views
1 Downloads
8.11 MB
54 Pages
Last View : 1d ago
Last Download : 3m ago
Upload by : Annika Witter
Transcription

Small Parts Machining (External) E1 E54 E2 E10 Summary of External Turning Small Parts Machining Identification System Toolholders for Back Turning TKFB Insert TKF-GTP TKF-AGT / TKF-AS ABS Insert ABW Insert Insert Insert Insert Insert Insert Insert Insert Insert Insert E20 (Back Turning) E21 (Back Turning) E22 E24 (Goose-neck Holder) E25 E26 (Without Offset, For High Pressure Coolant / With Offset / Y-axis Toolholder ) E28 (Without Offset) E34 E35 (Without Offset, For High Pressure Coolant / With Offset) E36 (Without Offset) E39 (Without Offset, For High Pressure Coolant / With Offset) E41 E44 E45 E46 E47 (Without Offset) E46 (Without Offset) E46 (Without Offset) E47 Toolholder for Double Sided Tooling for Automatic Lathe (Lever Lock) Insert Insert E43 E45 E43 Toolholders for Small Double Sided Tooling (Screw Clamp) CN TN E26 E42 (Without Offset, For High Pressure Coolant / With Offset) CC Insert DC Insert VB / VC Insert U Insert U Insert U Insert E24 E25 (Goose-neck Holder) External Sleeve Holder CN DN TN E12 E18 Toolholders for External Turning (Back Clamp / Screw Clamp) CC DC DP TC / TP VB VC VP E12 E23 (Back Turning, Goose-neck Holder, Y-axis Toolholder) Goose-neck Holder DC VP E11 E48 E49 (Without Offset) E48 (Without Offset) E49 Technical Information Recommended Cutting Conditions Alternative Toolholder Reference Table for Small Parts Machining E50 E51 E50 E52 E54 E1

Summary of External Turning External / Copying 93 93 ADJC-FF SDJC-FF(JCT) SDJC-FF-Y Back Clamp Without Offset Screw Clamp Without Offset E28 95 93 SDJC Screw Clamp E28 E30 62.5 95 62.5 SDLC-FF SDLP-FF SDLN-FF SDNC-F SDNC Screw Clamp Without Offset Screw Clamp Without Offset Screw Clamp Screw Clamp E29 E32, E34 E46 E33 E33 Small Parts Machining E External / Facing 95 95 External Sleeve Holder External 95 91 95 95 95 ACLC-FF SCLC-FF(JCT) SCLC SCLN-FF STGC(P) STLN-FF Back Clamp Without Offset Screw Clamp Without Offset Screw Clamp Screw Clamp Without Offset Screw Clamp Screw Clamp Without Offset E26 E26, E27 E27 E46 Tooling example (1) CNC Automatic lathe E35 S-SDLC Screw Clamp Shank Dia. ø12 ø25.4 E47 (Gang Type) Cut-off Back Grooving External Threading Boring (Chapter H) Turning (Chapter G) (Chapter J) (Chapter F) Tools installed on gang tool post E2 E44

4.7 SABS-40F 8.2 8.2 E23 E23 E12 External / Facing / Copying / Undercutting 117.5 117.5 SVPB Screw Clamp E37 Tooling example (2) CNC Automatic lathe SVPP-FF Screw Clamp Without Offset E42 G H J K M Tools for Technical Turning Mill Spare Parts Information Boring (Chapter F) Drilling (Chapter K) Tools installed on gang tool post milling toolholder Index Threading (Chapter J) F (Gang Type) Solid End Mill (Chapter L) Cut-off Back Grooving External External (Chapter H) Turning (Chapter G) E Milling E22 Drilling E22 D Threading KTKF Screw Clamp Edge Width : 1.5 3.8 Max. ap : 1.8 5.5 Cut-off SABW-50F Screw Clamp Edge Width : 4.7 ap : 5.0 Grooving AABW-50F Back Clamp Edge Width : 4.7 ap : 5.0 C Boring E21 SABW-40F Screw Clamp Edge Width : 4.7 ap : 4.0 B Small Parts Machining E21 AABW-40F Back Clamp Edge Width : 4.7 ap : 4.0 A External Back Clamp Screw Clamp Edge Width : 2.8 Edge Width : 2.8 ap : 4.0 ap : 4.0 4.7 4.7 4.2 4.2 4.2 AABS-40F 4.7 4.2 2.8 2.8 Turning CBN & PCD Tools Insert Grades Indexable Inserts Back Turning N P R T E3

Summary of External Turning For Swiss tool automatic lathe (Gang type tool post) How to use Goose-neck Holder Swiss tool automatic lathe (Guide bush system) Goose-neck holder is applicable to automatic lathes whose toolholder does not move to longitudinal direction (Z-axis direction) In case of machining with the conventional toolholder Small Parts Machining (Z-axis direction) Movement of the workpiece (X-axis direction) Guide bush E Bar material (Workpiece) Goose-neck holder is applicable to automatic lathe that toolholder does not move to longitudinal direction (Z-axis direction) Toolholder motion Short distance (Close to guide bush) Problems of machining with the conventional toolholder Problems of machining with the conventional toolholder Problems of Toolholder Installation Case 1 During multiple passes, when bar material returns into guide bush, the burr contacts and breaks guide bush. When using a conventional toolholder, Case 2 The workpiece burr contacts the guide bush and causes dimensional variation. 3) Necessary to buy an adapter. Case 3 During multiple passes, when bar material returns into guide bush, the chips contact and break guide bush. Case 4 Bar material deviation from the guide bush disables machining. E4 1) Additional space is required for an adapter. 2) Toolholder's handling is difficult due to limited space. 4) An adapter may interfere with the next tool post. Adapter Tool post

Advantages of Using Goose-neck Holder When using Goose-neck Holder * With conventional threading toolholders, chip biting into guide bush can cause damages on threads. Finishing Threading J K M Tools for Technical Turning Mill Spare Parts Information Optimum cutting edge position and large space for efficient chip evacuation. H Milling Roughing G Drilling For better chip control F Threading Roughing-Finishing E Cut-off Pattern 1 D Grooving Pattern 2 Index Advantages of Toolholder Installation Goose-neck Holder C Boring Available for roughing and finishing with one Goose-neck Holder. B Small Parts Machining Available for machining after roughing without returning bar material into guide bush, preventing damages and improving precision. A External 1) Machining precision improves by additional finishing process 2) Chips do not come into the guide bush 3) Better chip control due to large chip evacuation space Turning CBN & PCD Tools Insert Grades Indexable Inserts Advantages of Goose-neck Holder N P R T Tool post When using a Goose-neck Holder 1) Maximum number of toolholders can be attached 2) No interference with next tool post E5

Summary of External Turning External Sleeve Holder More tools attachable to CNC Automatic Lathe ! Limit to attachable tools at intricate part machining 95 93 S-SCLC Screw Clamp Shank Dia. ø12 ø25.4 Small Parts Machining E 95 S-SDUC E43 93 S-SDLC Screw Clamp Shank Dia. ø14 ø25.4 Screw Clamp Shank Dia. ø12 ø25.4 E44 Use External Sleeve Holders S-SVUB(C) Screw Clamp Shank Dia. ø12 ø25.4 E44 E45 For Tooling Layout and Automatic Lathe List by Manufacturer, See Page R46 R54 Finishing by Sleeve Holder 1) Roughing by grooving toolholder 2) Finishing by Sleeve Holder improves chip control and reduces cutting time Tooling Example (3) CNC Automatic lathe (Opposed Gang Type) External / Facing External / Copying Grooving (Chapter G) Threading (Chapter J) Boring (Chapter F) For Tooling Layout and Automatic Lathe List by Manufacturer, See Page E6 R46 R54

(Screw Clamp) Turning CBN & PCD Tools Insert Grades Indexable Inserts Applications External / Facing External / Up Facing External / Copying See Page 95 95 95 SCLN E46 STLN E47 95 27 95 SDLN E46 Cutting Edge Angle 95 95 PCLNR1620JX-12FF 95 L2 95 L1 Boring (Chapter F) Drilling (Chapter K) Threading (Chapter J) M R46 R54 Index For Tooling Layout and Automatic Lathe List by Manufacturer, See Page K Tools for Technical Turning Mill Spare Parts Information Cut-off Back External External Grooving (Chapter H) Turning (Chapter G) J Milling Tooling Example (4) H Drilling The lever lock type is available for small parts machining for external machining Threading PTLN-FF E49 G Cut-off PCLN-FF E48 F1 F1 S 95 Grooving See Page F PTLNR1620JX-16FF 5 Lever Lock (Without Offset) E Boring Applications External / Facing External / Up Facing D Small Parts Machining Toolholder for Double Sided Tooling for Automatic Lathe (Lever Lock, Without Offset) C External Newly designed negative inserts (double-sided) enable high productivity and stability by economical doubled insert edge numbers Sharp cutting equivalent to positive inserts (single-sided) B B Screw Clamp (Without Offset) 95 S Cutting Edge Angle A H1 Toolholders for Small Double Sided Tooling N P R T E7 95 L2

Turning Holders with Coolant Holes for Small Parts Machining Screw Clamp-JCT Double-coolant hole design delivers an ample supply of coolant to the tool edge Excellent Chip Control and Long Tool Life 1 Sufficient cooling of the cutting edge leads to longer tool life Double-coolant hole design provides coolant to the insert cutting edge surface Small Parts Machining E 2 Excellent Chip Control Double Coolant Holes Stable chip curls Excellent chip control The cutting edge stays cool Long tool life Insert cross-section Coolant System Comparison (Internal evaluation) (Image) Screw Clamp-JCT Coolant discharges towards the chips Competitor A Discharges coolant down onto the chip forcing the chip into the part Chip evacuation direction Coolant System Chip evacuation direction Chip Control Performance Coolant Effects E8 Stable chip curls Chip becomes unstable The cutting edge stays cool Chip can cause interference with the workpiece

Chip Control Comparison (Internal evaluation) Turning CBN & PCD Tools Insert Grades Indexable Inserts Toolholder with Coolant Holes SDJC-JCT toolholder allows excellent chip control in a wide variety of cutting conditions SDJC-JCT toolholder Competitor A 2.0 A B C E Boring F Grooving G Cut-off H Threading J Drilling K Milling 1.0 D Small Parts Machining Unstable and irregular chips hi External ap (mm) 1.5 M 0.5 0.03 0.05 0.07 0.10 0.03 0.05 f (mm/rev) Workpiece Material : TAB6400 (Ti-6Al-4V) External coolant Internal coolant (1.5MPa) External Wear Resistance Comparison (Internal evaluation) Cutting edge condition 0.20 SDJC-JCT toolholder (after machining 150min) SDJC-JCT toolholder Corner Wear Amount (mm) 0.10 f (mm/rev) Cutting Conditions : Vc 80 m/min, DCGT11T302MP-CK PR1535 (Same inserts were used) Toolholder with Coolant Holes 0.07 Competitor A 0.15 0.10 Competitor A (after machining 105min) 0.05 0.00 0 30 60 90 120 150 180 Cutting Time (min) Tools for Technical Turning Mill Spare Parts Information Fracture Cutting Conditions : Vc 200 m/min, External : ap 2.0 mm, f 0.05 mm/rev, Facing : ap 0.2 mm, f 0.03 mm/rev DCGT11T302MFP-GQ PR1535 (Same inserts were used) Workpiece Material : SUS304 External coolant Internal coolant (1.5MPa) External / Facing Case Studies SUS304 Pin ø12 Chip Control SKS93 Vc 180 m/min ap 1.4 mm f 0.13 mm/rev Wet DCMT11T304 type Index Vc 160 m/min ap 0.9 / 1.2 mm f 0.18 mm/rev Wet (Internal Coolant : 14MPa) DCMT11T304 type P R ø6 Pipe N T Chip Control SDJC-JCT toolholder Competitor B SDJC-JCT toolholder Conventional toolholder (Internal coolant) (Internal coolant) (Internal Coolant : 2.5MPa) (External coolant) 1.5 Good倍 1.5 Good倍 Chip Control Chip Control Changes to SDJC-JCT improved chip control and tool life. (User Evaluation) SDJC-JCT toolholder with internal coolant improved chip control. Reduced chip entanglement. (User Evaluation) E9

Summary of External Turning Cutting tool for small workpiece KTKF See Page Inserts for back turning TKFB E12 See Page E12 Excellent Chip Control with Molded Chipbreaker(GQ Chipbreaker) New Insert Grades for Steel Machining PR1725 Small Dia. Cut-off Small Parts Machining Insert Grades for Stainless Steel Machining PR1535 Inserts and toolholders are compatible E Back Turning GQ Chipbreaker Threading KTKF is applicable to back turning, threading and cut-off with one toolholder Tooling example of KTKF toolholder Solid End Mill (Chapter L) Boring (Chapter F) Boring (Chapter F) Drilling (Chapter K) Cut-off Back Grooving External External (Chapter H) Turning (Chapter G) Drilling (Chapter K) Cut-off Back External External Grooving Threading (Chapter H) Turning (Chapter G) (Chapter J) Threading (Chapter J) Details of cutting edge Small machining General purpose Large machining 3.8 1.5 (4.6) L L (2.6) L (6.3) 2.8 Description Cutting Edge Length L Description Cutting Edge Length L Description Cutting Edge Length L TKFB12R15. 2.1 TKFB12R28. 4.2 TKFB16R38. 5.8 - - TKFB12L28. 4.4 TKFB16L38. 6.2 For small diameter and short length workpiece For general purpose Stable machining with minimum overhang Good chip control E10 Large ap at one pass

Small Parts Machining Identification System A : Back Clamp C : Top Clamp P : Lever Lock S : Screw Clamp C D S T V Clamping System L : Left-hand N : Neutral Insert Shape Hand of Tool Toolholder Length Insert Size G 90 90 K L 75 93 P B : 5 Positive 117.5 C : 7 Positive N 63 95 F : 80 (85) H : 100 S V T L D P : 11 Positive V S 72.5 L Some back turning toolholders are Kyocera's original products, therefore their descriptions are not accordant with international standards. External Sleeve Holder Identification System S Steel Shank G : 90 C : 80 Rhombic H : 100 K : 125 D : 55 Rhombic (120) Toolholder Length S 20 K S S : Screw Clamp Clamping System C L : Left-hand V : 35 Rhombic L Insert Shape C H J K M Hand of Tool L 09 Tools for Technical Turning Mill Spare Parts Information (85) G L 60 F : 80 F L JX : 120 K : 125 M : 150 N : 0 Negative 45 L (mm) AN J C T LF E Milling 09 FF D Drilling F JX Index Shank Diameter Cutting Edge Angle L 95 Insert Relief Angle C Threading 12 Others B Cut-off 12 Insert Relief Angle 45 75 Shank Width e.g.) FF : Without Offset Grooving D Shank Height Optional Mark or Number Boring 90 B Shank Width (mm) Small Parts Machining Cutting Edge Angle Shank Height (mm) A External S C L C R A Manufacture's Option R : Right-hand : 80 Rhombic : 55 Rhombic : 90 Square : 60 Triangle : 35 Rhombic Turning CBN & PCD Tools Insert Grades Indexable Inserts Square Shank Identification System N P R T Insert Size U C 93 AN L B : 5 Positive C : 7 Positive D L V L Specification may change without any prior notice. Due to the installation size contrains on the machine, the toolholder length of some products may not match with the symbol. E11

Screw Clamp Toolholders for Back Turning [TKFB Insert] KTKF / KTKF Goose-neck Holder / KTKF Y-axis Toolholder NEW B WF WF LU 2 KTKFR/L1616JXKTKFR/L2020JXshows above figure Fig. 1 H HF HF 60 LH 2 KTKFR/L2020 shows above figure LF KTKFR/L1010JXshows above figure LU E Small Parts Machining Fig. 2 Right-hand shown Right-hand Insert for Right-hand Toolholder, Left-hand Insert for Left-hand Toolholder. Fig. 3 HF 1 KTKFL1620JX-12 shows above figure H HF H LF 1 LU 1 WF 8 WF B 1 LU LU LF WF WF B LU 8 Goose-neck Holder Left-hand shown Left-hand Insert for Left-hand Toolholder. * HBKW KTKFR1216JX-12-Y:15mm KTKFR1616JX-12-Y:11mm LU * Y-axis Toolholder X-axis Y-axis Fig. 4 Right-hand Insert for Right-hand Toolholder. E12

Dimension (mm) Description 12 12 12 1616JX-12 16 16 16 2020JX-12 20 20 20 KTKFR 2525M-12 25 25 25 KTKF& 1010JX-16 10 10 10 1212JX-16 12 12 12 1616JX-16 16 16 16 10 12 120 150 - 20 20 20 2525M-16 25 25 25 150 KTKF& 1212F-12 12 12 12 85 - 1216JX-12 12 12 16 1620JX-12 16 16 20 120 - 1216JX-12-Y 12 12 1616JX-12-Y 16 16 KTKFR NEW 16 120 25 SB-4590TRWN FT-10 TKFB12& Fig. 2 TKFB12R 10 16 8 Fig. 1 SB-4590TRWN FT-10 TKFB16& 20 30 20 Fig. 1 20 12 120 2020JX-16 KTKFL 6 30 20 KTKFR 1212F-16 16 12 16 20 16 Fig. 2 6 TKFB16R TKFB12& Fig. 1 SB-4590TRWN FT-10 6 Fig. 3 SB-4590TRWN FT-10 TKFB12L 6 Fig. 4 SB-4590TRWN FT-10 TKFB12R 8 Applicable Inserts (Molded Chipbreaker, P: Polished edge, See Page B101) S 60 a RE T W1 60 D1 S H CW 4 Left-hand shown TKFB12L TKFB12R 0.05 12R28010M 0.1 TKFB 16R38005M 0.05 0.1 TKFB 12L28005MR 0.05 12L28010MR 0.1 TKFB 16L38005MR 0.05 16L38010MR 0.1 Recommended Cutting Conditions TKFB 12R28005(P)-GQ 0.05 E51 W1 15 12R28015(P)-GQ 0.15 TKFB 16R38005(P)-GQ 0.05 16R38015(P)-GQ 0.15 θ Right-hand shown Recommended Cutting Conditions Combination of Toolholders and Inserts Toolholder Right-hand Toolholder Insert Right-hand Insert Left-hand Left-hand E F G H J K M E51 Tools for Technical Turning Mill Spare Parts Information ε 60 CDX D1 4 12R28005M 16R38010M Right-hand shown φd CDX S D1 W1 CW RE a 4 CDX 0.05 RE TKFB 12R15005M Description Corner-R(RE) (mm) Insert 0.4 Description CW a Insert Photo shows Right-hand Corner-R(RE) (mm) D TKFB16& · LU shows the distance from the toolholder to the cutting edge. · See Page H13 for internal coolant type (coolant-through holders) · Please see the precautions in E15 when using Y-axis toolholder. Applicable Inserts (See Page B100) C Milling 1212JX-12 15 B Drilling 10 LU Threading 10 WF Cut-off 10 LH Grooving 1010JX-12 KTKF& LF Boring B Small Parts Machining HF L Applicable Inserts A External H R Spare Parts Clamp Screw Wrench Drawing Stock Turning CBN & PCD Tools Insert Grades Indexable Inserts Toolholder Dimensions N P R Index T : Std. Item E13

Toolholders for Back Turning [TKFB Insert] TKFB type GQ Chipbreaker for back Turning Solution for problems in the conventional back-turning tools Unique molded chipbreaker provides excellent surface finish with smooth chip control 1 Unique double-function chipbreaker for improved chip control Point Small Parts Machining E Function 1 : External Preventing chip entanglement Stable chip control GQ Chipbreaker Function 2 : Competitor A (Ground Chipbreaker) Preventing chip biting GQ Chipbreaker 2 Point Grooving Good surface roughness Competitor A (Ground Chipbreaker) Excellent surface finish by preventing chip biting and clogging Surface finish comparison Cutting Conditions : Vc 100m/min Workpiece Material : S45C Wet TKFB GQ Chipbreaker Facing ap 3.0mm f 0.02mm/rev (Grooving) 0.05mm/rev (External) Competitor B (Ground Chipbreaker) External Facing External Workpiece surface Excellent surface 2.9μmRz Chip biting 3.8μmRz 31.2μmRz 7.6μmRz GQ Chipbreaker realizes excellent surface finish with single pass. Suitable for cycle time reduction. E14

Turning CBN & PCD Tools Insert Grades Indexable Inserts Precautions for using Y-axis toolholder Do not use Y-axis toolholders side by side to prevent interference. ( Only two Y-axis holder can be used at the same time ) With interference Without interference C D A Release the tool turret with reference to the overhang amount of the Y-axis toolholder B Overhang Amount L Available Outside Cutting Diameter (ø) Clearance Overhang Amount : L Overhang Amount : L Clearance Y-axis Toolholder Overhang Y-axis Toolholder Overhang Y-axis Toolholder Overhang Y-axis Toolholder Overhang Overhang Amount : L Overhang Amount : L Y-axis Toolholder Overhang Y-axis Toolholder Overhang Examples 20 B A A Clearance Clearance B B C C Y-axis Toolholder Overhang Y-axis Toolholder Overhang Overhang Amount : L Overhang Amount : L Y-axis Toolholder Overhang Y-axis Toolholder Overhang Overhang Amount : L Overhang Amount : L Clearance Clearance B B (Unit : mm) 22 25 Without Without Without Restriction Restriction Restriction 13.0 13.0 13.0 Without Without Without Restriction Restriction Restriction A 38.0 58.0 B 14.9 13.6 C 45.0 60.0 C C C Without Restriction 13.0 G H J K M Tools for Technical Turning Mill Spare Parts Information A A 25 A 20 D Tool Turret Direction Note that using other toolholders together will result in dierent outside diameters Y-axis Toolholder Overhang C F Milling B Drilling A Threading D D Cut-off C C E Grooving B B D Boring A A C Small Parts Machining When changing the tool, set the retracted position with reference to the cutting edge of the Y-axis holder. (When exchanging from tool B to D) B External Standard toolholders may be mounted between two Y-axis toolholders A N P R Without Index Restriction T E15

Toolholders for Back Turning [TKFB Insert] Details of cutting edge and how to select Details of cutting edge Selection Small machining General purpose Large machining 3.8 1.5 2.8 (6.3) L (4.6) L (2.6) L Small Parts Machining E Small machining TKFB12R15. Description Cutting Edge Length L Description Cutting Edge Length L Description Cutting Edge Length L TKFB12R15. 2.1 TKFB12R28. 4.2 TKFB16R38. 5.8 - - TKFB12L28. 4.4 TKFB16L38. 6.2 For small diameter and short length For general purpose workpiece Good chip control Stable machining with minimum overhang Large ap at one pass General purpose TKFB12R28. In case ap is same, if the insert with narrower edge width is used, overhang length from the guide bush is shorter, which enables better stability due to less workpiece deflection. High precision machining How to select back turning toolholder hand Machining near the guide bush is possible Narrow cutting edge width of TKFB12R15005M (1.5mm) allows it. Optimum for small parts and high precision machining Right-hand Guide bush The workpiece burrs do not contact the guide bush. burrs Left-hand Guide bush Machining with a distance from guide bush Good chip control due to large space between the guide bush and the tool Excellent chip control in roughing and finishing (plural passes) Stable accuracy of external diameter dimension : When burrs occur, if a Left-hand toolholder is used, it is not necessary to return workpiece into guide bush in finishing. Also, Left-hand toolholders prevent guide bush wear caused by chip biting. Workpiece movement and tool hand selection In roughing and finishing Roughing burrs Workpiece position after roughing Finishing burrs Right-hand Guide bush burrs burrs Left-hand Guide bush * Good dimension accuracy : If a Left-hand toolholder is used, burrs on workpiece generated in roughing do not damage the guide bush in finishing. E16

Chip control improvement by tool pass changes I Roughing with grooving tools Chip control improvement by tool pass changes II Pre-Stage machining is processed with solid end mill (1) GMM2420-020MW (Grooving) (1) 2FESW040-040-04 (Solid End Mill) Roughing Advantages : 1. Good surface roughness 2. High precision machining if the machined portion does not contact the guide bush Countermeasure against peeled surface in face back turning When peeled surface occurs on the workpiece face, please apply the countermeasures below. Countermeasures 1 Countermeasures 2 Face finishing Face finishing after grooving M N P R T (2) Face finishing (1) Machining by grooving toolholder (2) Face finishing (1) Plunging External K Index External J Tools for Technical Turning Mill Spare Parts Information Disadvantages : I f a machining pass is long, the guide bush cannot support the workpiece Advantages : 1. Minimal deflection in long machining passes 2. Chips are broken into small pieces, though the workpiece material is sticky 3. High precision machining if the machined portion does not contact the guide bush Disadvantages : The pre-stage machining may cause fractures, because of interrupted machining H Milling Finishing (Countermeasures 2) Use Left-hand toolholder G Drilling (2) When using TKFB12L28010M (for back turning / left hand) F Threading (2) When using TKFB12L28010M (for back turning / left hand) E Cut-off Advantages : 1. Minimal deflection in long machining passes 2. C hips are broken into small pieces, though the workpiece material is sticky Disadvantages : The pre-stage machining may cause fractures, because of interrupted machining D Grooving Advantages : Good surface roughness Disadvantages : I f a machining pass is long, the guide bush cannot support the workpiece C Boring Finishing (Countermeasures 1) Use Right-hand toolholder B Small Parts Machining (1) When using TKFB12R28010M (for back turning / right hand) A External (1) When using TKFB12R28010M (for back turning / right hand) Turning CBN & PCD Tools Insert Grades Indexable Inserts Chip control improvement in back turning E17

External Insert for KTKF Small Part Machining Applications KTKF for Small Part Machining Applications GTP Chipbreaker Grooving and Turning Possible Cutting Time Reduction Grooving and Turning Available Cutting Time Comparison (Internal evaluation) Competitor A TKF12R200-GTP Multiple Grooves and a Finishing Pass Grooving and Turning Workpiece Material : S45C(ø25) Workpiece Material : S45C(ø25) 2 6 8 1 2 ø25 7 1 ø25 Small Parts Machining E 12 12 Cutting Conditions: Multiple Grooves Cutting Conditions: Finishing Vc 100m/min ap 3.5mm, f 0.10mm/rev Vc 100m/min ap 0.5mm, f 0.05mm/rev 11.5 GTP Chipbreaker Cutting Conditions: Grooving and Turning Vc 100m/min ap 4mm, f 0.05mm/rev GTP chipbreaker required fewer (sec) machining paths than Competitor 40% 18.2 Competitor A (sec) Cutting Time Reduction 0 5 10 15 20 Cutting Time (sec) Solution Solution to Integrate Tools Workpiece example A GTP Chipbreaker provides integration of front turning, grooving and back turning Conventional Tools 2. Grooving GTP Chipbreaker 3. Back Turning 1. GTP Chipbreaker 1. Front Turning 3 4 6 1 2 *Maximum grooving width and cutting depth. (Max.grooving width/Max. D.O.C.) E18 5 TKF12R200-GTP (2.0mm/4.0mm), TKF16R300-GTP (3.0mm/5.5mm)

Insert CW CDX W1 RE CW RE CDX Description TKF12R200-GTP 2.0 4.3 S NEW Dimension (mm) TKF16R300-GTP 3.0 5.8 RE MEGACOAT NANO PLUS MEGACOAT NANO PSIRR PR1725 PR1535 Angle W1 S 3.0 8.7 4.0 9.5 D1 Applicable Toolholders D1 0.08 PSIRR 5.0 KTKFR 16 Carbon Steel / Alloy Steel Vc (m/min) f (mm/rev) 0.03 0.07 Vc (m/min) Chip Control Comparison (Internal evaluation) Grooving Grooving 60 200 0.05 0.15 0.02 0.05 Turning 60 150 0.03 0.07 60 150 Stainless Steel f (mm/rev) Turning 0.05 0.15 60 130 0.03 0.10 0.02 0.05 Recommended Chipbreaker Range (Steel) 0.03 0.10 Recommended Chipbreaker Range (SUS) Competitor B Caution for machining Tips for Ramping Back Turning When back turning is used for nishing, make sure that the side cutting edge (back) of the tool is within 1mm H J K M N P R Step grooving is required before ramping. (Refer to the gure below) Index Ramping is not recommended if the workpiece is not pre-machined as shown in the right gures G Tools for Technical Turning Mill Spare Parts Information Cutting Conditions : Workpiece Material : Ramping F Milling Grooving E Drilling PR1535 Threading MEGACOAT NANO PR1725 Cut-off Workpiece Material D Grooving Recommended Insert Grade MEGACOAT NANO PLUS C Boring : 2nd Recommendation B Small Parts Machining : 1st Recommendation 0 A External Recommended Cutting Conditions KTKFR 12 Turning CBN & PCD Tools Insert Grades Indexable Inserts Standard Stock Description T *The width of the groove must be smaller than the edge width to overlap the previous groove Edge width Back turning is not recommended on the tapered surface. : Std. Item E19

External Inserts [For KTKF Toolholder] When using TKF-AGT / TKF-AS type Inserts The KTKF toolholder can be used as a multi-functional tooling for non-ferrous metals and non-metals when combined with a TKF-AGT / TKF-AS insert. (Fig. 1) Applicable Inserts (See Page C32·C33) Insert Description CDX D1 CW 0.03 RE W1 Photo shows Right-hand NEW Example of spool machining TKF12R 200-AGT S S1 RE LE 250-AGT Right-hand shown PSIRR CDX RE D1 CW 200-AS TKF12R 250-AS TKF16& 250-AS LE Fig. 1 Example of the pass of KTKF toolholder TKF-AGT / TKF-AS insert S1 S RE Small Parts Machining TKF12& W1 0.03 E Right-hand shown Applicable Range PSIRR LE CDX TKF16L 250-ASR S1 S 5 Insert hand: Left-hand / TKF12& D1 150-NB CW RE ap (mm) CDX 4 3 2 3 2 1 200-NB LE 0.05 0.10 TKF12-AS 0 0.15 0.20 f (mm/rev) 0.1 0.2 f (mm/rev) 250-NB S S1 TKF16-AS/-ASR 5 TKF-AGT 1 W1 PSIRR RE 6 4 PCD edge hand: Right-hand shown 0.03 Turning / Grooving TKF12-AS TKF16-AS/-ASR TKF12R-AGT D1 ap (mm) RE W1 CW 0.03 RE * PCD Inserts for turning and grooving Grooving (Turning is possible) 250-NB4.5 Applicable Toolholders E12 Recommended Cutting Conditions E51 Note 1) The cutting edge of the TKF-AS / -ASR will be 1 mm lower than the center line when attached to the KTKF toolholder (Ref. to Fig. 2). Adjust the height by making NC lathe parameter settings or inserting a plate. 2) If the 1 mm adjustment is not possible, use the TKF.-AGT/TKF.-NB. (Ref. to Fig. 3) H HF 1 KTKF toolholder Fig. 2 When a TKF-AS / -ASR insert is attached (The cutting edge is 1mm lower than the center line) H HF KTKF toolholder Fig. 3 When a TKF-NB insert is attached E20 * Not recommended for cut-off Right-hand shown Inserts Identification System TKF 12 R 200 - AGT TKF 12 L 200 - AS Insert Type Insert Size R Width (Edge Width) Insert Hand R : Right-hand L : Left-hand PCD insert hand Name of Chipbreaker AGT : AGT Chipbreaker AS : AS Chipbreaker NB : Without Chipbreaker Without Indication : The edge hand is same as the insert hand R : Right-hand

Back Clamp / Screw Clamp Toolholders for Back Turning [ABS15 Insert] (Edge Width : 2.8mm, MAX. Depth : 4mm) Turning CBN & PCD Tools Insert Grades Indexable Inserts AABS-40F * Lock Screw is operated from this direction B WF 4.2 30 H HF LF Right-hand shown B WF SABSR SABSR 1010JX-40F 1212JX-40F 1616JX-40F 1010JX-40F 1212JX-40F 1616JX-40F 1212F -40F 2020K -40F 10 12 16 10 12 16 12 20 10 12 16 10 12 16 12 20 LF WF 120 120 85 125 Std. Corner-R (RE) 10 12 16 10 12 16 12 20 Anchor Pin 10.2 LPA-11 12.2 0.15 LPA-13 16.2 LPA-17 10.2 12.2 0.15 16.2 12.2 0.15 20.2 Lock Screw Spare Parts Clamp Screw Wrench HSB4X8R - FH-2 - SB-3080TR FT-10 - SB-3080TR FT-10 0.4 15.4 ABS 15R4005 0.05 15R4015 0.15 4.2 4.2 15 Corner-R (RE) (mm) 3.97 Applicable Range 4 3 ABS15 2 ABS 15R4005M 0.05 1 15R4015M 0.15 0 M E51 0.1 f (mm/rev) 0.2 Index Recommended Cutting Conditions (Steel) 6 5 B102 30 RE See Page ap (mm) Description 7.0 2.8 K Tools for Technical Turning Mill Spare Parts Information Applicable Inserts Insert J H HF AABSR Stock B Milling Dimension (mm) HF H Drilling Toolholder Dimensions H G Threading Right-hand shown Description F Cut-off LF E Grooving 30 D Boring 4.2 C Small Parts Machining (Edge Width : 2.8mm, MAX. Depth : 4mm) B External SABS-40F A N P R T : Std. Item E21

Back Clamp / Screw Clamp Toolholders for Back Turning [ABW15 Insert] AABW-40F (Edge Width : 4.7mm, MAX. Depth : 4mm) 4.2 B WF * Lock Screw is operated from this direction 45 H HF LF Right-hand shown SABW-40F (Edge Width : 4.7mm, MAX. Depth : 4mm) 4.2 Small Parts Machining B WF E 45 H HF LF Right-hand shown Dimension (mm) Description AABWR SABWR SABWR Stock 1010JX-40F 1212JX-40F 1616JX-40F 1010JX-40F 1212JX-4

Small Parts Machining (External) E1 E54 TKFB Insert (Back Turning, Goose-neck Holder, Y-axis Toolholder) E12 TKF-GTP E18 TKF-AGT / TKF-AS E20 ABS Insert (Back Turning) E21 ABW Insert (Back Turning) E22 DC Insert (Goose-neck Holder) E24 VP Insert (Goose-neck Holder) E25 CC E26Insert (Without Offset, For High Pressure Coolant / With Offset) DC Insert (Without Offset, For High Pressure Coolant .

Related Documents:

CHARACTERISTICS of Kyocera Fine Ceramics(1) 04 For product details, please contactwebmaster.fc@kyocera.jp webmaster.fc@kyocera.jp 05 Material Item ALUMINA(Al 2O 3) SAPPHIRE CORDIERITE (2MgO・2Al 2O 3・5SiO 2) STEATITE (MgO ・SiO 2 ) FORSTERITE (2MgO SiO 2 Material Code (Ol

PaperCut MF - Kyocera Embedded Manual 3.0.0 2020-05-15 Note: Kyocera devices can be added as “Staged” at any time, however in order for them to be deployed (go live), it is a prerequisite that PaperCut MF is installed on the Kyocera device as per

Search "KYOCERA Tools" on App Store & Google play Downloadable high resolution cutting tools catalogues Product usage videos Turning, milling and drilling calculation tools KYOCERA instant contact KYOCERA Asia Pacific Network 8F, NO.101, Sec.2, Nanjing East Road, Taipei 10457, Taiwan, ROC Phone: 886-2-2567-2008 Fax: 886-2-2567 .

There are different types of machining process used for sapphire material. The fig. 1 shows a graphical representation of sapphire machining processes i.e. laser machining process, grinding process, polishing process, lapping process, new developed machining process, compound machining process and electro discharge machining process. Fig.1.

Machining metals follows a predictable pattern with minimal creep. When machining plastics, quick adjustments must be made to accommodate substantial creep — not to mention that the material has a strong propensity for chipping and melting during machining. Simply stated, the basic principles of machining metals do not apply when machining

PCI Machining - Absolute Machine Tools 7944 Innovation Way Mason OHIO 44053 USA 1 (513) 701-5550 sales-usa@pci-machining.com PCI Machining Rue Copernic 42030 - Saint-Étienne FRANCE 33 4 77 42 60 88 sales@pci-machining.com services@pci-machining.com PCI Machining Vertriebsbüro Deutschland Lebacher Straße 4

Machining metals follows a predictable pattern with minimal creep. When machining plastics, quick adjustments must be made to accommodate substantial creep — not to mention that the material has a strong propensity for chipping and melting during machining. Simply stated, the basic principles of machining metals do not apply when machining

where the use of 5-axis simultaneous machining brings unequalled surface quality. Moreover, it is targeted at prototype machining, 5-axis trimming and special machining where full 5-axis machining is the requirement for quick and accurate manufacturing. Multi-Axis Surface Machining is also an add-on product to Prismatic Machining and Lathe .