CHEM 212 Coordination Chemistry

2y ago
46 Views
3 Downloads
3.12 MB
25 Pages
Last View : 5d ago
Last Download : 3m ago
Upload by : Sabrina Baez
Transcription

Why Study Descriptive Chemistry ofTransition Metals!CHEM 212Coordination ChemistryTransition metals are found in nature!Rocks and minerals contain transition metals!The color of many gemstones is due to the presence oftransition metal ions" Rubies are red due to Cr" Sapphires are blue due to presence of Fe and Ti!Many biomolecules contain transition metals that areinvolved in the functions of these biomoleculesChapter 24" Vitamin B12 contains Co" Hemoglobin, myoglobin, and cytochrome C contain FeWhy Study Descriptive Chemistry ofTransition Metals!Transition metals and their compounds have manyuseful applications!Fe is used to make steel and stainless steel!Ti is used to make lightweight alloys!Transition metal compounds are used as pigmentsWhy Study Descriptive Chemistry ofTransition MetalsTo understand the uses and applications oftransition metals and their compounds, we need tounderstand their chemistry.! Our focus will be on the 4th period transitionelements.!" TiO2 white" PbCrO4 yellow" Fe4[Fe(CN)6]3 (prussian blue) blue!Transition metal compounds are used in manyindustrial processesPeriodic TableTransition Metals! Generald block transition elementsf block transition elementsProperties!Have typical metallic properties!Not as reactive as Grp. IA, IIA metals!Have high MP’s, high BP’s, high density, andare hard and strong!Have 1 or 2 s electrons in valence shell!Differ in # d electrons in n-1 energy level!Exhibit multiple oxidation states

Electronic Configurationsd-Block Transition ElementsIIIB IVBElementVIIIBVB VIB VIIBCr Mn FeIIBScTiVYZrNb MoTcRu Rh Pd Ag CdLaHfTaReOsWCoIBNi Cu ZnIrPt Au d54s1[Ar]3d54s2ScTiVCrMnMost have partially occupied d subshells incommon oxidation states[Ar] 1s22s22p63s23p6Electronic ConfigurationsTransition MetalsElementConfiguration[Ar] 3d64s2[Ar] 3d74s2[Ar] 3d84s2[Ar]3d104s1[Ar]3d104s2FeCoNiCuZn! Characteristicsdue to d electrons:!Exhibit multiple oxidation states!Compounds typically have color!Exhibit interesting magnetic properties" paramagnetism" ferromagnetism[Ar] 1s22s22p63s23p6Oxidation States of Transition ElementsSc 3TiVCrMn FeCoNiCu 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 7Oxidation States of Transition ElementsZn 2ScTi 3VCrMn FeCoNiCu 1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 4Zn 2 4 73/7/01Ch. 2411loss of ns e-sloss of ns and (n-1)d e-s

Electronic Configurations of Transition Metal Ions! Electronicconfiguration of Fe2 Electronic Configurations of Transition Metal Ions! Electronicconfiguration of Fe2 Fe – 2e- ! Fe2 Electronic Configurations of Transition Metal Ions! Electronicconfiguration of Fe2 Electronic Configurations of Transition Metal Ions! ElectronicFe – 2e- ! Fe2 [Ar]3d6 4s2configuration of Fe2 Fe – 2e- ! Fe2 [Ar]3d6 4s2[Ar]3d6valence ns e-’s removedfirstvalence ns e-’s removedfirstElectronic Configurations of Transition Metal IonsElectronic Configurations of Transition Metal Ions! Electronicconfiguration of Fe3 ! Electronicconfiguration of Fe3 Fe – 3e- ! Fe3

Electronic Configurations of Transition Metal Ions! Electronicconfiguration of Fe3 Electronic Configurations of Transition Metal Ions! ElectronicFe – 3e- ! Fe3 [Ar]3d6 4s2configuration of Fe3 Fe – 3e- ! Fe3 [Ar]3d6 4s2[Ar]3d5valence ns e-’s removedfirst, then n-1 d e-’svalence ns e-’s removedfirst, then n-1 d e-’sElectronic Configurations of Transition Metal IonsElectronic Configurations of Transition Metal Ions! Electronicconfiguration of Co3 ! Electronicconfiguration of Co3 Co – 3e- ! Co3 Electronic Configurations of Transition Metal Ions! Electronicconfiguration of Co3 Co – 3e- ! Co3 [Ar]3d7 4s2valence ns e-’s removedfirst, then n-1 d e-’sElectronic Configurations of Transition Metal Ions! Electronicconfiguration of Co3 Co – 3e- ! Co3 [Ar]3d7 4s2[Ar]3d6valence ns e-’s removedfirst, then n-1 d e-’s

Electronic Configurations of Transition Metal Ionsconfiguration of Mn4 ! ElectronicElectronic Configurations of Transition Metal Ionsconfiguration of Mn4 ! ElectronicMn – 4e- ! Mn4 Electronic Configurations of Transition Metal Ionsconfiguration of Mn4 ! ElectronicElectronic Configurations of Transition Metal IonsMn – 4e- ! Mn4 Mn – 4e- ! Mn4 [Ar]3d5 4s2! Transition" Formconfiguration of Mn4 ! Electronic[Ar]3d5 4s2[Ar]3d3valence ns e-’s removedfirst, then n-1 d e-’svalence ns e-’s removedfirst, then n-1 d e-’sCoordination ChemistryCoordination Chemistrymetals act as Lewis acidscomplexes/complex ionsFe3 (aq) 6CN-(aq) ! Fe(CN)6 3-(aq)Lewis acidLewis baseComplex ionNi2 (aq) 6NH3(aq) ! Ni(NH3)62 (aq)Lewis acidLewis baseComplex ion! Transition" Formmetals act as Lewis acidscomplexes/complex ionsFe3 (aq) 6CN-(aq) ! [Fe(CN)6]3-(aq)Lewis acidLewis baseComplex ionNi2 (aq) 6NH3(aq) ! [Ni(NH3)6 ] 2 (aq)Lewis acidLewis baseComplex ionComplex contains central metal ion bonded to one or moremolecules or anionsComplex with a net charge complex ionLewis acid metal center of coordinationComplexes have distinct propertiesLewis base ligand molecules/ions covalently bonded tometal in complex

Coordination Chemistry! Coordinationcompound!Compound that contains 1 or more complexes!Example" [Co(NH3) 6]Cl3" [Cu(NH3) 4][PtCl4]" [Pt(NH3)2 Cl2]Coordination Chemistry! Coordinationsphere!Metal and ligands bound to it! Coordinationnumber!number of donor atoms bonded to the centralmetal atom or ion in the complex" Mostcommon 4, 6by ligands" Determined" Larger ligands and those that transfer substantial negativecharge to metal favor lower coordination numbersCoordination ChemistryCoordination ChemistryComplex charge sum of chargeson the metal and the ligandsComplex charge sum of chargeson the metal and the ligands[Fe(CN)6 ]3-[Fe(CN)6 ]3 36(-1)Coordination ChemistryCoordination ChemistryNeutral charge of coordination compound sum ofcharges on metal, ligands, and counterbalancing ionsNeutral charge of coordination compound sum ofcharges on metal, ligands, and counterbalancing ions[Co(NH3)6]Cl2neutral compound[Co(NH3)6]Cl2 26(0)2(-1)

Coordination ChemistryCoordination Chemistry! Ligands! Ligands!classified according to the number of donoratoms!Examples 1 2" tetradentate 4" hexadentate 6" polydentate 2 or more donor atoms!classified according to the number of donoratoms!Examples" monodentate" monodentate" bidentate" bidentate 1chelating agents 2" tetradentate 4" hexadentate 6" polydentate 2 or more donor atomsLigandsLigands! Bidentate! Monodentate!Examples! Examples:" H2O,O2-CN-, NH3, NO2 -, SCN-, OH-, X- (halides), CO,!Example Complexesion C2O42(en) NH2 CH2CH2NH2" ortho-phenanthroline (o-phen)" oxalate" ethylenediamine!Example Complexes" [Co(NH3) 6]3 " [Co(en)3] 3 ]3-" [Fe(SCN)6" [Cr(C2O4)3 ]3" [Fe(NH3)4 (o-phen)]3 Ligandsoxalate ionOOCO*Ligandsethylenediamine2-CH2 CH2CH2N*H*ortho-phenanthrolineDonor late ionCHCHMOMN

LigandsLigands! Hexadentate! ethylenediaminetetraacetate (EDTA) (O2CCH2)2N(CH2)2N(CH2CO2)24!Example Complexes" [Fe(EDTA)]-1" CH2 CH2 NOOHOCH2 CO*CH2 CO*CMNODonor AtomsLigandsEDTACommon Geometries of ComplexesCoordination NumberGeometry2Linear

Common Geometries of ComplexesCommon Geometries of ComplexesCoordination NumberCoordination NumberGeometry4Geometrytetrahedral2(most common)LinearExample: [Ag(NH3 )2] Common Geometries of ComplexesCoordination Number4square planar(characteristic of metal ions with 8 d e-’s)GeometryCommon Geometries of ComplexesCoordination NumberGeometry6tetrahedralExamples: [Zn(NH3 ) 4]2 , [FeCl4]-square planarExample: [Ni(CN)4]2-octahedralCommon Geometries of ComplexesCoordination NumberGeometryPorphine, an importantchelating agent found innature6NExamples: [Co(CN)6 ]3-, [Fe(en)3]3 NHNHNoctahedral

MetalloporphyrinMyoglobin, a protein thatstores O2 in cellsNNFe2 NNCoordination Environment of Fe2 inOxymyoglobin and OxyhemoglobinFerrichrome (Involved in Fe transport in bacteria)Nomenclature of CoordinationCompounds: IUPAC Rules! Thecation is named before the anion! When naming a complex:!Ligands are named first" alphabeticalorder!Metal atom/ion is named last" oxidationstate given in Roman numerals follows inparentheses!Use no spaces in complex nameFG24 014.JPGNomenclature: IUPAC Rules! Thenames of anionic ligands end with thesuffix -o!-ide suffix changed to -o!-ite suffix changed to -ito!-ate suffix changed to -ato

Nomenclature: IUPAC RulesNomenclature: IUPAC RulesLigandNameLigandNamebromide, Br-bromocarbonate, CO32-carbonatooxalatochloride, Cl-chlorooxalate, C2 O 4 2-cyanide, CN-cyanosulfate, SO42-sulfatohydroxide, OH-hydroxothiocyanate, SCN-thiocyanatooxide, O2-oxothiosulfate, S2 O 3 2-thiosulfatofluoride, F-fluoroSulfite, SO32-sulfitoNomenclature: IUPAC RulesNomenclature: IUPAC Rules! Neutralligands are referred to by the usualname for the molecule!Greek prefixes are used to indicate the number ofeach type of ligand when more than one is present inthe complex!If the ligand name already contains a Greek prefix,use alternate prefixes:!di-, 2; tri-, 3; tetra-, 4; penta-, 5; hexa-, 6!Example" ethylenediamine!Exceptions" water,H2 O aquaNH3 ammine" carbon monoxide, CO carbonyl" ammonia,!bis-, 2; tris-, 3; tetrakis-,4; pentakis-, 5; hexakis-, 6!The name of the ligand is placed in parenthesesNomenclature: IUPAC RulesNomenclature: IUPAC Rules! Ifa complex is an anion, its name ends withthe -ate!appended to name of the metalTransitionMetalName if in CationicComplexName if in Anionic percuprateZnZinczincate

Isomerism! Isomers! Structural!compounds that have the same composition buta different arrangement of atoms! MajorStructural IsomersIsomers!isomers that have different bondsTypes!structural isomers!stereoisomersStructural Isomers! Coordination-sphereisomers!differ in a ligand bonded to the metal in thecomplex, as opposed to being outside thecoordination-sphereCoordination-Sphere Isomers! Example[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Clionization in water! Consider[Co(NH3 )5Cl]Br ! [Co(NH3)5 Cl] Br-[Co(NH3 )5Br]Cl ! [Co(NH3)5Br] Cl-Coordination-Sphere Isomers! Example[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]ClCoordination-Sphere Isomers! Example[Co(NH3)5Cl]Br vs. [Co(NH3)5Br]Clprecipitation! Consider[Co(NH3)5Cl]Br(aq) AgNO3(aq) ! [Co(NH3)5Cl]NO3 (aq) AgBr(s)[Co(NH3)5Br]Cl(aq) AgNO3(aq) ! [Co(NH3)5Br]NO3(aq) AgCl(aq)

Structural Isomers! Linkageisomers!differ in the atom of a ligand bonded to themetal in the complexLinkage Isomers! Example![Co(NH3)5(ONO)]2 vs. [Co(NH3)5(NO2)]2 Linkage IsomersLinkage Isomers! Example![Co(NH3)5(SCN)]2 vs. [Co(NH3)5(NCS)]2 " Co-SCNStereoisomers! Stereoisomers!Isomers that have the same bonds, but differentspatial arrangementsvs. Co-NCSStereoisomers! Geometricisomers!Differ in the spatial arrangements of the ligands

Geometric IsomersGeometric Isomerscis isomer! Geometrictrans isomertrans isomerPt(NH3)2Cl2[Co(H2O)4Cl2] StereoisomersStereoisomersisomers!Differ in the spatial arrangements of the ligands!Have different chemical/physical properties" differentcis isomercolors, melting points, polarities,solubilities, reactivities, etc.! Opticalisomers!isomers that are nonsuperimposable mirrorimages" saidto be “chiral” (handed)to as enantiomers" referred!A substance is “chiral” if it does not have a“plane of symmetry”Example 1mirror planecis-[Co(en)2Cl2]

Example 1Example 1nonsuperimposablerotate mirror image 180 180 cis-[Co(en)2Cl2] Example 1enantiomersExample 2mirror planetrans-[Co(en)2Cl2] cis-[Co(en)2Cl2] Example 2Example 2rotate mirror image 180 Superimposable-not enantiomers180 trans-[Co(en)2Cl2] trans-[Co(en)2Cl2]

Properties of Optical IsomersOptical Isomers! Enantiomerspolarizingfilter!possess many identical properties" solubility,melting point, boiling point, color,chemical reactivity (with nonchiral reagents)planepolarized light!different in:" interactionswith plane polarized lightlightsourceunpolarizedlight(random vibrations)(vibrates in one plane)Optical Isomerspolarizing filterplanepolarizedlightOptical Isomerspolarizing filteroptically active samplein solutionplanepolarizedlightoptically active samplein solutionDextrorotatory (d) rightrotationLevorotatory (l) left rotationrotated polarizedlightProperties of Optical IsomersRacemic mixture equalamounts of two enantiomers; nonet rotationrotated polarizedlightProperties of Transition Metal Complexes! Enantiomers!possess many identical properties" solubility,melting point, boiling point, color, chemicalreactivity (with nonchiral reagents)!different in:" interactions" reactivitywith plane polarized lightwith “chiral” reagentsExampled-C4 H 4 O 6 2-(aq) d,l-[Co(en)3]Cl3 (aq) !d-[Co(en)3](d-C4 H 4 O 6 2- )Cl(s) l-[Co(en)3]Cl3(aq) 2Cl-(aq)! Propertiesof transition metal complexes:!usually have color" dependentupon ligand(s) and metal ion!many are paramagnetic" dueto unpaired d electronsof paramagnetism dependent on ligand(s)" degree" [Fe(CN)6 ] 3- has 1 unpaired d electron" [FeF6]3- has 5 unpaired d electrons

YCrystal Field Theory! CrystalField TheoryX!Model for bonding in transition metalcomplexes" Accountsfor observed properties of transition metalcomplexes!Focuses on d-orbitals!Ligands point negative charges!Assumes ionic bonding" electrostaticYXdx2-y2XYdyzdxzCrystal Field Theory-Octahedral Crystal FieldInteractions!( ) metal ion attracted to (-) ligands (anion ordipole)(-) Ligands attracted to ( )metal ion; provides stability- stability!lone pair e-’s on ligands repulsed by e-’s in metal dorbitals" interaction" influencesZXCrystal Field Theory" providesdz2Zinteractionsdxy! ElectrostaticZd orbitals--called crystal fieldd orbital energiesd orbital e-’s repulsed by (–)ligands; increases d orbitalpotential energy" not all d orbitals influenced the same way-ligands approach along x, y, z axesCrystal Field TheoryYZXYXdx2-y2Zdz2Lobes directed at ligandsXZgreater electrostaticX repulsion higher potential energydxydxzdyzY

YZXXCrystal Field Theorydx2-y2YXZCrystal Field Theorydz 2 dx 2 - y 2octahedral crystal fielddz2Zd orbital energy levelsYXEdxydxzLobes directed between ligandsdz2metal ion in octahedralcomplexd-orbitalsless electrostatic repulsion lower potential energyCrystal Field Splitting Energyoctahedral crystal fieldd orbital energy levelsdx 2- y2metal ion in octahedralcomplexdz 2 dx 2 - y 2"Determined by metalion and ligand"dxy dxz dyzisolatedmetal iondyzEdxy dxz dyzisolateddxydxzdyzmetalionMetal ion and the nature of theligand determines "d-orbitalsCrystal Field TheoryProperties of Transition Metal Complexes! Propertiesof transition metal complexes:!usually have color" dependentupon ligand(s) and metal ion!many are paramagnetic" dueto unpaired d electronsof paramagnetism dependent on ligand(s)" degree" [Fe(CN)6 ] 3- has 1 unpaired d electron" [FeF6]3- has 5 unpaired d electrons! CrystalField Theory!Can be used to account for" Colorsof transition metal complexes" A complex must have partially filled d subshell on metalto exhibit color" A complex with 0 or 10 d e-s is colorless" Magneticproperties of transition metal complexes" Many are paramagnetic" # of unpaired electrons depends on the ligand

Colors of Transition Metal Complexes! Compounds/complexesthat have color:wavelength, nm!absorb specific wavelengths of visible light (400 –700nm)" wavelengthsVisible Spectrum(Each wavelength corresponds to a different color)not absorbed are transmitted400 nm700 nmhigher energylower energyWhite all the colors (wavelengths)Colors of Transition Metal ComplexesVisible Spectrum! Compounds/complexesthat have color:!absorb specific wavelengths of visible light (400 –700nm)" wavelengths" colornot absorbed are transmittedobserved complementary color of color absorbedColors of Transition Metal Complexes! Absorptionof UV-visible radiation by atom,ion, or molecule:absorbedcolor!Occurs only if radiation has the energy needed toraise an e- from its ground state to an excited stateobservedcolor" i.e.,from lower to higher energy orbitalenergy absorbed energy difference between theground state and excited state" “electron jumping”" light

Colors of Transition Metal ComplexesColors of Transition Metal Complexes! Differentwhitelightcomplexes exhibit different colorsbecause:green lightobservedred lightabsorbed!color of light absorbed depends on "" larger" higher energy light absorbed" Shorter wavelengthsFor transition metalcomplexes, " corresponds toenergies of visible light." smallerAbsorption raises anelectron from the lower dsubshell to the higher dsubshell." lower energy light absorbed" Longer wavelengths!magnitude of " depends on:" ligand(s)" metalColors of Transition Metal Complexeswhitelightred lightabsorbed(lowerenergylight)green lightobservedColors of Transition Metal Complexeswhitelightblue lightabsorbed(higherenergylight)[M(H2O)6]3 orange lightobserved[M(en)3]3 Colors of Transition Metal ComplexesSpectrochemical SeriesSmallest "" increasesLargest "I- Br- Cl- OH- F- H2O NH3 en CN-weak fieldstrong field

Properties of Transition Metal Complexes! Propertiesof transition metal complexes:!usually have color" dependentupon ligand(s) and metal ion!many are paramagnetic" dueto unpaired d electronsof paramagnetism dependent on ligand(s)" degree" [Fe(CN)6 ] 3- has 1 unpaired d electron" [FeF6]3- has 5 unpaired d electronsElectronic Configurations of Transition MetalComplexes! Expectedorbital filling tendencies for e-’s:!occupy a set of equal energy orbitals one at a timewith spins parallel (Hund’s rule)" minimizesrepulsions!occupy lowest energy vacant orbitals first! Theseare not always followed by transitionmetal complexes.Electronic Configurations of Transition MetalComplexes!dorbital occupancy depends on " andpairing energy, P!e-’s assume the electron configuration with thelowest possible energy cost!If " P (" large; strong field ligand)" e-’spair up in lower energy d subshell first!If " P (" small; weak field ligand)" e-’sspread out among all d orbitals before any pairupd-orbital energy level diagramsoctahedral complexd-orbital energy level diagramsoctahedral complexd1d2

d-orbital energy level diagramsoctahedral complexd-orbital energy level diagramsoctahedral complexd3d4high spinlow spin" P" Pd-orbital energy level diagramsoctahedral complexd-orbital energy level diagramsoctahedral complexd5d6high spinlow spinhigh spinlow spin" P" P" P" Pd-orbital energy level diagramsoctahedral complexd-orbital energy level diagramsoctahedral complexd7d8high spinlow spin" P" P

d-orbital energy level diagramsoctahedral complexd-orbital energy level diagramsoctahedral complexd9d10Electronic Configurations of Transition MetalComplexesColors of Transition Metal Complexes! Determiningd-orbital energy level diagrams:!determine oxidation # of the metal!determine # of d e-’s!determine if ligand is weak field or strong field!draw energy level diagramSpectrochemical SeriesSmallest "" increasesI- Br- Cl- OH- F- H2O NH3 en CN-weak fieldd-orbital energy level diagramstetrahedral complexLargest "d-orbital energy leveldiagramstrong fieldmetal ion intetrahedral complexdxy dxz dyzEisolatedmetal iond-orbitals"dz2 dx 2- y2only high spin

d-orbital energy level diagramssquare planar complexd-orbital energy leveldiagrammetal ion in squareplanar complexd x2- y2dxyEisolatedmetal iononly low spind-orbitalsPorphine, an importantchelating agent found innatureNNHNHNMetalloporphyrinCoordination Environment of Fe2 inOxymyoglobin and OxyhemoglobinNNFeN2 Ndxz dyzMyoglobin, a protein thatstores O2 in cellsdz2

Arterial BloodO2NVenous BloodWeak fieldStrong fieldNOH2large "FeNNNNFesmall "NNNNNHglobin(protein)Bright red due toabsorption of greenishlightNHglobin(protein)Bluish color due toabsorption of orangishlightEnd of Presentation

Coordination Chemistry!Coordination compound!Compound that contains 1 or more complexes!Example "[Co(NH 3) 6]Cl 3 "[Cu(NH 3) 4][PtCl 4] "[Pt(NH 3) 2Cl 2] Coordination Chemistry!Coordination sphere!Metal and ligands bound to it!Coordination number!number of donor atoms bonded to the central

Related Documents:

Chemistry ORU CH 210 Organic Chemistry I CHE 211 1,3 Chemistry OSU-OKC CH 210 Organic Chemistry I CHEM 2055 1,3,5 Chemistry OU CH 210 Organic Chemistry I CHEM 3064 1 Chemistry RCC CH 210 Organic Chemistry I CHEM 2115 1,3,5 Chemistry RSC CH 210 Organic Chemistry I CHEM 2103 1,3 Chemistry RSC CH 210 Organic Chemistry I CHEM 2112 1,3

CHEM 350B Topics in Chemistry 7.5 454.95 CHEM 351 Chemicals Big and Small: Nano- 15 909.90 CHEM 352 Advanced Concepts in Chemistry 15 909.90 CHEM 352A Advanced Concepts in Chemistry 7.5 454.95 CHEM 352B Advanced Concepts in Chemistry 7.5 454.95 CHEM 360 Contemporary Green Chemistry 15 909.90 CHEM 380 Materials Chemistry 15 909.90

Accelerated Chemistry I and Accelerated Chemistry Lab I and Accelerated Chemistry II and Accelerated Chemistry Lab II (preferred sequence) CHEM 102 & CHEM 103 & CHEM 104 & CHEM 105 General Chemistry I and General Chemistry Lab I and General Chemistry II and General Chemistry Lab II (with advisor approval) Organic chemistry, select from: 9-10

CHEM 0350 Organic Chemistry 1 CHEM 0360 Organic Chemistry 1 CHEM 0500 Inorganic Chemistry 1 CHEM 1140 Physical Chemistry: Quantum Chemistry 1 1 . Chemistry at Brown equivalent or greater in scope and scale to work the studen

CHEM 31X. Chemical Principles 4 CHEM 33. Structure and Reactivity 4 CHEM 35. Organic Monofunctional Compounds 4 CHEM 36. Organic Chemistry Laboratory I 3 MATH 41, 42, 51. Calculus, Linear Equations 5 5 5 SECOND YEAR CHEM 130. Organic Chemistry Laboratory II 4 CHEM 131. Organic Polyfunctional Compounds y3 CHEM 134.

CHEM 110 Chemistry of the Living World 15 4,736.85 CHEM 120 Chemistry of Material World 15 4,736.85 CHEM 150 Concepts in Chemistry 15 4,736.85 CHEM 200 Special Topic 15 4,736.85 CHEM 251 Structure and Spectroscopy 15 4,736.85 CHEM 252 Properties and Analysis of Mat 15 4,736.85

bonding and reactions) necessary for courses in elementary organic chemistry and physiological chemistry. Students may only receive credit toward graduation for one of the following: CHEM 10050; or CHEM 10060 and CHEM 10061; or CHEM 10970 and CHEM 10971.

asset management markets such as Australia, Japan, Hong Kong and Singapore will continue to grow, though they will be outpaced by growth economies of the region such as China and India who are experiencing strong flows associated with burgeoning asset management markets. The opening up of China’s economy to offshore investors, India’s decreasing interest rates and disinflation, and the .