CHAP 2 Nonlinear Finite Element Analysis Procedures

3y ago
61 Views
2 Downloads
474.76 KB
29 Pages
Last View : 22d ago
Last Download : 3m ago
Upload by : Hayden Brunner
Transcription

CHAP 2Nonlinear Finite Element AnalysisProceduresNam-Ho Kim Goals What is a nonlinear problem? How is a nonlinear problem different from a linear one? What types of nonlinearity exist? How to understand stresses and strains How to formulate nonlinear problems How to solve nonlinear problems When does nonlinear analysis experience difficulty?

Nonlinear Structural Problems What is a nonlinear structural problem?– Everything except for linear structural problems– Need to understand linear problems firstA(Du Ew) What is linearity?yInput x(load, heat)x1axOutput y(displ, temp)y1x2y2x1x1y2axDA(u) EA(w)x22y12x1 3x2Y2y1 3y2 Example: fatigue analysis What is a linear structural problem?ForceLinearLinearStressA0 AGlobalStrainLEFF?A0 A(F)HHA0EGLL0 Linearity is an approximation earV EHVF/2VLocalLocalGlobalA0EHInfinitesimal strain ( 0.2%)Infinitesimal displacementSmall rotationLinear stress-strain relationGL GL?L0 L

Observations in linear problems Which one will happen?MM Will this happen?TrussTrussF What types of nonlinearityexist?It is at every stage of analysis

Linear vs. Nonlinear Problems Linear Problem:1 § wui wujH – Infinitesimal deformation: ij2 wxj wxiD: – Linear stress-strain relation: – Constant displacement BCs· ¹8QGHIRUPHG FRRUG &RQVWDQW– Constant applied forces Nonlinear Problem:– Everything except for linear problems!– Geometric nonlinearity: nonlinear strain-displacement relation– Material nonlinearity: nonlinear constitutive relation– Kinematic nonlinearity: Non-constant displacement BCs, contact– Force nonlinearity: follow-up loads Nonlinearities in Structural nlinear displ. s-strainNonlinear force BCAppliedforce More than one nonlinearity can exist at the same time

Geometric Nonlinearity ϭdŝƉ ĚŝƐƉůĂĐĞŵĞŶƚ Relations among kinematic quantities (i.e., displacement,rotation and strains) are nonlinear Ϯϴ͘ϲ͘ϰ͘Ϯ͘ ϯ Ϭ͘Ϭ͘Ϭ Ϭ͘Ϯ Ϭ͘ϰ Ϭ͘ϲ Ϭ͘ϴ ϭ͘ϬEŽƌŵĂůŝnjĞĚ ĐŽƵƉůĞWhen du/dx is small Displacement-strain relation– Linear:2H(x)dudxE(x)du 1 § du · dx 2 dx ¹du§ du · dx dx ¹2– Nonlinear:H.O.T. can be ignoredH(x) E(x)Geometric Nonlinearity cont. Displacement-strain relationϬ͘ϯϱϬ͘ϯϬ– E has a higher-order termϬ͘Ϯϱ– (du/dx) 1 Æ H(x) E(x).F ƚƌĂŝŶϬ͘ϮϬϬ͘ϭϱϬ͘ϭϬ Domain of integration– Undeformed domain :0Ϭ͘ϬϱϬϬ Ϭ͘Ϭϱ – Deformed domain :xa( u, u )Ϭ͘ϭϬ Ϭ͘ϭϱ ĚƵͬĚdžϬ͘ϮϬ Ϭ͘Ϯϱ Ϭ͘ϯϬ³³: H(u ) : V(u) d:Deformed domain is unknown

Material Nonlinearity Linear (elastic) material{ V } [D]{ H }– Only for infinitesimal deformation Nonlinear (elastic) materialMore generally, {V} {f(H)}– [D] is not a constant but depends on deformation– Stress by differentiating strain energy density U– Linear material:dU1U2EH2VdHVdUdHEH– Stress is a function of strain (deformation): potential, pathindependentVEVHϭNonlinearspringE Linear springHLinear and nonlinear elastic spring models Material Nonlinearity cont. Elasto-plastic material (energy dissipation occurs)– Friction plate only support stress up to Vy– Stress cannot be determined from stress alone– History of loading path is required: path-dependentEVTYVVYEHElasto-plastic spring model Visco-elastic material– Time-dependent behavior– Creep, relaxationEVKVEHtimeVisco-elastic spring model

Boundary and Force Nonlinearities Nonlinear displacement BC (kinematic nonlinearity)– Contact problems, displacement dependent conditions&ŽƌĐĞEŵĂdž ŽŶƚĂĐƚ ďŽƵŶĚĂƌLJ ŝƐƉůĂĐĞŵĞŶƚ Nonlinear force BC (Kinetic nonlinearity) Mild vs. Rough Nonlinearity Mild Nonlinear Problems– Continuous, history-independent nonlinear relations betweenstress and strain– Nonlinear elasticity, Geometric nonlinearity, and deformationdependent loads Rough Nonlinear Problems– Equality and/or inequality constraints in constitutive relations– History-dependent nonlinear relations between stress and strain– Elastoplasticity and contact problems

Nonlinear Finite Element Equations Equilibrium between internal and external forcesP(d)StressStrainF(d)Linear problems[K]{ d}{F }Loads Kinetic and kinematic nonlinearities– Appears on the boundary– Handled by displacements and forces (global, explicit)– Relatively easy to understand (Not easy to implement though) Material & geometric nonlinearities– Appears in the domain– Depends on stresses and strains (local, implicit) Solution ProcedureWe can only solve for linear problems

Example – Nonlinear SpringsŬϭ Spring constantsŬϮ– k1 50 500uk2 100 200uƵϭƵϮ& Governing equation 300u12 400u1u2 200u22 150u1 100u2 ̄ 200u12 400u1u2 200u22 100u1 100u20P1100P2– Solution is in the intersection between two zero contours– Multiple solutions may exist– No solution exists in a certain situation Solution Procedure Linear ProblemsK dForP(d)F– Stiffness matrix K is constantP(d1 d2 ) P(d1 ) P(d2 )P(Dd) DP(d) DF FKFd d– If the load is doubled, displacement is doubled, too– Superposition is possible Nonlinear ProblemsP(d)F,P(2d) z 2FFKT– How to find d for a given F?Incremental Solution Proceduredid

Newton-Raphson Method Most popular method Assume di at i-th iteration is known Looking for di 1 from first-order Taylor series expansionP(di 1 ) P(di ) KTi (di ) 'diFi–KTi (di )§ wP ·{ wd ¹: Jacobian matrix or Tangent stiffness matrix Solve for incremental solutionKTi 'diF P(di )& Update solutiondi 1W;ĚŝнϭͿdi 'diW;ĚͿKTi �нϮĚŶĚ N-R Method cont. Observations:– Second-order convergence near the solution (Fastest method!)– Tangent stiffnessKTi (di )limis not constantn ofuexact un 1uexact un2c– The matrix equation solves for incremental displacement 'di– RHS is not a force but a residual force Ri { F P(di )– Iteration stops when conv tolerance j 1 (Rji 1 )2n1 j 1 (Fj )2nconv j 1 ('uij 1 )2n1 j 1 ( 'uj0 )2nOr,conv

N-R Algorithm1. Set tolerance 0.001, k 0, max iter 20, and initialestimate u u02. Calculate residual R f – P(u)3. Calculate conv. If conv tolerance, stop4. If k max iter, stop with error message5. Calculate Jacobian matrix KT6. If the determinant of KT is zero, stop with error message7. Calculate solution increment 'u8. Update solution by u u 'u9. Set k k 110. Go to Step 2 Example – N-R Method d d2 ½P(d) { 212¾ d1 d2 ¿KTwPwd 3 ½ ¾{F 9 ¿1 ºª 1« 2d 2d » 12¼d0 1 ½ ¾ 5 ¿R0F P( d 0 )P( d 0 ) 6 ½ ¾ 26 ¿ 3 ½ ¾ 17 ¿ Iteration 1ª 1 1 º 'd10 ½ ¾«» 2 10 ¼ 'd20 ¿ 3 ½ ¾ 17 ¿d1d0 'd0 0.625 ½ ¾ 3.625 ¿R1F P(d1 ) 0 ½ ¾ 4.531 ¿0 'd1 ½ 0¾ 'd2 ¿ 1.625 ½ ¾ 1.375 ¿

Example – N-R Method cont. Iteration 21 º 'd11 ½ ª 1« 1.25 7.25 » 1 ¾ ¼ 'd2 ¿d2d1 'd11 'd1 ½ 1¾ 'd2 ¿ 0 ½ ¾ 4.531 ¿ 0.092 ½ ¾ 3.092 ¿R2F P(d2 ) 0.533 ½ ¾ 0.533 ¿ 0 ½ ¾ 0.568 ¿ Iteration 31 º 'd12 ½ª 1« 0.184 6.184 » 2 ¾ ¼ 'd2 ¿d3d2 'd22 'd1 ½ 2¾ 'd2 ¿ 0 ½ ¾ 0.568 ¿ 0.003 ½ ¾ 3.003 ¿R3F P(d3 ) 0.089 ½ ¾ 0.089 ¿ 0 ½ ¾ 0.016 ¿ Example – N-R Method cont. Iteration 411 º 'd13 ½ ª« 0.005 6.005 » 3 ¾ ¼ 'd2 ¿d4d3 'd3 'd13 ½ 3¾ 'd2 ¿ 0 ½ ¾ 0.016 ¿ 0.000 ½ ¾ 3.000 ¿R4F P( d 4 ) 0.003 ½ ¾ 0.003 ¿ 0 ½ ¾ 0 ¿ResidualϮϬ,WHU5 ϴ ϰ Ϭ ϭϲϭϮϬϭϮIterationϯϰQuadratic convergence

When N-R Method Does Not Converge Difficulties– Convergence is not always guaranteed– Automatic load step control and/or line search techniques areoften used– Difficult/expensive to calculate KTi (di )&wPwd ŽůƵƚŝŽŶW;ĚͿwPwdĚŝнϮ ĚŝĚŶĚŝнϭĚ When N-R Method Does Not Converge cont. Convergence difficulty occurs when– Jacobian matrix is not positive-definiteP.D. Jacobian: in order to increase displ., force must be increased– Bifurcation & snap-through require a special algorithm & & &ŽƌĐĞ& ŝƐƉůĂĐĞŵĞŶƚ

Modified N-R Method Constructing KTi (di ) and solving KTi 'diRi is expensive Computational Costs (Let the matrix size be N x N)– L-U factorization N3– Forward/backward substitution N Use L-U factorized KTi (di ) repeatedly More iteration is required, butW;ĚͿ&each iteration is fastwPwd More stable than N-R method ŽůƵƚŝŽŶ Hybrid N-R methodĚŝĚŝнϭĚŶĚ Example – Modified N-R Method Solve the same problem using modified N-R method d d2 ½P(d) { 212¾ d1 d2 ¿KTwPwd 3 ½ ¾{F 9 ¿1 ºª 1« 2d 2d » 12¼d0R0 1 ½ ¾ 5 ¿P( d 0 )F P( d 0 ) 6 ½ ¾ 26 ¿ 3 ½ ¾ 17 ¿ Iteration 1ª 1 1 º 'd10 ½ ¾«» 2 10 ¼ 'd20 ¿ d1d0 'd0 'd10 ½ 0¾ 'd2 ¿ 3 ½ ¾ 17 ¿ 0.625 ½ ¾ 3.625 ¿R1 1.625 ½ ¾ 1.375 ¿F P(d1 ) 0 ½ ¾ 4.531 ¿

Example – Modified N-R Method cont. Iteration 2ª 1 1 º 'd11 ½ « 2 10 » 1 ¾ ¼ 'd2 ¿ 0.059 ½ ¾ 3.059 ¿d1 'd1d2 'd11 ½ 1¾ 'd2 ¿ 0 ½ ¾ 4.531 ¿ 0.566 ½ ¾ 0.566 ¿F P(d2 )R2Residual 0 ½ ¾ 0.358 ¿,WHU5 ϭϲ ϭϮ ϴ ϰ ϮϬϬϬϭϮϯϰϱϲϳIteration Incremental Secant Method Secant matrix– Instead of using tangent stiffness, approximate it using thesolution from the previous iteration– At i-th iterationKsi 'diF P(di )wPwd– The secant matrix satisfiesKsii 1 (d d )iW;ĚͿ& ŽůƵƚŝŽŶ ĞĐĂŶƚ ƐƚŝĨĨŶĞƐƐi 1P(d ) P(d )i– Not a unique process in high dimensionĚ ĚϭĚϮ ĚϯĚŶĚ Start from initial KT matrix, iteratively update it– Rank-1 or rank-2 update– The textbook has Broyden’s algorithm (Rank-1 update)– Here we will discuss BFGS method (Rank-2 update)

Incremental Secant Method cont. BFGS (Broyden, Fletcher, Goldfarb and Shanno) method– Stiffness matrix must be symmetric and positive-definite'di[Ksi ] 1 {F P(di )} { [Hsi ]{F P(di )}– Instead of updating K, update H (saving computational time)Hsi( I wi viT )Hsi 1 ( I wi viT )vi§( 'di 1 )T (Ri 1 Ri ) ·iRi 1 1 Ri T i 1( 'd ) R ¹wi'di 1( 'di 1 )T (Ri 1 Ri ) Become unstable when the No. of iterations is increased Incremental Force Method N-R method converges fast if the initial estimate is closeto the solution Solid mechanics: initial estimate undeformed shape Convergence difficultyoccurs when the appliedload is large(deformation is large) IFM: apply loads inincrements. Use thesolution from theprevious incrementas an initial estimate Commercial programscall it “Load Increment”or “Time Increment”

Incremental Force Method cont. Load increment does not have to be uniform– Critical part has smaller increment size Solutions in the intermediate load increments– History of the response can provide insight into the problem– Estimating the bifurcation point or the critical load– Load increments greatly affect the accuracy in path-dependentproblems Load Increment in Commercial Software Use “Time” to represent load level– In a static problem, “Time” means a pseudo-time– Required Starting time, (Tstart), Ending time (Tend) and increment– Load is gradually increased from zero at Tstart and full load at Tend– Load magnitude at load increment Tn:nFT n TstartFTend TstartTnn u 'T d Tend Automatic time stepping– Increase/decrease next load increment based on the number ofconvergence iteration at the current load– User provide initial load increment, minimum increment, andmaximum increment– Bisection of load increment when not converged

Force Control vs. Displacement Control Force control: gradually increase applied forces and findequilibrium configuration Displ. control: gradually increase prescribed displacements– Applied load can be calculated as a reaction– More stable than force control.– Useful for softening, contact, snap-through, etc.&&W;ƵͿ&Ŷ& &ϯW;ƵͿ& &Ϯ&ϭ& Ƶϭ ƵϮƵϯƵƵŶƵ Ƶ Ƶ Ƶ Ƶ Nonlinear Solution Steps1. Initialization: d00; i2. Residual CalculationRi0F P(di )3. Convergence Check (If converged, stop)4. Linearization–Calculate tangent stiffness KTi (di )5. Incremental Solution:–Solve KTi (di )'diRi6. State Determination–Update displacement and stress7. Go To Step 2di 1di 'diVi 1Vi 'Vi

Nonlinear Solution Steps cont. State determination–For a given displ dk, determine current state (strain, stress, etc)N(x) dkuk (x)–HkVkB dkf(Hk )Sometimes, stress cannot be determined using strain alone Residual calculation– Applied nodal force Nodal forces due to internal stresses³³³: H(u)TWeak form:TDiscretization: d³³³: BTV d:su T t d* ³³³ u T fb d:,:³³* NTs³³* NkResidual: R³³*V d:Tt d* ³³³ NT fb d: , d ]h:t d* ³³³ NT fb d: ³³³ BT Vk d::s u ]: Example – Linear Elastic Material Governing equation (Scalar equation)³³³:³³*H( u )T V d:su T t d* ³³³ u T fb d::uN dH( u )B d Collect ddT³³³: BT³³* NV d:sF P(d) Linear elastic materialVKTD HwP(d)wdD B d³³³: Bt d* ³³³: Nf d:T bFP(d) Residual RTFKTTDB d:d

Example – Nonlinear Bar Rubber bar V E tan 1 (mH)L Discrete weak form d T ³ BT VAdx0 Scalar equationR RF ³d d1 ½ ¾ d2 ¿F R ½ ¾ F ¿d TFL VAdxLF V(d)A01« 1 1 »¼L BϭϮϬϭϬϬϭϮdž& с ϭϬŬE ƚƌĞƐƐϴϬϲϬϰϬ с ϭŵϮϬϬϬ Ϭ͘Ϭϭ Ϭ͘ϬϮ Ϭ͘Ϭϯ Ϭ͘Ϭϰ Ϭ͘Ϭϱ ƚƌĂŝŶ Example – Nonlinear Bar cont. JacobiandPdddV(d)AdddV dHAdH dd1§V·mAE cos2 L E¹ N-R equationkª12 § V ·ºk » 'd« mAE cos L E ¹¼ Iteration 1mAE 0'dLF Iteration 21ª mAE2 § V ·º1cos » 'd«LE ¹¼F V1AF VkAd1d0 'd0H1d1 / LV1E tan 1 (mH1 )d2d1 'd1H2d2 / LV2E tan 1 (mH2 )0.025m0.02578.5MPa0.0357m0.035796MPa

N-R or Modified N-R? It is always recommended to use the Incremental Force Method– Mild nonlinear: 10 increments– Rough nonlinear: 20 100 increments– For rough nonlinear problems, analysis results depends on increment size Within an increment, N-R or modified N-R can be used– N-R method calculates KT at every iteration– Modified N-R method calculates KT once at every increment– N-R is better when: mild nonlinear problem, tight convergence criterion– Modified N-R is better when: computation is expensive, small incrementsize, and when N-R does not converge well Many FE programs provide automatic stiffness update option– Depending on convergence criteria used, material status change, etc Accuracy vs. Convergence Nonlinear solution procedure requires– Internal force P(d)– Tangent stiffness K (d)TwPwd– They are often implemented in the same routine Internal force P(d) needs to be accurate– We solve equilibrium of P(d) F Tangent stiffness KT(d) contributes to convergence– Accurate KT(d) provides quadratic convergence near the solution– Approximate KT(d) requires more iteration to converge– Wrong KT(d) causes lack of convergence

Convergence Criteria Most analysis programs provide three convergence criteria– Work, displacement, load (residual)– Work displacement * load– At least two criteria needs to be converged Traditional convergence criterion is load (residual)– Equilibrium between internal and external forces P(d)F(d) Use displacement criterion for load insensitive systemForceUse loadcriterionUse displacementcriterionDisplacement Solution Strategies Load Step (subcase or step)Load– Load step is a set of loading and boundary conditions to define ananalysis problem– Multiple load steps can be used to define a sequence of loadingconditionsLS1LS2TimeNASTRANSPC 1SUBCASE 1LOAD 1SUBCASE 2LOAD 2

Solution Strategies Load Increment (substeps) – Linear analysis concerns max load– Applied load is gradually increasedwithin a load step– Follow load path, improve accuracy,and easy to converge )RUFH– Nonlinear analysis depends onload path (history)Loading Convergence Iteration– Within a load increment, an iterativemethod (e.g., NR method) is used tofind nonlinear solutionUnloading 'LVSODFHPHQW FFa25341– Bisection, linear search, stabilization, etcu Solution Strategies cont. Automatic (Variable) Load Increment– Also called Automatic Time Stepping– Load increment may not be uniform– When convergence iteration diverges, the load increment is halved– If a solution converges in less than 4 iterations, increase timeincrement by 25%– If a solution converges in more than 8 iterations, decrease timeincrement by 25% Subincrement (or bisection)– When iterations do not converge at a given increment, analysisgoes back to previously converged increment and the loadincrement is reduced by half– This process is repeated until max number of subincrements

When nonlinear analysis does not converge NR method assumes a constant curvature locally When a sign of curvature changes around the solution, NRmethod oscillates or diverges Often the residual changes sign between iterations Line search can help to convergeu tan 1 (5u)P(u)dPdu1 5cos2 (tan 1 (5u)) When nonlinear analysis does not converge Displacement-controlled vs. force-controlled procedure– Almost all linear problems are force-controlled– Displacement-controlled procedure is more stable for nonlinearanalysis– Use reaction forces to calculate applied forces & & &ŽƌĐĞ& ŝƐƉůĂĐĞŵĞŶƚ

When nonlinear analysis does not converge Mesh distortion– Most FE programs stop analysis when mesh is distorted too much– Initial good mesh may be distorted during a large deformation– Many FE programs provide remeshing capability, but it is stillinaccurate or inconvenient– It is best to make mesh in such a way that the mesh quality can bemaintained after deformation (need experience)Initial mesh MATLAB Code for NonlinearFEA

NLFEA.m Nonlinear finite element analysis program– Incremental force method with N-R method– Bisection method when N-R is failed to converge– Can solve for linear elastic, hyperelastic and elasto-plastic materialnonlinearities with large deformation Global arrays1DPH'LPHQVLRQ&RQWHQWV*.)1(4 [ 1(47DQJHQW PDWUL[)25&(1(4 [ 5HVLGXDO YHFWRU',637'1(4 [ 'LVSODFHPHQW YHFWRU',63''1(4 [ 'LVSODFHPHQW LQFUHPHQW6,*0 [ [ 1(6WUHVV DW HDFK LQWHJUDWLRQ SRLQW;4 [ [ 1( LVWRU\ YDULDEOH DW HDFK LQWHJUDWLRQ SRLQW ,QSXW GDWD8SGDWH KLVWRU\ YDULDEOHV3ULQW VWUHVV GLVSODFHPHQW7 7 '7%LVHFWLRQ FRQWURO)LQDO WLPH" HV6WRS1R,QFUHDVH ORDG %&7 7 '7'7 '7 ,7(5 &DOFXODWH 5 .'LVSODFHPHQW %&&RQYHUJHG" HV1R HV0D[ ,7(5"1R,7(5 ,7(5 6ROYH '8 .?58 8 '8

NLFEA.m cont. Nodal coordinates and element connectivity– the node numbers are in sequence– nodal coordinates in XYZ(NNODE , 3)– eight-node hexahedral elements LE(NELEN, 8) Applied forces and prescribed displacements– EXTFORCE(NFORCE, 3): [node, DOF, value] format– SDISPT(NDISPT, 3) Load steps and increments– TIMS(NTIME,5): [Tstart, Tend, Tinc, LOADinit, LOADfinal] format Material properties– Mooney-Rivlin hyperelasticity (MID -1), PROP [A10, A01, K]– infinitesimal elastoplasticity (MID 1), PROP [LAMBDA, MU,BETA, H, Y0] NLFEA.m cont. Control parameters– ITRA: maximum number of convergence iterations– if residual ATOL, then solution diverges, bisection starts– The total number of bisections is limited by NTOL– The convergence iteration converges when residual TOL– Program prints out results to NOUT after convergencefunction ***************************************% MAIN PROGRAM FOR HYPERELASTIC/ELASTOPLASTIC ******************************

Extension of a Single Element Example%% Nodal coordinatesXYZ [0 0 0;1 0 0;1 1 0;0 1 0;0 0 1;1 0 1;1 1 1;0 1 1];%% Element connectivityLE [1 2 3 4 5 6 7 8];%% External forces [Node, DOF, Value]EXTFORCE [5 3 10.0; 6 3 10.0; 7 3 10.0; 8 3 10.0];%% Prescribed displacements [Node, DOF, Value]SDISPT [1 1 0;1 2 0;1 3 0;2 2 0;2 3 0;3 3 0;4 1 0;4 3 0];%% Load increments [Start End Increment InitialLoad FinalLoad]TIMS [0.0 0.5 0.1 0.0 0.5; 0.5 1.0 0.1 0.5 1.0]';%% Material properties%PROP [LAMBDA MU BETA H Y0]MID 1;PROP [110.747, 80.1938, 0.0, 5., 35.0];%% Set program parametersITRA 20; ATOL 1.0E5; NTOL 5; TOL 1E-6;%% Calling main functionNOUT fopen('output.txt','w');NLFEA(ITRA, TOL, ATOL, NTOL, TIMS,

Nonlinear Finite Element Analysis Procedures Nam-Ho Kim Goals What is a nonlinear problem? How is a nonlinear problem different from a linear one? What types of nonlinearity exist? How to understand stresses and strains How to formulate nonlinear problems How to solve nonlinear problems

Related Documents:

Preparing the living compartment (inside)P.4 Chap. III CArrYInG PASSEnGErS P.5 Chap. IV LoADS AnD LoADED wEIGHt P.6 Chap. V wInDowS AnD SKYLIGHtS P.8 Chap. VI DrIVInG P. 10 Chap. VII tYrES P.11 Chap. VIII SIGnALInG, lights P.12 Chap. IX PArKInG mAnEuVErS P. 14 Chap. X tHE CAmPEr DrIVEr'S CHArtEr P. 16 Chap. XI oPErAtIon oF APPLIAnCES P.17

Finite element analysis DNV GL AS 1.7 Finite element types All calculation methods described in this class guideline are based on linear finite element analysis of three dimensional structural models. The general types of finite elements to be used in the finite element analysis are given in Table 2. Table 2 Types of finite element Type of .

Nonlinear Finite Element Method Lectures include discussion of the nonlinear finite element method. It is preferable to have completed “Introduction to Nonlinear Finite Element Analysis” available in summer session. If not, students are required to study on their own before participating this course. Reference:Toshiaki.,Kubo. “Intr

MINISTRY Of FINANCE 01 O i I Companies ( Chap 75: 04) 02 Other Companies ( Chap 75: 02) 03 Individuals (Chap 75: 01) 04 Withholding Tax ( Chap 75: 01) 05 Insurance Surrender Tax ( Chap 75: 01) 07 Business Levy ( Chap 75: 02) 09 Hea I th Surcharge ( Chap 75: 05) Total Estimates 2022 Revised Estimates 2021 .

Nonlinear Finite Element Method Lecture Schedule 1. 10/ 4 Finite element analysis in boundary value problems and the differential equations 2. 10/18 Finite element analysis in linear elastic body 3. 10/25 Isoparametric solid element (program) 4. 11/ 1 Numerical solution and boundary condition processing for system of linear

1 Overview of Finite Element Method 3 1.1 Basic Concept 3 1.2 Historical Background 3 1.3 General Applicability of the Method 7 1.4 Engineering Applications of the Finite Element Method 10 1.5 General Description of the Finite Element Method 10 1.6 Comparison of Finite Element Method with Other Methods of Analysis

Finite Element Method Partial Differential Equations arise in the mathematical modelling of many engineering problems Analytical solution or exact solution is very complicated Alternative: Numerical Solution – Finite element method, finite difference method, finite volume method, boundary element method, discrete element method, etc. 9

OF ARCHAEOLOGICAL ILLUSTRATORS & SURVEYORS LSS OCCASIONAL PAPER No. 3 AAI&S TECHNICAL PAPER No. 9 1988. THE ILLUSTRATION OF LITHIC ARTEFACTS: A GUIDE TO DRAWING STONE TOOLS FOR SPECIALIST REPORTS by Hazel Martingell and Alan Saville ASSOCIATION OF ARCHAEOLOGICAL ILLUSTRATORS & SURVEYORS THE LITHIC STUDIES SOCIETY NORTHAMPTON 1988 ISBN 0 9513246 0 8 ISSN 0950-9208. 1 Introduction This booklet .