Cataldo De Blasio Fundamentals Of Biofuels Engineering And Technology

1y ago
7 Views
2 Downloads
931.38 KB
30 Pages
Last View : 1d ago
Last Download : 3m ago
Upload by : Sabrina Baez
Transcription

Green Energy and TechnologyCataldo De BlasioFundamentalsof BiofuelsEngineeringand Technology

Green Energy and Technology

Climate change, environmental impact and the limited natural resources urgescientific research and novel technical solutions. The monograph series GreenEnergy and Technology serves as a publishing platform for scientific andtechnological approaches to “green”—i.e. environmentally friendly and sustainable—technologies. While a focus lies on energy and power supply, it also covers“green” solutions in industrial engineering and engineering design. Green Energyand Technology addresses researchers, advanced students, technical consultants aswell as decision makers in industries and politics. Hence, the level of presentationspans from instructional to highly technical. **Indexed in Scopus**.More information about this series at http://www.springer.com/series/8059

Cataldo De BlasioFundamentals of BiofuelsEngineering and Technology123

Cataldo De BlasioLaboratory of Energy TechnologyFaculty of Science and EngineeringÅbo Akademi UniversityVaasa, FinlandISSN 1865-3529ISSN 1865-3537 (electronic)Green Energy and TechnologyISBN 978-3-030-11598-2ISBN 978-3-030-11599-9 brary of Congress Control Number: 2019934516 Springer Nature Switzerland AG 2019This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmissionor information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodology now known or hereafter developed.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exempt fromthe relevant protective laws and regulations and therefore free for general use.The publisher, the authors and the editors are safe to assume that the advice and information in thisbook are believed to be true and accurate at the date of publication. Neither the publisher nor theauthors or the editors give a warranty, express or implied, with respect to the material contained herein orfor any errors or omissions that may have been made. The publisher remains neutral with regard tojurisdictional claims in published maps and institutional affiliations.This Springer imprint is published by the registered company Springer Nature Switzerland AGThe registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

A Daniel Lucas Ettore e Stefan LouisEmanuel.Siete la mia vita,Papà.

PrefaceBiomass and waste have become of much interest in recent years for their usage inpower conversion processes. Biomass is considered as a renewable source ofenergy, and therefore, it is assumed usually as environmentally friendly to utilizebiomass in power plants or for biofuels production, even if this has some constraintsin reality. The topic is enormously large, and it would require an entire encyclopedia to treat all the related subfields. In this case, the manuscript is driven mainlyby the questions: Why biomass would be a suitable choice for energy conversion? How biomass is generated and assessed? (This is important to understand thatnothing is coming for free, and time is needed to have suitable yields). How biomass is utilized for converting power and producing biofuels?This first edition is divided into two main parts (Parts I and II) and an additionalpart (Part III) which includes some additional material mainly meant as support forthe reader.The manuscript is addressed at a large audience, and it is suitable for students atbachelor and master levels of their university studies. Naturally, researchers whoare working in these fields might find this book of interest. In addition, the aim is ata broad range of readers (engineers, technicians, professionals) who are looking forsome specific topics within the area of biomass and energy. This book would besuitable as textbook for university courses and lectures given within the field treatedhere.The general outline of the manuscript is to give information following a “pedagogical style,” in the same way as lessons are given by this author. At the sametime, the author was trying to give more simplified explanations for some of thetreated arguments, and instead, for some other topics, he is explaining them intovery details. Steps and derivations of equations given normally in the literature,especially in the case of mass balances, are given here in full. To give a betterunderstanding of the passages involved, equations are repeated and numbered morethan one time, when needed, to give a better understanding and flow to thecomprehension.vii

viiiPrefaceThe author of this book would like to welcome the reader to the first edition ofthis manuscript. The readers of this book are also encouraged to give any commentsand suggestions which could improve the current version of the manuscript.Vaasa, FinlandCataldo De Blasio

AcknowledgementsEng. Marco Simonetti, Eng. Gaetano Lucca, Dr. Mauro Prestipino, and Prof.Antonio Galvagno are greatly acknowledged for their collaboration and support.I am proud to work with you.Many thanks go to my colleagues at the Laboratory of Energy Technology inVaasa; Professor Margareta Björklund-Sänkiaho and Dr. Jessica Tuuf, for the greatworking environment we have.The colleagues at the Department of Chemical Engineering in Turku are alsogreatly acknowledged. I’d like to thank Prof. Henrik Saxén, Prof. TapioWesterlund, and Prof. Frank Petterson for their suggestions, support, and commentsto the manuscript.The companies UPM, Metsä, and Vaasa Water are acknowledged for givingpermissions to use some of their figures.Many thanks to my wife Leena Matilda and my children, you are my strengthand joy in this life. Thanks to my sister, Maria Teresa, brother, Luigi, and myparents Donato and Teresa who are living in the beautiful village of Brienza inItaly. They are always of great support and sustainment. My mother, TeresaGiallorenzo, is greatly acknowledged also for providing information on someagrofuels yield and rate.ix

About This BookThe scope of this book is to deliver suitable information related to the “generation”of power and its conversion from biomass sources. This would include also theproduction of biofuels. The author of this book wanted to keep a more “teachingstyle” during the adopted descriptions, and therefore, this would make the manuscript suitable to students and persons interested on the subject of biomass, how it isgenerated, and how it is converted to get power and fuels. The book is dividedmainly into two parts with an additional part related to the explanation of supportinformation.If the intention is to utilize biomass or bioproducts for energy conversion, itwould be beneficial to understand the underlying principles behind the biomassgeneration itself.For this reason, during the first part, the main principles of biomass generationwill be explained with a particular focus on how plants harvest the energy from thesun. The photosynthetic process is described in some more details to give anexample of the main principles common to many kinds of microorganismsincluding micro-algae. These arguments are also beneficial if evaluations should bedone on feasibility studies and process integration which concern biomass.The main analogies between this kind of biomass generation (CO2 fixationprocesses) and processes utilized by microorganisms for reproducing themselveswill be pointed out clearly. After explaining the principal concepts of biomassgeneration, some sections of the first part of the book will be dedicated to theprinciples of biomass analysis and assessment for the purpose of evaluating itsquality before the utilization in power plants. Particular focus will be on proximateand ultimate analysis methods.If the book is utilized in a course at university, the goal of the first part of thebook is to put students in the position of: having a sufficient knowledge of the principles behind biomass generation; possess sufficient knowledge to understand the principles behind the main typesof chemical analysis done on biomass and biofuels;xi

xiiAbout This Book have knowledge on what is the link between the physics of biomass generationand some other engineering problems. Recognize that there are many analogiesbetween the working principles of nature and technical solutions.The driving questions of this first part of the manuscript are: How biomass isgenerated and what are the principles behind it? What kind of feedstock we shoulduse for energy conversion and to which purposes? How we assess the suitability ofbiomass and biofuels made for energy conversion purposes? Bio-organisms aredemonstrated to have many analogies with technical devices converting energy, andtherefore, the thermodynamic efficiencies of these processes can be evaluated. Themost important part here is shown to be the formation of an electrochemicalpotential together with a difference in concentration related to the H ions across themembranes. The H ions are coming from water oxidation (in the case of photosynthesis); clear is the resemblance with the galvanic cells and fuel cells principles.Aspects related to light harvesting performed by living organisms are also coveredalong with the evaluation of the degree of response in relation to the convertingdevice. The treatment of the analyses done on biomass is covered at first by theKjeldahl method. Then, an accurate description of the proximate analysis (calorimetric bomb) with calculation of the higher heating value is given. The analysisrelated to the composition of biomass is done by describing elemental analysis,thermogravimetric analysis, and chromatography. There are statistical implicationswhich are descriptive of the methods and the outcomes.The second part of the manuscript focuses on the production methods for certainbiofuels. The part is mostly focused on giving the basic knowledge required tounderstand the details of the biorefinery methods and on technological aspects.Theoretical aspects are covered as well, especially for the case of biochemicalreactions engineering methods.The sections start with a preliminary introduction of biorefineries, and then theprinciples of biochemical reactor engineering are given in detail. The reader willdifferentiate between the different types of reactor configurations and the relatedmodeling of the kinetics involved.The main biological pathways of processes like fermentation and anoxicdigestion are discussed along with the main parameters utilized for bioreactorsdesign. The sections continue with the discussion on biogas, bio-ethanol, biodieselproduction, and Fischer–Tropsch methods.This part of the book will give the students the possibility to: have an understanding of what are the principles behind biochemical reactorsdesign; recognize some of the most important methods used for biofuels production; differentiate the main types of reactors used for biofuels production. In addition,the reader will be capable of analyzing the main related parameters involved; distinguish and summarize the different routes performed for biogas,bio-ethanol, biodiesel production, and Fischer–Tropsch synthesis; possess critical thinking about the different technologies.

About This BookxiiiThe main focus of the second part is on the questions:After knowing the main principles of biomass generation, what are the best solutions applied in bioreaction engineering? What are the different routes involved forbiofuels production? How we could utilize the biofuel generated for the purpose ofenergy conversion?

ContentsPart INotions of Biomass Formation and Developmentwith Some Analytical Methods1Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1.1Biomass as a “Almost” Renewable Energy Source . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33112Light Harvesting and Biomass Generation . . . . . . . . . . . . . . . . .2.1Preliminary Data Related to Light Harvesting and BiomassGeneration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2Light Harvesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.3Energy Transfer and Reaction Centers . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23.3Potential and Galvanic Cells . . . . . . . . . . . . . . . . . . . .Functioning Principles . . . . . . . . . . . . . . . . . . . . . . . . . .Conventions on the Electrodes . . . . . . . . . . . . . . . . . . . .Calculation of the Redox Potential at Non-standardConditions, the Nernst Law . . . . . . . . . . . . . . . . . . . . . .3.4A Remark on the Artificial Splitting of Water to ProduceHydrogen, Electrolysis . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Overview of the Main Mechanisms of Photosynthesis . . . .4.1Transport Phenomena in Reaction Centers . . . . . . . .4.2Light and Dark Reactions of Photosynthesis . . . . . . .4.3Binding of Carbon Dioxide and Production of SugarMolecules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xv

.96.975Work from Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5.1Incoming Radiation . . . . . . . . . . . . . . . . . . . . . . . .5.2A Simple Derivation of the Stefan–Boltzmann Law5.3The Solid Angle . . . . . . . . . . . . . . . . . . . . . . . . . .5.4The Photosynthetic Active Radiation . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6Some Types of Analyses Conducted on Biomass . . . . . . . . . . . . .6.1Determination of the Total Nitrogen Content, the KjeldahlMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.2Determination of the Higher Heating Value . . . . . . . . . . . .6.3A Procedure for the HHV Calculation Based on a ParticularInstrument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78.Thermogravimetric Analysis (TGA) . . . . . . . . . . . . . . . . . . .7.1Basic Principles of Thermogravimetric Analysis . . . . . .7.2TGA Classification and Types of Equipment . . . . . . . .7.3Procedure and Sample Analysis . . . . . . . . . . . . . . . . . .7.4Positive and Negative Mass Variation . . . . . . . . . . . . .7.5Reporting TGA Results . . . . . . . . . . . . . . . . . . . . . . . .7.6Differential Thermal Analysis and Differential ScanningCalorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.7TGA and the Study of the Kinetics of Diverse ThermalProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7.8TGA Coupled with Mass Spectrometry, GasChromatography, and Infrared Spectroscopy . . . . . . . . .7.9Methods and Experimental Conditions Suggested . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98. . . . . 100. . . . . 101Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.1Principles of Chromatography . . . . . . . . . . . . . . . . . .8.2The Chromatogram . . . . . . . . . . . . . . . . . . . . . . . . . .8.3Distribution Constants . . . . . . . . . . . . . . . . . . . . . . . .8.4Retention Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.5Volumetric Flow Rate . . . . . . . . . . . . . . . . . . . . . . . .8.6Retention Time and Distribution Constant . . . . . . . . .8.7Retention Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . .8.8Parameters Characterizing a Chromatographic Column8.8.1 Selectivity . . . . . . . . . . . . . . . . . . . . . . . . . .8.8.2 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . .103103109111112112113114114115115

Contentsxvii8.9Resolution . . . . . . . . . . . . . . . . . . . .8.10 Parameters Influencing the Resolution8.11 Qualitative Analysis . . . . . . . . . . . . .8.12 Elemental Analysis . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . .9.119120122122124Examples of Quantitative Content Determinationin Chromatography and Elemental Analysis . . . . . . . . . .9.1Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . .9.2Preparation and Introduction of the Sample . . . . . .9.3Calculation of the Calibration Coefficients . . . . . . .9.3.1 Calibration Constant for Hydrogen . . . . . .9.3.2 Calibration Constant for Carbon Monoxide9.3.3 Calibration Constant for Methane . . . . . . .9.3.4 Calibration Constant for Carbon Dioxide . .9.3.5 Calibration Constant for Hydrogen Sulfide .9.3.6 Calibration Constant for Nitrogen . . . . . . .9.3.7 Calibration Constant for Oxygen . . . . . . . .9.3.8 Calibration Constant for Ethylene . . . . . . .9.3.9 Calibration Constant for Ethane . . . . . . . . .9.3.10 Summary of the Results . . . . . . . . . . . . . .9.4An Example of Results from Elemental Analysis . .9.4.1 Instrumentation . . . . . . . . . . . . . . . . . . . . .9.4.2 Calculation of the Calibration Coefficients .9.4.3 Summary of the Results . . . . . . . . . . . . . .9.5Analysis of Unknown Substances . . . . . . . . . . . . . .Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36137138139.10 Some Considerations and Statistical Derivations for theConcentration Profile and Gaussian Curve . . . . . . . . . . . . . . . . . . . 141Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143Part IINotions of Biochemical Reactors Design and BiofuelsProduction11 Introduction to Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15212 Integrated Biorefinery Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 15512.1 An Introduction to Biorefineries and to the SustainableUtilization of Bioresources . . . . . . . . . . . . . . . . . . . . . . . . . . . 15512.2 Industrial Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

xviiiContents12.2.1 Biodiesel Production from Bio Oils byHydrogenation . . . . . . . . . . . . . . . . . .12.2.2 Metsä Group’s Äänekoski Plant . . . . . .12.3 Production Concepts for Bioethanol ProductionReferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Electronegativity and Microbial Catalysis . . . . . . . . . . . . . . . .13.1 Production of Biofuels and Classification of the RelatedMicroorganisms Needed . . . . . . . . . . . . . . . . . . . . . . . .13.2 Pathways in Biological Processing of Biomass Feedstock13.3 Main Molecules Used as Energy Carriers in BiologicalProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13.4 Oxidation and Reduction . . . . . . . . . . . . . . . . . . . . . . . .13.5 An Introduction to Modeling of Digestion Processes . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Main Reactors Configurations . . . . . . . . . . . . . . . . . . . . . .14.1 Introduction to Reactor Design and the DifferentConfigurations Used . . . . . . . . . . . . . . . . . . . . . . . . .14.2 Performance of a Batch Stirred Tank Reactor . . . . . . .14.3 Performance of a Continuous Stirred Tank Reactor . . .14.4 First-Order Chemical Reaction in Stirred Tank Reactorwith Changing Reaction Volume . . . . . . . . . . . . . . . .14.5 Plug Flow Reactor . . . . . . . . . . . . . . . . . . . . . . . . . .14.6 The Case of Reversible Reaction . . . . . . . . . . . . . . . .14.7 Performance Equations for Plug Flow Reactors . . . . . .14.8 Autocatalitic Reactions . . . . . . . . . . . . . . . . . . . . . . .14.9 Optimal Choice of Reactors . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Enzyme Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15.1 Product Formation in Enzyme Catalyzed BiologicalProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15.2 Enzime Kinetics. The Michaelis–Menten Model . . . .15.3 Enzime Kinetics, Briggs–Haldane Approach . . . . . . .15.4 The Monod Model . . . . . . . . . . . . . . . . . . . . . . . . .15.5 Main Characteristics of the Briggs–Haldane Equation15.6 Residence Time in a Mixed Flow Fermentor . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Balances on Microbial Fermentation . . . . . . . . . . .16.1 Cell Balances . . . . . . . . . . . . . . . . . . . . . . .16.2 Models for Microbial Growth Used in Power16.3 Kinetic Rate Expressions . . . . . . . . . . . . . . .16.4 Decay of Organisms . . . . . . . . . . . . . . . . . .163165166167. . . . 173. . . . 173. . . . 175.176178180184. . . . . . 189. . . . . . 189. . . . . . 194. . . . . . 196.198199202204205206207. . . . . . . 209.209211212214216218219.Generation . .221221223224226.

Contents16.5 Overall Balance in Continuous STR . . .16.6 Effluent Concentration of the Substrate .16.7 Production of Ethanol by Digestion . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . .xix.22722722923117 Processes of Bioethanol Production . . . . . . . . . . . . . . . . .17.1 Some Systems Adopted and Product Compositions .17.2 Bioethanol from Lignocellulosic Biomass . . . . . . . .17.3 Corn Starch as a Feedstock . . . . . . . . . . . . . . . . . .17.4 Ethanol Distillation . . . . . . . . . . . . . . . . . . . . . . . .17.5 Ethanol Yields from Different Kinds of Feedstock .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23323323924224524925018 Biodiesel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18.1 Fundamentals of Biodiesel Production . . . . . . . . . . . . .18.2 Ionization Potential and Electron Affinity of an Element18.3 Base-Catalyzed Production of Biodiesel . . . . . . . . . . . .18.4 Acid-Catalyzed Production of Biodiesel . . . . . . . . . . . .18.5 More Detailed Process Description for Alkali-CatalyzedBiodiesel Production . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .253253257259260.19 Some Chemical Analyses in Biodiesel ProductionCharacteristics . . . . . . . . . . . . . . . . . . . . . . . . . .19.1 Amount of Free Fatty Acid . . . . . . . . . . . .19.2 Iodine Number Determination . . . . . . . . . .19.3 Saponification Value of Fats and Oils . . . .19.4 Biodiesel Characteristics and Properties . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263. . . . . 264and Biofuel.267267270272273284. . . . . . . 287. . . . . . . 28720 Fischer–Tropsch (FT) Synthesis to Biofuels (BtL Process)20.1 Background Information . . . . . . . . . . . . . . . . . . . . .20.2 Chain Growth Probability (Products Distribution)for the FT Synthesis . . . . . . . . . . . . . . . . . . . . . . . .20.3 Syngas Treatment for FT Synthesis . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296. . . . . . . 298. . . . . . . 30321 Notions of Biomass Gasification . . . . . . . . . . . . . . . . . . .21.1 Preliminary Notions . . . . . . . . . . . . . . . . . . . . . . .21.2 Supercritical Water Gasification . . . . . . . . . . . . . . .21.2.1 SCWG Kinetics and Thermodynamics . . . .21.2.2 Catalysis in SCWG . . . . . . . . . . . . . . . . . .21.2.3 Salts and Inorganics in SCWG of BiomassReferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .307307319323326327331

xxPart IIIContentsReview of Some Concepts of Thermodynamicsand Support Material22 Preliminary Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22.1 Definition of Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22.2 Conservation of Mass, Closed Systems,Degree of Advancement of Reaction . . . . . . . . . . . . . . . . .22.3 About Internal Energy and Enthalpy . . . . . . . . . . . . . . . . .22.4 Relations Between Specific Heat at Constant Volumeand Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22.5 The First Law of Thermodynamics . . . . . . . . . . . . . . . . . . .22.6 Some Relations Between Pressure and Temperature in Gases.Gas Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22.7 A Remark on Reversible Processes . . . . . . . . . . . . . . . . . .22.8 Pressure and Internal Energy, the Kinetic Model . . . . . . . . .22.9 Specific Heat and Universal Gas Constant . . . . . . . . . . . . .22.10 Change of State for an Ideal Gas . . . . . . . . . . . . . . . . . . . .22.11 Adiabatic Transformation of an Ideal Gas . . . . . . . . . . . . . .22.12 Energy Balance for a Given System:Macroscopic Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Introduction to Entropy and Second Law . . . . . . . . . . . . . . . .23.1 Mixing of One or Two Gases at the Same T and P . . . . .23.2 Statistical Derivation of Entropy . . . . . . . . . . . . . . . . . .23.3 Additional Remarks on Entropy with Variation in Moles,i.e., Chemical Reactions . . . . . . . . . . . . . . . . . . . . . . . .23.4 Clausius Statement and Kelvin–Planck Statementof the Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . .23.5 Entropy Balances . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337. . 337. . 338. . 338. . 339. . 340.341341342343345348. . 351. . 352. . . . 353. . . . 353. . . . 357. . . . 360. . . . 361. . . . 363. . . . 36424 Thermodynamics in Chemical Reactions Engineering . . . . . . . .24.1 Reaction Rate and Its Dependence on Temperature . . . . . .24.2 Derivation of the van’t Hoff Equation . . . . . . . . . . . . . . .24.3 Derivation of the Arrhenius Equation . . . . . . . . . . . . . . . .24.4 Chemical Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24.5 Statistical Implications of the Boltzmann Distribution Law.36536536636837037125 Some Parameters and Properties of Biomass Fuels . . . . . . . . . . . . . 37525.1 Some Useful Figures on Biomass Feedstock . . . . . . . . . . . . . . 37525.2 Overall Energy (Heat) Balances . . . . . . . . . . . . . . . . . . . . . . . 379

Contentsxxi25.2.1 Design Variables Affecting ThermochemicalProcesses . . . . . . . . . . . . . . . . . . . . . . . . . . . .25.2.2 Additional Data on Moisture and Ash Contentof Fuels . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25.2.3 Properties of Agrofuels and Typical AirRequirements . . . . . . . . . . . . . . . . . . . . . . . . .25.3 Stoichiometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 A Simple Estimation of the Efficiency for a BiomassPower Plant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26.1 Mass Balances . . . . . . . . . . . . . . . . . . . . . . . .26.2 Thermal Performance and Efficiency . . . . . . . .26.3 Incomplete Combustion . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379. . . . . 383. . . . . 385. . . . . 390. . . . . 393.27 Some Data on Oxidation and Reduction States and Half-CellReactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27.1 Reduction and Oxidation States, Electron Affinities,and Ionization Potentials . . . . . . . . . . . . . . . . . . . . . . . .27.2 Electronegativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .397397398402403. . . . 405. . . . 405. . . . 408. . . . 410

OCLEBPGBSTRCALBCBPChlCMMCNCPACSSCCytCyt bLp and CytbHpCyt fDDGSDGDSCChlorophyllPhylloquinoneAverage absolute errorAlcohol dehydrogenaseAmmonia fiber expansionAnimal fat wasteAqueous (if used as subscript in equations)Anders

membranes. The H ions are coming from water oxidation (in the case of photo-synthesis); clear is the resemblance with the galvanic cells and fuel cells principles. Aspects related to light harvesting performed by living organisms are also covered along with the evaluation of the degree of response in relation to the converting device.

Related Documents:

THE GEOPOLITICS OF NUCLEAR POWER AND TECHNOLOGY Columbia University in the City of New York Nicola de Blasio and Richard Nephew MARCH 2017 *Dr. Nicola de Blasio is an adjunct senior research scholar at SIPA and a fellow at the Center on Global Energy Policy. Prior to joining CGEP in 2015, Dr. de Blasio was vice-president of R&D and international

Owner1/Owner2. Reading. Location Current Area. Total Value 11/25/2015 11:01:50AM. Street Listing. Page 2 of 206. Parcel ID LUC NBC. READING. 313,800 9 ABIGAIL WAY 9-2011 CATALDO RICHARD R / CATALDO MARGARET M (TE)

Pass Google ADWORDS-FUNDAMENTALS Exam with 100% Guarantee Free Download Real Questions & Answers PDF and VCE file from: . A key benefit of My Client Center (MCC) is that it allows: . Latest Google exams,latest ADWORDS-FUNDAMENTALS dumps,ADWORDS-FUNDAMENTALS pdf,ADWORDS-FUNDAMENTALS vce,ADWORDS-FUNDAMENTALS dumps,ADWORDS-FUNDAMENTALS exam .

26 FUNDAMENTALS OF MILLING – CONVERSATIONAL PROGRAMMING HEIDENHAIN 2 CNC fundamentals 2NC fundamentals C 2.1atums D Workpiece datum, machine datum, reference point 2. CNC fundamentals Datums Explain t

Janet Seeley Professor of International Development School of International Development University of East Anglia, Norwich, NR4 7TJ, UK E-mail: j.seeley@uea.ac.uk and Head of the Social Science Programme MRC/UVRI Uganda Research Unit on AIDS P.O. Box 49, Entebbe, Uganda E-mail: janet.seeley

Tra le risorse online sono disponibili approfondimenti e, per il docente, in una sezione riservata, una pro- posta di percorsi formativi e le soluzioni delle esercitazioni p

Nelle Garzantine letteratura i generi letterari vengono descritti come “categorie retoriche mediante le quali si è solito classificare le opere letter

HINDI 1. Anubhuti Hindi Pathmala Pustika Part 3 Eduzon Pub. 2. Nirjhar Moti Sulekh Part 3 Rachna Sagar Pub. 3. New Way Hindi Vyakaran Part 3 Gurukul Pub. MATHS 1. Maths Wiz Book - 3 By S.K.Gupta and Anubhuti Gangal S.Chand Publications . Class : IV Subject Name of the Book with the name and address of the Publisher ENGLISH 1 Stepping Stone A skill based course book – 4 Headword Publishing Co .