POLYNOMIAL CURVE AND SURFACE FITTING - UNT Digital Library

1y ago
9 Views
2 Downloads
1.83 MB
83 Pages
Last View : 15d ago
Last Download : 3m ago
Upload by : Jerry Bolanos
Transcription

POLYNOMIAL CURVE AND SURFACE FITTINGAPPROVED:Major Professor Minor Professorirector of the Department of Mathematics—can of the Graduate School

POLYNOMIAL CURVE AND SURFACE FITTINGTHESISPresented to the Graduate CounciI of theNorth Texas State University in PartialFulfillment of the RequirementsFor the Degree ofMASTER OF SCIENCEByAnn Dowdy Capps, B. A.Denton, TexasJanuary, 1968

PREFACEThe m a i n p r o b l e m s ofanalyticalzeroes,operations,numericals u c h asinterpolation,thispaperofdata p o i n t sis t ointegration,and so f o r t h ,a v a i l a b l e a r e some s a m p l e s o fofanalysisofinvolve performingdifferentiation,a f u n c t i o n when a l lthe function.Therefore,w h i c h a r e samples ofan a p p r o x i m a t i n g f u n c t i o n .Further,the datat h e purposei n v e s t i g a t e t h e f o l l o w i n g problem:(x.,y.)findinggiven a setsome f u n c t i o n ,detenriinee x t e n d t h e p r o b l e m t o t h a t ofd e t e r m i n i n g an a p p r o x i m a t i n g f u n c t i o n f o r a s u r f a c e g i v e n some samples(x.,y.,z.) Vofthe surface.'JThe c l a s s ofs e t g e n e r a t e d byt h e set ofP(x)ofpolynomials.and 2 )in the set.(1)ifThis setIn ( 1 ) ,P(x)is1, x ,l o c a t i o n ofs c a l e c h a n g e s do n o t a f f e c tpolynomial t om e t h o d s ofa sysTern o fI,(n 1).,xn; thattwo reasons:t h e n P(x k)data p o i n t sis,1)ifi s an e l e m e n tP(x-i-k) d i f f e ris a l s ofrom P(x),t h e o r i g i n does n o t a f f e c t t h et o the data.Statement(2)indicatest h e problem.some methods a r e d e r i v e d f o rL a g r a n g e and N e w t o n .n 1x2,is t h ei s an e l e m e n t o f t h e s e t t h e n P ( k x )f i t t i n g a polynomialIn C h a p t e rbe I n v e s t i g a t e dimportant f o ro n l y t h e c o e f f i c i e n t s ofimplies t h a t thep r o b l e m ofthatl i n e a r combinations ofi s an e l e m e n t o f t h e a p p r o x i m a t i n g s e t ,the set;andapproximating functions t o(x.,y.).f i t t i n g an n" ' d e g r e eIncludedIn a d d i t i o n ,in these ere t h et h e p r o c e d u r e ofl i n e a r e q u a t i o n s f o r t h e c o e f f i c i e n t s ofi i isolvingthe polynomial

IVis discussed.ChapterI i s concluded w i t h an i n v e s t i g a t i o n of c u r v ef i t t i n g by s p l i n e f u n c t i o n s .The d e f i n i t i o n f o r t h e s e t of s p l i n ef u n c t i o n s i s g i v e n a l o n g w i t h t h e p r o o f s of theorems which are necessaryf o r t h e u t i l i z a t i o n of t h e f u n c t i o n s .In some cases where t h e data p o i n t s ( x . , y j ) a r e known t o c o n t a i ne r r o r f r o m measurement, t h e method ofutilized.l e a s t squares curve f i t t i n g may beIn Chapter I I , t h e method o fpolynomialsis d e r i v e d .l e a s t squares f o r n degreeIn a d d i t i o n , procedures are c o n s i d e r e d wherer e s t r a i n t s a r e p l a c e d on t h e data p o i n t s such as w e i g h t i n g t h e d a t a , o rrequiring that theFinaIlyl e a s t squares c u r v e pass t h r o u g h s p e c i f i c p o i n t s .i n Chapterof data p o i n t sI I I , t h e problem o f f i t t i ng a s u r f a c e t o a s e t(x. , y . , z . . )J'Jf u n c t i o n s c f Chapteris considered.The s e t of c u b i c s p l i n eI i s extended t o a s e t o f f u n c t i o n s of two v a r i -a b l e s , and v a r i o u s i heoreros o f t h e f i r s t c h a p t e r a r e extended i n ChapterI I I t o theorems c o n c e r n i n g b i c u b i c s p l i n e f u n c t i o n s .ChapterIIIisc o n c l u d e d w i t h a m a t h e m a t i c a l procedure f o r c o m p u t a t i o n o f a b i c u b i cspl i ne f u n c t i o n .In each of t h e c h a p t e r s , examples a r e i n c l u d e d f o r t h e t o p i c sdiscussed.digitalSince t h r e e of t h e t o p i c si n v o l v e lengthy c o m p u t a t i o n , acomputer was used as a means of c a l c u l a t i n g t h e examples.Foreach o f t h e s e , a computer program was w r i t t e n , and each has beeni n c l u d e d i n t h e appendix s e c t i o n a l o n g w i t h a d e s c r i p t i o n of how datacan be i n p u t t o t h e program.The c o m p u t a t i o n of a s p l i n e f u n c t i o n ofChapter ! i s shown i n Appendix A.II forThe procedures developed i n Chapterl e a s t squares c u r v e f i t t i n g a r e programmed and are shown i n Appendix B.Finally,t h e program f o r t h e mathematical p r o c e d u r e ,

d e s c r i b e d i n Chapter I I I ,isillustratedt o determine a b i c u b i c s p l i n e f u n c t i o ni n Appendix C.

TABLE OF CONTENTSChapterI.PageMETHODS OF POLYNOMIAL CURVE-FITTING1By Use of L i n e a r EquationsBy t h e Formula o f LagrangeBy Newton's FormulaCurve F i t t i n g by S p i i n e F u n c t i o n sI I.METHOD OF LEAST SQUARES24P o l y n o m i a l s of Least SquaresLeast Squares Polynomial A p p r o x i m a t i o n w i t hRestra i n t sIII.A METHOD OF SURFACE FITTING37Bicubic Spline FunctionsTheorems t o A i d i n S p l i n e F u n c t i o n ComputationProcedure f o r Computation of a S p l i n e S u r f a c eAPPENDIX A . . .APPENDIX B61APPENDIX CBIBLIOGRAPHY77v1

CHAPTERMETHODS OF POLYNOMIAL CURVE FITTINGBy Use o f L i n e a r EquationsGiven a s e t of(n 1) data p o i n t sna p o l y n o m i a l of degree n, P ( x ) nthese points.(x.,y1,.,n;a . x 1 may be f i t t e d t h r o u c h1i 0T h i s p o l y n o m i a l may be d e t e r m i n e d by s i m p l y s u b s t i t u t i n geacn p o i n t ( x . , y . ) i n t ounknowns, a 0 , a1, . . . , a ne q u a t i o n s ( 3 , p. 8 3 ) ,t o o b t a i n n 1 l i n e a r equal ions i n t h e n 1From Cramer's Rule of s o l v i n g l i n e a ri f t h e determinantxoX(1-1) V 11x?.o*XIheorenMJ minant ( 1 - 1 ) 01 xnlxn x R 2 . . . xnis not zero, a s o l u t i o n f o r aQ,an e x i s t s .I f x j 4 Xj f o ri 4 j,then t h e value of t h e d e t e r -is not zero.Firstall) , where i 0 ,i t must be shown t h a td i f f e r e n c e s Xj - x - f o r which i j ;C-2) V n v in (1-1)i s t h e p r o d u c t ofid e s t ,(x j —x:).0 j i nFor ri 1,equation (1-2)j V x x - x Q , which o b v i o u s l y s a t i s f i e si s t r u e f o r n k; t h a tis,(1-2).Assume

(1-3)II (x. - x . ),0 j c i k 1 Then f o r n k 1K 1xX 0k 1 X1xf V XX2'k 1 k 1 " "The f o l l o w i n g is t r u e f o r d e t e r m i n a n t s :k 1i f t h e m a t r i x B is o b t a i n e dfrom A by m u l t i p l y i n g a column of A by a c o n s t a n t and adding eachelement of t h i s column t o another column of A t h e n B[ A[(3, p. 75)Thus,x00x(1-4) V -xwhere ( 1 - 4 )l xi-xo)"X n ) x'k 1 k 1 k 1is o b t a i n e d by adding ( - x 0 ) times t h e ( k 1 ) sk 1k 1Ivk 2)column.C o n t i n u i n g in t h i s manner,1001 (xi-x0).X Xj-Xq)o. xf(xi-x0)k ixk Tx»'T h i s example may be expanded by c o f a c t o r s t o y i e l d1"X MIXK IXx0'X XJ-XQ)x (x(Xp-Xn)X p(X o —X n)x2( x 2 Xg)(XXxk i x k 1(x v Wrx0)k lX())' k i V f - 'i rxo'xn)column t o t h e

Another "theorem of determinants s t a t e si f a m a t r i x B is o b t a i n e d fromA by m u l t i p l y i n g a row of A by a c o n s t a n t c , t h e n B C A .There-fore,1(1-5)(xi-xo)(x2-xo)---(xk Txo)1Xixfx2Axk 1xxki2k 1' kk 1x(x1-x0)(x2-x0).(xk Tx0) V' .Now f r o m t h e assumption in ( 1 - 3 ) , s i n c e t h e d e t e r m i n a n t [V» in ( 1 - 5 )has (k 1) t e r m s ,IV ' [ (X2-X1) (X3-X L).( x k T x 1 ) ] . [ ( x 3 - x 2 ) ( x 4 - x 2 ) . . ( x k T x 2 )] . . [ ( x k T x k ) ]F i n a l l y from e q u a t i o n s ( 1 - 5 ) and t h e d e f i n i t i o n ofp o s i t i v e i n t e g e r n, e q u a t i o n ( 1 - 3 )(1 6) v By h y p o t h e s i s , x . x . f o ri s nonzero and V[ 4 0.Example 1:(60,.8660),[V' ,is t r u e ; t h u s ,n(x.-x.).0 j i ni j.T h e r e f o r e , each f a c t o r in ( 1 - 6 )V is known as t h e Vandermonde m a t r i x .Consider t h e f o l l o w i n g p o i n t s ( 0 , . 9 9 9 ) ,(90,1.000).f o r each(30,.5000),A c u b i c may be f i t t e d t o t h e s e p o i n t s byd e t e r m i n i n g t h e unknowns a Q , a , a 2 , a 3 in t h e general c u b i c .y a0 alx 92x24a jX .The f o u r r e s u l t i n g l i n e a r e q u a t i o n s area0a 0 30aj a 0 50ej 0.000900a 2 27000a 3 0.5003600a- 216000a 3 0.866a 0 4 90a } 8100a 2 729000a 3 --- 1.000

VJ [ ( 3 0 - 0 ) ( 6 0 - 0 ) ( 9 0 - 0 ) ] . [ ( 6 0 - 3 0 ) ( 9 0 - 3 0 ) ] - [ ( 9 0 - 6 0 ) 1 C162* 1 0 3 ) ( 1 8 - 1 0 2 ) ( 3 - 1 0 ) - 8 7 4 8 - 1 0 6 .By Cramer's Rule101.5000090027000 - 6859-101;1a1 - . 6 0 0 0 * 1 0 " 6.866 3600 2160001 1.000 8100 729000S i m i l a r l y , s o l v i n g f o r a 2 and a 3 y i e l d sy 0 .1781 - 1 0 " 1 x - . 1 9 9 9 - 1 0 4 x 2 As a c h e c k , c o n s i d e r t h e p o i n t(30,.6000 10 G x 3 .5000).y 0 ( . 1781 1 0 - 1 ) ( . 3 - 1 0 2 ) ( . 1999- 10 l f ) ( . 9 * 10 3 )-f ( - . 6 - 1 0 5 ) ( . 2 7 ' 10 5 ) ( . 5 3 4 3 ( - . 1 7 9 9 1 Q - 1 ) ( - . 1 6 2 0 1 0 1 ) .5000.By t h e Formula ofLagrangeOther methods e x i s t f o r f i t t i n g an n" degree p o l y n o m i a l t h r o u g ha s e t of(n 1) p o i n t s .One such method is t h a t ofGiven (n 1) v a l u e s o f a f u n c t i o n ( x Q , y 0 ) ,Lagrange.(x1,yL),.,(xn,y) af u n c t i o n p a s s i n g t h r o u g h t h e s e p o i n t s , of t h e formPn(x) A0(x-x!)(x-x2)(x x3)(1-7)may be d e t e r m i n e d .A (x-xn) AX(x-x0)(x-x2)(x-x3).(x-xR) An(x x0)(x-xx)(x-x2).(x-xC l e a r l y each t e r m ofdegree n ; t h u s P n ( x ).(1-7)j),i s a p o l y n o m i a l ofis a p o l y n o m i a l of degree n.The c o n s t a n t s AQ,. . . , A n may be determined by r e q u i r i n g t h a t each of t h e (n 1)points s a t i s f y(1-7).

Letting (xQ,y0)(x0 xn)- be a s o l u t i o n of P n ( x ) , y Q A „ ( x - x ) ( x - x )andA0 Similarly,forJ/JL(x0-x1)(x0-x2).(x0-xl e t t i n g each of(x y ,(x2,y2),). .,( x n Y n ) be a s o l u t i o n(1-7),Ai ( x1Yi-xo x1-x2)---(xrxn) A2 Cx 2 -x 0 ) ( x g - X j ) . . . ( x 2 - x ) ,An ' V V ' V V - ' W lThen f r o m t h e s e e q u a t i o n s f o r A Q , A 1 ,1'A , t h e f o r m u l a f o r Lagrangeisp(nx) 3 ) (x **xp ) . . , (X—Xp ) yQ(X -Xfl ) (x—x ) . »« (x Xp ) * yi Tx0-x7H -x2T T( ) ( T - x o ) ( x i TTTTTG )(1-8)(x-xp ) (x—Xi ) . . . (x-Xn-1 ) t y n (xn-x0)( -x1).r.( - l 1)ExampIe 2 .(0,.0000),.L a g r a n g e ' s Method y i e l d s t h e f o l l o w i n g e q u a t i o n f o r(30,.5000),P3(x) (60,.8660),(90,1.000).(x-30)(x-60)(x 90)« 0( x - 0 ) ( x - 6 0 ) ( x - 9 0 ) . .5000(0-30)(0-60)(0-90) (30-0)(30-60)(30-90) ( x - 0 ) ( x - 3 0 ) ( x - 9 0 ) - .8660( x - 0 ) ( x - 3 0 ) ( x - 6 0 ) . 1.000(60-0)(60-307(60-90) (90-0)(90-30)(90-60).5000 54000 [ x ( x - 6 0 ) ( x - 9 0 ) ].8660- 54000 [ ( x ) ( x - 3 0 ) ( x - 6 0 ) ]1 162000 [ ( x ) ( x - 3 0 ) ( x - 6 0 ) ] .As a c h e c k ,.5000P3 C30) - 54000 [ 3 0 ( 3 0 - 6 0 ) ( 3 0 - 9 0 ) ].5000'54000 "54000 " "The of her t h ree po i n t s check i n a s i m i l a r way. .5000.

By Newton's FormulaNew on's FormulaItis usefulis s t i l la n o t h e r way o f w r i t i n g a p o l y n o m i a l .i n t h a t t h e number o f p o i n t s can be i n c r e a s e d w i t h o u trepeating a l lcomputation.Let ( x Q , y 0 ) ,(x , y),.,(*n yn)ben 1 p o i n t s t h r o u g h w h i c h t h e n h degree p o l y n o m i a l Pn( ) i s passed.P ( x ) can be e x p r e s s e d as(1-9)P ( x ) - y ( x - x )P , ( x ) ,n'oo n-1where P - ( x )is a polynomial oft h a t F 3 n ( X Q) yQ nomial P n i ( x ) .degree n - 1 .Itis obvious from (1-9)Thus t h e p r o b l e m reduces t o d e t e r m i n i n g t h e p o l y Now f r o m ( 1 - 9 ) ,P n ! f x ) - Poi2S2zttL(x-x0)Thus t h e f o l l o w i n g must be t r u efori 1, 2,.,n: n 1 X i Pn x i ) Pn x n ) Yi Yn xi xoxi'xow h i c h means t h a t Pn ( x ) passes t h r o u g h t h e p o i n t s o f t h e f o r m xj'Vi Vnx, - x Qand w i l l The v a l u e s y ; - y n a r e c a l l e d " d i v i d e d d i f f e r e n c e s "x. - x Qbe d e n o t e d by [ x . , x Q ] .Similarly,p(1-10)where P p 2 x )n*s3-1(x) [ xi'x]0 X"VPn-2(x)'p o l y n o m i a l of degree n - 2 .Then P . (x ) [x , x ]n— ll uand f o ri 2, 3 ,.,n, P(x)n-2(1-10)Pn 2 (x) fh-1 ( x ) - [ x 1 , x 0 ]x-xxis from

and(t-mtheP„.2( iPn-1 (x; ) - [ x , , x n ][x T , x n ] - [ x i , x n ]xV i V * i, last term in (1-11)is t h e d i v i d e d d i f f e r e n c e of t h e d i v i d e dd i f f e r e n c e and i s denoted by [ x . , , x].By e x p r e s s i n g each succeeding p o l y n o m i a lwhose degree i si n terms o f a p o l y n o m i a lless by one, t h e f o l l o w i n g g e n e r a l e x p r e s s i o n isderived:d-12)P.(x) [ x - ,x, 1 , . . ,x ] ( x - x ; ) P(x),J J 10J n - ( j 1)Jwhere 1 j n - 1 and i - j ,j 1,.,n.By s u b s t i t u t i n g each o f t h e s e e q u a t i o n sformulai n t o ( 1 - 9 ) , Newton'sis(1-13) y ( x ) y0 ( x - x 0 ) [ [ x 1 , x 0 ] ( x - x 1 ) { [ x 2 , x 1 , x 0 ] ( x - x 2 ){.}}].A t a b l e may be c o n s t r u c t e d t o c a l c u l a t e t h e d i v i d e d d i f f e r e n c e s :XV0XI0Yr[Vxo]1[XXExampIe:2' 0,y*3*[ X»tX2'Xl'X0]]2X 3 X[X[X3'Xlfx0]3'X2'X]'X0], By u s i n g t h e data of Example 1, d e t e r m i n e a c u b i c poly-nomial p a s s i n g t h r o u g h t h e data by Newton's 190 1.0000.00000.00000

8Thus,y(x) 0 (x-0){,01667 (x-30)[.00000 (x-60)(.0000)]}.Check:y ( 3 0 ) - 301.01667] .5001.From t h e d e r i v a t i o n o f t h e f o r m u l a , t h e p o i n t s f o r t h e t a b l e don o t n e c e s s a r i l y need t o be i nnumericalorder.Thus a p o i n t may beadded a t t h e bottom o f t h e t a b l e and t h e n e x t h i g h e r o r d e r degree p o l y nomial may be computed f r o m t h e a l t e r e d t a b l e .ExampIe 4 ;tableGiven t h e p o i n t s(2,8),(0,0),(3,27) the f o l l o w i n gis c o n s t r u c t e d .28004519327Thus t h e a p p r o x i m a t i n g p o l y n o m i a lisy(x) 8 (x-2)[4 (x-0)5] 3x2-6x.Now ( 1 , 1 ) may be added t o t h e t a b l e and [ X g , X g ] ,[x3, x2, Xpx„] calculated.[x3,x1,x0],Then t h e v a l u e s f o r d e t e r m i n i n g a c u b i cappear i n t h e t a b Ie:280032741971and1Therefore,y(x) 8 (x-2){4 x [5 (x-3)1 ] }- 8 (x--2) (x 2 h 2x 4) v3

Theorem 1 . 2 .polynomialG i v e n n 1 sample p o i n t s , t h e c o r r e s p o n d i n g n" passing through the pointsProof:is uniquely determined.Assume t h e p o l y n o m i a l y ( x )a p p r o x i m a t i o n f o r t h e n 1 sample p o i n t sand t h e p o l y n o m i a l zCx)method.y(x.)-z(x.)for 0 forboth y ( x )i 0,and z ( x ) .following solutions:is o b t a i n e d by one method o f xQJYQ i s o b t a i n e d by u s i n g t h e same p o i n t sThe d i f f e r e n c e y ( x ) - z C x )1, 2 ,is a f.,is a p o l y n o m i a l(x O),.,is t h e polynomial 0 . x , o r y ( x ) - z ( x )(x ,y),in anothermost a p o l y n o m i a l o f d e g r e e n .n, s i n c e ( x . , y . )Thus y ( x ) - z ( x )(x0,O)sdegree(x , 0 ) . 0.is a s o l u t i o nhaving t h eTherefore y ( x ) - z ( x )Thus y ( x ) z(x).Curve F i t t i n g by S p l i n e F u n c t i o n sThe f o r e g o i n g methods i n d i c a t e ways o f f i t t i n g an n"l*h d e g r e e p o l y n o m i a l t o n 1 d a t a p o i n t s .As n i n c r e a s e s t h e number n o fe q u a t i o n s w h i c h must be s o l v e dxn.is f i td e g r e e men such t h a t each s e t o farebecomes t h e f i r s teach o t h e r , and t h e y u s u a l l yin the f i r s tDeff ni t ion:Given a s e t ofwhere x Q x 1 . , . x , a r e a l[x ,xn]point of t h e nextpointsSpline functionsdo n o t o c c u r .(x.,y.),i 0,function defined for a l li s c a l l e d a s p l i n e f u n c t i o n ofd e n o t e d by P ( x )introduce d i s c o n t i n -d e r i v a t i v e at the j u n c t i o n points.a r e d e f i n e d so t h a t t h e s e d i s c o n t i n u i t i e sval(m 1 ) E x c e p t f o r t h e common p o i n t , t h e c o n s e c u t i v e p o l y n o m i a l sindependent ofuities(m 1) c o n s e c u t i v ew i t h t h e c o r r e s p o n d i n g m" d e g r e e p o l y n o m i a l ; t h ep o i n t of t h e p r e c e d i n g p o l y n o m i a lpolynomial.large magnitude;Thus a u s u a l method i s t o f i t t h e d a t a by means o f a s e t o fpolynomials ofpointsinvolve c o e f f i c i e n t s oflinear1, 2 ,.,nr e a l x i n an i n t e r -d a y e e k f o r t h e p o j n t s andif t h e f o l l o w i n g properties are t r u e :

101)For each ( x . , y . ) ,t ' i2)P(x)P(x.) v . ;iiis of c l a s s Ck 1jP ( x ) has k - 1 c o n t i n u o u s d e r i -vatives;3)P(x)is equal on each i n t e r v a ldegree k o rDef i n i t ion:[x. , x . ] t o a p o l y n o m i a l ofless.Each x .i n (1) above w i l lS p l i n e f u n c t i o n s o f degree one r e s u l tsegments between each p a i r of j o i n t sbe c a l l e d a j o i n t .in f i t t i n g s t r a i g h t[x.,x. 13 ' 0,lineU 2,n-1,w h i l e s p l i n e f u n c t i o n s o f degree two have c o n t i n u o u s f i r s t d e r i v a t i v e s .S p l i n e f u n c t i o n s of odd degree k, where k 2m-1, a r e a l s of o r t h e f o l l o w i n g reason:Q(x. ) y . ,fori 0,importantOf a I I t h e f u n c t i o n s Q(x) e C " ' ,1, 2 ,}., .jsuch t h a tn, t h e s p l i n e f u n c t i o n P ( x ) e Ck - 1I t fIMC-3piI IIOl U l l l i W Mi\ /\ Jt, minimizes t h e i n t e g r a lxnJ[Q'Tx)] dx.T h i s s t a t e m e n t is proven f o r c u b i c s p l i n e f u n c t i o n s i n Theorem 1 . 3 .Cubic s p l i n e f u n c t i o n s a r e examined i n d e t a i lsince they give approx-i m a t e l y t h e shape of a t h i n beam o r " s p l i n e " which i s f o r c e d t o gothrough t h e points ( X j , y . ) .T h i s r e s u l t can be seen by c o n s i d e r i n gt h e i n t e g r a I / [ Q " ( x ) ] 2 d x as an a p p r o x i m a t i o n t o t h e s t r a i n energy o f at h i n beam, which i s / Q " 2 / ( 1 Q' 2 ) 5 / ' 2 d x .Thus t h e a p p r o x i m a t i o n is agood one i f t h e data p o i n t s r e p r e s e n t a smooth n e a r l y h o r i z o n t a l c u r v e .Further,i f t h e c u b i c s p l i n e a p p r o x i m a t i o n i s t o c l o s e l y resemblep a s s i n g a s p l i n e t h r o u g h t h e g i v e n p o i n t s , t h e n c o n d i t i o n s must bes p e c i f i e d a t t h e end p o i n t s . given a t x Q and x n .end p o i n t s .Namely, t h e s l o p e s sQ and sR s h a l lbeT h i s resembles t h e s p l i n e b e i n g clamped a t t h e two

11Theorem 1.3Given ( x - , y . ) ,i 0, 1, 2,n where x ( ) x 1 . . . x n ,l e t P(x) be a s p i i n e f u n c t i o n of degree t h r e e such t h a t P ( x - ) - y j a t eachjoinlx.Let Q(x) be a f u n c t i o n having c o n t i n u o u s f i r s t and secondd e r i v a t i v e s on O o x R ] such t h a t Q ( x . ) P ( x . ) , Q ' ( x 0 ) Q'(xn) - P'(xn).P'(XQ),andThenrx n nJ/ [[Q"Q " ( x ) ] 2 dx J [r P " ( x ) l] 22 di x .(1-14)xProof:f [ Qxv" x00Let 3 ( x ) Q(x) - P ( x ) .( x ) ] 2dx -f [npu(x)]2dxxoo { [ Q " ( x ) ] 2 - 2 [ Q " ( x ) ] [P , ! ( x ) ] f [ p » ( x ) ] 2 } d xx0i n/n 2 J [Q" ( x ) ] [ P1' ( x ) ] dx - 2 J [ P " ( x ) ] 2 d xx xo/[&"(* ]2a* o2 J [P" (x)] f p" (x)] dx*0x0 n1 /»x i 12 / f e " ( x ) ] dx 2 „ / B" (x) P" (x) dxx0i -0 x .i n t e g r a t i n g each t e r m of t h e summation t e r m by p a r t s y i e l d s2xQThe f i r s tdx - p [ P u U ) ] 2 dxx-Xpn-1J [ e , f ( x ) ] 2 dx 2 [ 0 ' ( x)P"(x) - B ' ( x . ) P " ( x . )]i 11 1x0i 0n-1 r x i 1-2 j ? J P " l ( x ) 8 ' ( x ) d x .i 0 xfQsummation t e r m s i m p l i i i e s t o 2 [ g1 (x ) P" ( x p ) - p' (: 0 ) P " ( x 0 ) 3 ,because ' l X j i i ) -8 ' ( x j ) - 0 a t each of t h e i n t e r i o r j o i n t s .summation t e r m i n t e g r a t e s simply s i n c e P I M ( x )is a c o n s t a n t .The secondThus

12[Q"(x)]2dx -2dx J ' " ( x ) ] 2 d xn 2[e'(xn)P»ixn)-e«(x0)P«(x0)] ,1-2 L P"' (i h1 0In t h e s e c o n d t e r m 0 ' ( x n )- ?f C x n ) .P' ( x n )Q(x.)-fJhson J rf , itrx(1-15).R(x) -b.and[P"(x)]2dx.JR ( x ) a Cx-a)mm 0i s e x a c t l y one c u b i c p o l y n o m i a lThis polynoniaIa t end p o i n t s on an i n t e r v a lisf—*-,R' C b) R' ( a ) 1Tb-a)2J' (x-a)3.( b - a ) 3"Since R(x) (x a,mandR 1 ( x ) m-0system of Q(x)-P(x)f3CR(b)-R(a) ) - R ' ( b ) - 2 R ' (a) 1R(a) R' ( a M x - a H L(b-a)2 (b-cTFJ * ( x - a ) 2 Proof and[ P " ( x ) ] 2 d x - [ 3 " ( x ) ] 2 d x 0,[Q n ( x ) ] 2 d xThere1Final iy,which assumes g i v e n v a l u e s R(x and R ' ( x )where a f- Q'(x0)The s u m m a t i o n t e r m i s 0 s i n c e S ( x )p ( x . ) f o r 0 i n .) - g ( x . )] .1 1 B-(X()) 0 since P'(xQ) '[Qn(x)]2dx - [a,b]i n t e r v a l ) [ g (xlinear equations T h em-]resultingi.e.1be w r i t t e n as m a t r i c e s R Q. A,from t h e f o u r given c o n d i t i o n sR('b)R» ( a )!R (b)The dererrr.i narvl of1(b--a)oooR(a)2(b-a) "010c12(b-a)1h tc oo prf rf ki r ii oe nR- rr"'(b-a)a00U13c3(b-aI2 i» r-; v n i r i x 0 is equalXa2a3to the valuemay

13(b-a)(b a)21012(b-a) QjThus Q /-3(b-aP0 since a /unique s o l u t i o n ;(a,R(a)),( b - a )3(b-a)32(b-a)3(b-a 3(b-af 2(b-a)4 -(b-a)4.b, and t h e s y s t e m o fLe ., t h e r e(b-a)20l i n e a r e q u a t i o n s has ai s one c u b i c w h i c hi s d e f i n e d by t h o p o i n t s( b , R ( b ) ) , and t h e d e r i v a t i v e a t each o f a and b.By t h oa p p l i c a t i o n o f C r a m e r ' s R u l e , A may be d e t e r m i n e d t o p r o d u c e t h eresultsin ( 1 - 1 5 ) .i M i L L t L 9 I L L G i v e n anP(x)willi n t e r v a I [ xQ . x n ]w i t h j o i nts x x . . . xn ,be c a l l e d a p i e c e w i s e c u b i c p o l y n o m i a l o v e r [ xo'P(X) Ri-i( x )on heintervalwhere R . 1 ( x )x 1nifis a c u b i cpolynomiaI.Corollaryx.,i - 0,1.5.1,I f y . and s l o p e s s. a r e g i v e n a t each j o i n tn,("here e x i s t s e x a c t l y one p i e c e w i s e c u b i c p o l y -n o m i a l P(x)eC w h i c h s a t i s f i e s P ( x . ) y.and P ' ( X j ) - s . .From Theorem 1.4 t h e r e e x i s t s one p o l y n o m i a l R(x)J' 1passing through y and y and h a v i n g t h e s l o p e a t each o f x .Xj such t h a tThus P ( x ) Sj , and Ri s d e f i n e d on t h e(1-16)Ax2-intervalX l/0,Let x 0 ,xl}butnecessarilynot- w " )if sforand o n l yif.jf o r ,/2 [x, , , x . ] .JJx 2 be such t h a t Axc u b i c p o l y n o m i a l s such t h a t v X j ) Then v " ).and[ x , x ] as0 nP ( x ) - R. . ( x ) x2-1XqwfX]L)/Xj,. Y l,oL e xiv ( x )and v ' ( x j )x Q -f 0 arida n dw ( x )bQw'(Xj)- S1

14( i "*** i / "1p, A x 1 v ' ( x 0 ) 2 ( A x 1 4 A x 0 ) s 1 , ' - A x 0 w ( x 2 ) 31ax Lw(x ? ) - y j A L Y l - v ( x Q ) J j ,Assure v (Xj ) - w"' x ).d e f i n e d i n t h e form o f R(x)R"(x)L e t each of v ( x ) and w(x) bei n Theorem 1 . 4 .F 2(R(b)-R(a))R'(b) R'(a)l 6L(b-a)3" '(b-a )2T J x - a )j"3(R(b)-R(a) ? 2L(b-a)2Furlher,R' (b) 2R' (a) ](b-a) j .-l e t a - x , and b x such t h a tV ' C x , ) r 3 ( v ( x n ?-v(x, )) -«„); -v'fxpHPs, iP i V ' X0 ) -y-i )1 -AX 0 L-ix0" - v» (x 0 ) - 2 s r J .Similarly,l e t t i n g a x and b - x 9 ,2 [" 3(w(x ? ) - y i )-jw " ( x 1 ) - AXj LAXj' w'(x2)-2SlJ .l i then follows t h a t(1-J7)is t r u e .v i d e s t h e proof o f t h e c o n v e r s e ; t h a tRetracing t h i s proof pro-is g i v e n e q u a t i o n ( 1 - 1 7 ) , t h e nv " ( x 1 ) w"(Xj ) .' f A is a r e a l(,"18 laiil(nxn) m a f r i x such t h a t % k lk 1, kf- i1 1,2then A is n o n s i n g u l a r .Assume A 0 ;i . e . , A is s i n g u l a r .Then t h e system ofequat ions'ailX ai2*2 a21Xl a22 X 2 nlxl1n2x2 aa a ainxn 02 „*„ axnil0„ 0

15has a n o n - t r i v i a lthats o l u t i o n (Xj , x 2 , . . . ,x ) . xm m a x { [ x j , x 2 [ , . . . , x }.Let rn be t h e index suchThen t h e m e q u a t i o n may bewr i t t e ni naxmm m " a m i x ii 1, i f mi n ar n i x i f ' 1, i Mlamml f ml lEamixil i EIami I"I x iI - EIam1 I"I x m hI s mmI — 1 a m i ! »which i s a c o n t r a d i c t i o n t o t h e h y p o t h e s i s i n ( 1 - 1 8 ) .Thus j A j f 0,o r A is nons i rigu I a r .Core I I a ry 1 »8.Le*f P(x) be a p i e c e w i s e c u b i c p o l y n o m i a l of c l a s sC1 w i t h j o i n t s x 0 , x1,and s 0 P ' ( X q ) ,Sj .,xn.n- 'suc2,n-1.Let R j j ( x ) and R . ( x )interval [ x j , X j j ] , j 1, 2,mial on each open i n t e r v a l1. .,n-1.and Rj x) P(x) on t h eSince P(x)is a cubic polyno-( x j . . i , X j ) , P " ( x ) e x i s t s f o r each p o i n tAssume t h a tA XjRj-1( Xj-1) f 2 ( A xfAX)-1" ' AXjin t h e( x j ) R"j ( x - ) a t each j o i n t x1 , x 2 , . . . , ] 9 )nbe c u b i c p o I y n o m i a I ( s ) such[xj . ,Xj]From Theorem 1 . 6 , R , f j ( x j ) R J - ' x j )(.,h t h a t P(x)eC2.t h a t R j j (x) P(x) on t h e i n t e r v a l*n-11,Since P t x k C 1 , t h e r e does e x i s t a s e t of v a l u e s s. P ' ( x - ) ,JJProof:interval.i - 0,s n P ' ( x n ) , t h e r e e x i s t s e x a c t l y one s e t o f v a l u e s j KFor g i v e n y? P ( x . ) ,j A xj - t }* R j(R(Xj(xj 1) Yjj Axi f and o n l y i fj - 1 R j ( x j 1}AXrj-15 AX](yj""Rj-1(Xj 1

16where Ax.« ? x . - x . , .vJJw r i t t e n asL e t s . P ' ( x . ) , 1hen e q u a t i o n ( 1 - 1 9 ) may beJJfAy. t 1A x . s . ! 2 ( A x . A x . , ) s . A x . 1 s . , 1 3LAx. -'Ax". Ax? A x . J .J J-1JJ-1 JJ - 1 J 1J-1JJJ-1The c o e f f i c i e n t m a t r i x Q o f t h e unknowns ( s x , s 2 , . . . , s2(Ax l -fAx )A )00 .00AXj0 .0000Ax 2(AX 2 AX 1 )0AXg0000 . . . 2(AxR 2 xn 3 0000 .2 (AXg HA x, ) A c, . . .AxAx2 (Ax1n-lSince 2 A X - A X .Uij A x . A X .sj\J, , by Lemma 1.7 q[ 0 .j 1, 2,.,n 3 .Ax 0 )n-ln-l.Thus t h eusystem of e q u a t i o n s d e r i v e d f r o m ( 1 - 1 9 )s;,isislinearlyindependent andn - 1 , may be d e t e r m i n e d u n i q u e l y .Let 3 . , jJ::1, 2 ,Jn - 1 , where s . R ' ( x . ) , be t h e s e t such t h a tJJf r o m Theorem 1.6 R " . ( x . ) R " . ( x . ) .jjjjNotation:Let S ( x ; x Q , x 1 , . , . , x n ) ,Theorem 1 . 9 .Proof:where x 0 x 1 . . . x n , denote t h eFor each s e t { y 0 , y 1 } . . . ,interval[x0,xn]and with(x; ) y{,y n , s Q , s } of values t h e r esuch t h a ti 0,1,2,.,n; P'(x0) s0;From C o r o ! I a r y 1 . 8 , g i v e n y js n P' (Xj.t) t h e r e e x i s t s one s e t Sj , jP(x) e C2.Thenx ,e x i s t s one P ( x ) e S ( x ; x Q , x 1 , . . . , x )pis t r u e .Thus P ( x ) e C 2 .s e t of a I I c u b i c s p l i n e f u n c t i o n s P ( x ) on t h ej o i n t s XQ , x , . . . ,(1-19)F u r t h e r from C o r o l l a r yp o l y n o m i a l of c l a s s C 1 such t h a t P ( x - ) , s0 P ' ( x Q ) , 1, 2 ,n - 1 such t h a t1 . 5 , t h e r e e x i s t s one p i e c e w i s e

17P(x. )-- y. and P' (x, ) s, . so Thus f o r g i v e n (Xj YjP(x) e S ( x ; x Q , x i , . .an( c r eex i "t'sone).C o r o l l a r y 1.5 and Theorem 1.4 may be used i n a c o m p u t a t i o n a l scheme f o r t h e e v a l u a t i o n of P ( x ) f o r g i v e n ( x j , y j ) , s Q , and s n .Each S ,i 1, 2 ,.n-1,is computed f r o m e q u a t i o n ( 1 - 1 7 ) .s i n c e P ( x ) equals a c u b i c p o l y n o m i a l R j i ( x )[ x , 1 , x , ] and each ofTheni n each i n t e r v a l( X j j , y j j ) , ( x - , y . ) , sj -j and Sje q u a t i o n ( 1 - 1 5 ) may be u t i l i z e d t o compute eachR j j ( x ) ,is known,1 1 , 2 ,. . n .Example 5:Given t h e data p o i n t s ( 0 , - 2 . ) ,arid (4, . 5 ) w i t h s(1,3.),(2,2.),(3,-1.).5 and s . 5 , d e t e r m i n e t h e r e s u l t i n g c u b i cs p l i ne f u n c t i o n .F i r s t equation (1-17)is, t h e«oO—.This y i e l d s s; thatf o l l o w i n g must be d e t e r m i n e d :1s o l u t i o n m a t r i x of t h ei s used t o d e t e r m i n e Sj , s S1.4.1. X0.1.4.11 .51C"2- S 3-r-12.0-5.0 2 . 8 7 5 , s2 - 3 . 6 3 3 , s3 - . 3 4 2 .(1-15), the spline functionFinally,by e q u a t i o nisP ( x ) - - 2 . 0 0 0 4 0.50Gx P(x) -5 . 1 1 7 ( x - 1 ) 2 1 . 2 4 2 ( x - 1 ) 3 , where 1 x 2;!.000 - 3.633(x--2) -i . 3 9 2 ( x - 2 ) 2 2 . 0 2 5 ( x - 2 ) 3 , where 2 x 3;P(x) - -1.000 - 0.542(x 3) 4 . 6 8 3 ( x - 3 ) - 2.842{x- 3) , where 3 x 4,P(x)3.000 2.875(x-1)11 . 1 2 5 X 26.625x, where 0 x 1;

18A computer program f o r t h i s scheme is shown i n Appendix A; g i v e n t h einitialp o i n t s and end s l o p e s t h e program computes t h e r e s u l t i n g P ( x ) .Theorem 1.10.The s e t S { x ; x o x , . . . , x n of s p l i n e f u n c t i o n s w i t hj o i n t s x , x ,Proof:x i s a v e c t o r space over t h e f i e l d o f r e a l numbers.Let each o f P ( x ; x Q , x 1 , . . . , xR ( x ; x , x , . . . , x ) be elements o f S.o 1ndenote P on t h e i n t e r v a lnumbers.Let " ") , Q ( x ; x 0 , X j , . . . , x ) andFurther,'eac[x.3l e t P. E p. .x i-1jto i - j f .andb be r e a li n d i c a t e t h e normal a d d i t i o n o f f u n c t i o n s , namelys p l i ne f u n c t i o n s .i.)(P Q) R p (Q R), s i n c e i n each i n t e r v a l[x.thes p l i n e f u n c t i o n is a c u b i c p o l y n o m i a l , and t h e a s s o c i a t i v e p r o p e r t yholds f o r cubic polynomials.ii.)By t h e same r e a s o n i n g as i n ( i ) ,(F-fQ) (Q P).i I i . ) T h e s e t S has a z e r o Z. where Z 0 on each i n t e r v a l t x . , , x . ] ,i-1' i 'and P Z P.iv.)Each element o f S has an i n v e r s e s i n c eP ( - P ) Z;i . e . , P. (-P.'-1f o r each i n t e r v a lv.)In each i n t e r v a l) p .'-1[x.[x.j 0,.x -! 5 f ( - p .! Jj 0.)x - 0 Z"1'J xj] X-L3. 3Ja ( P . . Q. .) a ( D . . .x X q . . . x J ) -1'-1j o' ' 1 ' Jj 0 , 1 ' J- alo., Y.,x JJ -J a rtq. .aP . . -i- aQ . ,.i-1i-1

19T h e

I. METHODS OF POLYNOMIAL CURVE-FITTING 1 By Use of Linear Equations By the Formula of Lagrange By Newton's Formula Curve Fitting by Spiine Functions I I. METHOD OF LEAST SQUARES 24 Polynomials of Least Squares Least Squares Polynomial Approximation with Restra i nts III. A METHOD OF SURFACE FITTING 37 Bicubic Spline Functions

Related Documents:

Keywords Curve fitting · Surface fitting · Discrete polynomial curve · Discrete polynomial surface · Local optimal · Outliers 1 Introduction . The method of least squares is most commonly used for model fitting. This method estimates model parameters by minimizing the sum of squared residuals from all data, where

behringer ultra-curve pro dsp 24 a/d- d/a dsp ultra-curve pro ultra- curve pro 1.1 behringer ultra-curve pro 24 ad/da 24 dsp ultra-curve pro dsp8024 smd (surface mounted device) iso9000 ultra-curve pro 1.2 ultra-curve pro ultra-curve pro 19 2u 10 ultra-curve pro ultra-curve pro iec . 7 ultra-curve pro dsp8024 .

polynomial curve fitting. Polynomials are one of the most The Polynomial Curve Fitting uses the method of least squares when fitting data. The fitting process requires a model that relates the response data to the predictor data with one or more coefficients. The result of the fitting process is an estimate of

of curve-fitting was needed that would combine some of the advantages of a least squares polynomial with the segmented curve of the theory of splines. Segmenting the curve gives it more freedom than a single polynomial over the entire range of the data, while fitting by the method of least squares smooths any small fluctuations in the data.

Part 5 - CURVE FITTING Describes techniques to fit curves (curve fitting) to discrete data to obtain intermediate estimates. There are two general approaches for curve fitting: Least Squares regression: Data exhibit a significant degree of scatter. The strategy is to derive a single curve that represents the general trend of the data .

Identify polynomial functions. Graph polynomial functions using tables and end behavior. Polynomial Functions Recall that a monomial is a number, a variable, or the product of a number and one or more variables with whole number exponents. A polynomial is a monomial or a sum of monomials. A polynomial

Polynomial Functions Pages 209–210 Check for Understanding 1. A zero is the value of the variable for which a polynomial function in one variable equals zero. A root is a solution of a polynomial equation in one variable. When a polynomial function is the related function to the polynomial

ACCA ADVANCED DIPLOMA IN ACCOUNTING AND BUSINESS ETHICS AND PROFESSIONAL SKILLS MODULE Research and Analysis Project and Key Skills Statement ACCA DIPLOMA IN ACCOUNTING AND BUSINESS (RQF LEVEL 4) ACCA DIPLOMA IN ACCOUNTING AND BUSINESS (RQF LEVEL 4) ACCA GOVERNANCE ACCA (the Association of Chartered Certified Accountants) is the global body for professional accountants. We aim to offer .