Agency Washington, DC 20460 1EPA Manual Bioventing Principles . - CLU-IN

1y ago
8 Views
2 Downloads
824.96 KB
89 Pages
Last View : 15d ago
Last Download : 3m ago
Upload by : Jamie Paz
Transcription

United StatesEnvironmental ProtectionAgency1EPAOffice of Research andDevelopmentWashington, DC 20460EPA/625/XXX/001September 1995ManualBioventing Principles andPracticeVolume II: Bioventing Design

EPA/540/R-95/534aSeptember 1995ManualPrinciples and Practices of BioventingVolume II: Bioventing DesignU.S. Air Force EnvironicsDirectorate of theArmstrong LaboratoryTyndall AFB, FLU.S. Air Force Center forEnvironmental ExcellenceTechnology Transfer DivisionBrooks AFB, TXU.S. Environmental Protection AgencyOffice of Research and DevelopmentNational Risk Management Research LaboratoryCenter for Environmental Research InformationCincinnati, Ohio

NoticeThe information in this document has been funded wholly, or in part, by the U.S. EnvironmentalProtection Agency (EPA). This document has been subjected to EPA’s peer and administrativereview and has been approved for publication as an EPA document. The methods presented in thisdocument are ones often used by the U.S. Air Force and EPA but are not necessarily the onlymethods available. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.This document is equivalent to U.S. Air Force document AL/EQ-TR-1995-0037.ii

ContentsPageChapter 1Site Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1Existing Data and Site History Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2Soil Gas Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.31.41.5Chapter 21.2.1Soil Gas Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.2.2Collection and Analysis of Soil Gas Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.2.3Interpretation of Soil Gas Survey Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Soil Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91.3.1Soil Borings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.3.2Soil Analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11In Situ Respiration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.1In Situ Respiration Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.4.2Interpretation of in Situ Respiration Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . 121.4.3Factors Affecting Observed in Situ Biodegradation Rates . . . . . . . . . . . . . . . . . . . 16Soil Gas Permeability and Radius of Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171.5.1Radius of Influence Determination Based on Pressure Measurements. . . . . . . . . 181.5.2Interpretation of Soil Gas Permeability Testing Results . . . . . . . . . . . . . . . . . . . . . 19System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1Determination of Air Flow System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1.1Air Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212.1.2Air Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232.1.3Determining Use of Injection Versus Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.1.4Design of Air Flow To Protect Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.2Determining Required Air Flow Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262.3Well Spacing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282.4Blowers and Blower Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292.4.1Centrifugal Blowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302.4.2Rotary Positive Displacement Blowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.4.3Blower Selection and Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312.5Vent Well Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322.6Monitoring Point Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33iii

Contents (continued)PageChapter 3Chapter 4Performance Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.1Soil Gas Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.2In Situ Respiration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373.3Quantification of Biodegradation and Volatilization of Hydrocarbons During ExtractiveBioventing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383.4Surface Emissions Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393.5Optional Monitoring: Qualitative Validation of Biodegradation Through Stable CarbonIsotope Monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403.6Operation and Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Process Evaluation/Site Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.1In Situ Respiration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.2Soil Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43Chapter 5Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Chapter 6References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49Appendix A Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Appendix B Equipment Specifications and Manufacturers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55B.1 Soil Gas Survey Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55B.2 Vent Well Installation Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57B.3 Soil Gas Monitoring Point Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58B.4 Air Permeability Test Equipment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61B.5 In Situ Respiration Test Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62B.6 Miscellaneous Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64B.7 Optional Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64Appendix C Example Procedures for Conducting Bioventing Treatability Studies . . . . . . . . . . . . . . . . . 67C.1 Example Procedures for Collecting, Labeling, Packing, and Shipping Soil Samples. . . . . 67C.1.1Sample Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67C.1.2Sample Label and Log. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68C.1.3Sample Packing and Shipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68C.1.4Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68C.2 Example Procedures for in Situ Respiration Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68C.2.1Field Instrumentation and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68C.2.2In Situ Respiration Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69C.2.3Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69iv

Contents (continued)PageC.3 Example Procedures for Soil Gas Permeability Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70C.3.1Field Instrumentation and Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70C.3.2Soil Gas Permeability Test Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71C.3.3Quality Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71C.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72Appendix D Off-Gas Treatment Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73D.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73D.2 Limiting Off-Gas Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74D.3 Direct Discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74D.4 Off-Gas Reinjection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74D.5 Biofiltration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75D.6 Adsorption on Carbon or Resin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75D.7 Catalytic Oxidation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76D.8 Flame Incineration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77D.9 Internal Combustion Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77D.10 Emerging Vapor Treatment Technologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79D.11 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80v

FiguresFigurePage1-1Conceptual decision tree for determining the potential applicability of bioventing at a contaminated site . . 11-21-3Site map showing well locations and TPH soil concentrations at AOC A, Keesler AFB, Mississippi . . . . . . 3Schematic of a soil gas sampling system using the stainless steel soil gas probe . . . . . . . . . . . . . . . . . . . . 41-4Schematic of a soil gas sampling system for collection of soil gas from low-permeability soils . . . . . . . . . . 61-51-6Sample soil boring log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10In situ respiration test apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121-7In situ respiration test results with linear oxygen concentration versus time at AOC A,Keesler AFB, Mississippi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151-8In situ respiration test results with nonlinear oxygen concentration versus time at SWMU 66,Keesler AFB, Mississippi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15In situ respiration test results with acceptable data based on the helium concentration formonitoring point S1, Tinker AFB, Oklahoma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161-91-10In situ respiration test results with unacceptable data based on the helium concentrationfor monitoring point K3, Kenai, Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161-112-1Determination of radius of influence at the Saddle Tank Farm, Galena AFS, Alaska . . . . . . . . . . . . . . . . . 19Expanded bioreactor created during air injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222-22-3Oxygen utilization rates, averaged over depth, versus distance from the injection well at Site 280,Hill AFB, Utah . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Mass of TPH degraded versus distance from the injection well at Site 280, Hill AFB, Utah . . . . . . . . . . . . 222-42-5Hydrocarbon volatilization and biodegradation rates as a function of air flow rate . . . . . . . . . . . . . . . . . . . 23Water table depression during air injection and air extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232-6Air injection configuration for a bioventing system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242-7Radius of influence during air injection and extraction in the control test plot at a depth of 6 ft atSite 20, Eielson AFB, Alaska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252-82-9Schematic of a basic air extraction system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Extracted BTEX and TPH soil gas concentrations at Patrick AFB, Florida . . . . . . . . . . . . . . . . . . . . . . . . . 262-10Schematic of an air injection system with reinjection of extracted soil gas . . . . . . . . . . . . . . . . . . . . . . . . . 272-11Schematic of subslab depressurization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272-12Schematic of the extraction with reinjection system at AOC A, Keesler AFB, Mississippi. . . . . . . . . . . . . . 282-13Soil gas extraction to isolate a subsurface structure at Site 48, Eielson AFB, Alaska. . . . . . . . . . . . . . . . . 292-14Schematic of blower types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302-15Performance curves for three different-sized blowers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322-16Schematic of a typical vent well . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332-17Schematic of a typical monitoring point construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35vi

Figures (continued)FigurePage3-1Schematic of a surface emissions monitoring device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393-2Carbon isotopic compositions of soil gas carbon dioxide at Site 20, Eielson AFB,Alaska, August 1993 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405-1Comparison of costs for various remedial technologies for fuel-contaminated soils . . . . . . . . . . . . . . . . . . 48vii

Tables1-1Results From a Soil Gas Survey at AOC A, Keesler AFB, Mississippi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81-21-3Results From a Soil Gas Survey at Building 1813, Hanscom AFB, Massachusetts . . . . . . . . . . . . . . . . . . . 8Results from a Soil Gas Survey at the Aquasystem Site, Westover AFB, Massachusetts . . . . . . . . . . . . . . 91-41-5Results From a Soil Gas Survey at an Oil/Water Leak at Cape Canaveral AFS, Florida . . . . . . . . . . . . . . . 9Soil Analyses Based on Bioventing Initiative Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111-61-7Oxygen Density Versus Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Bulk Density of Various Soils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131-8Initial Soil Gas Readings at Monitoring Points at AOC A, Keesler AFB, Mississippi . . . . . . . . . . . . . . . . . . 141-9Raw Data From an in Situ Respiration Test atAOC A, Keesler AFB, Mississippi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141-101-11Oxygen Utilization and Carbon Dioxide Production Rates During the in Situ Respiration Testat AOC A, Keesler AFB, Mississippi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Raw Data From an in Situ Respiration Test at SWMU 66, Keesler AFB, Mississippi . . . . . . . . . . . . . . . . . 151-122-1Soil Gas Permeability Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Permeability and Radius of Influence Values at Eielson AFB, Alaska: Injection and Extraction Mode . . . . 242-22-3Air Injection Versus Extraction Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Recommended Spacing for Monitoring Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343-1Surface Emissions Sampling at Bioventing Sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404-14-2Cumulative t Distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Number of Observations for t Test of Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454-3Calculation of the Number of Samples Required To Show a Statistical Difference Between Means ofTwo Sampling Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464-4Selected z Values for Estimation of Final Soil Sample Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465-15-2Typical Full-Scale Bioventing Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Cost Comparison of in Situ Bioremediation Technologies Used at Fuel Spill Sites. . . . . . . . . . . . . . . . . . . 47viii

List of ExamplesExamplePage1-1Review of Existing Data and Site History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-21-3Soil Gas Survey Conducted at Keesler AFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Soil Gas Survey at Building 1813, Hanscom AFB, Massachusetts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81-4Soil Gas Survey at the Aquasystem Site, Westover AFB, Massachusetts . . . . . . . . . . . . . . . . . . . . . . . . . . 81-51-6Soil Gas Survey at an Oil/Water Separator Leak at Cape Canaveral AFS, Florida. . . . . . . . . . . . . . . . . . . . 9Results From an in Situ Respiration Test Conducted at Keesler AFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141-71-8Calculation of Oxygen Utilization Rates From Nonlinear Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Evaluation of Helium Loss During an in Situ Respiration Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161-9Temperature Adjustment of Oxygen Utilization Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171-102-12-2Calculation of the Radius of Influence Based on Pressure Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 19Biodegradation of Petroleum Hydrocarbons in the Uncontaminated and Contaminated Regions atSite 280, Hill AFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Determination of Required Air Flow Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272-3Calculation of Radius of Influence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292-42-5Selection and Sizing of a Blower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Selection of Depth Intervals for Monitoring Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343-14-1Calculation of Volatilization and Biodegradation of Contaminants During Extraction . . . . . . . . . . . . . . . . . 38Calculation of Remediation Time Based on in Situ Respiration Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434-24-3Statistical Evaluation of Contaminant Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Calculation of Final Number of Soil Samples for Site Closure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45ix

List of Symbols and AcronymsAFBAFCEEAir Force BaseU.S. Air Force Center forEnvironmental ExcellenceAL/EQArmstrong Laboratory EnvironicsDirectorateAOCarea of concentrationBTEXbenzene, toluene, ethylbenzene, andxylenescfmCPTcubic feet per minutecone penetrometerDNAPLdense nonaqueous phase liquidCSquantity sorbed to the solid matrix(gx/gsoil)CVvolumetric concentration in the vaporphase (gx/Lvapor)Cvsatsaturated vapor concentration (gx/Lvapor)CWvolumetric concentration in theaqueous phase (gx/Laqueous)Eaactivation energy (cal/mole)focorganic carbon fractionkmaximum rate of substrate utilization(gS/gX-min)kBbiodegradation rate (mg hydrocarbon/kg soil-day)EPAU.S. Environmental Protection AgencyFIDflame ionization detectorGACgranular activated carbonICEinternal combustion enginekdendogenous respiration rate (day-1)LELLNAPLlower explosive limitless dense nonaqueous phase liquidKdkoMPmonitoring pointsorption coefficient (Laqueous/gsoil)baseline biodegradation rate(% O2/day)MWmonitoring wellNASNaval Air StationKowKSoctanol/water partition coefficientMonod half-velocity constant (gS/L)NFPANPTNational Fire Protection Associationnational pipe threadkTPAHpolycyclic aromatic hydrocarbontemperature-corrected biodegradationrate (% O2/day)molecular weight (gx/molex)PCBPIDpolychlorinated biphenylphotoionization detectorPVCRD&Apolyvinyl chlorideresearch, development, and acquisitionscfmMWPVvapor pressure of pure contaminant attemperature T (atm)Rgas constant (1.987 cal/ K-mol)Rgas constant (L-atm/mole- K)standard cubic feet per minuteRIradius of influenceSGSsoil gas surveySSVEsoil vacuum extractionconcentration of the primary substrate(contaminant) (gS/L)TCETKNtrichloroethylenetotal Kjeldahl nitrogensxtsolubility in water (gx/Lwater)time (minutes)TPHUCLtotal petroleum hydrocarbonupper confidence limitTabsχabsolute temperature ( K)mole fraction (dimensionless)USTunderground storage tankXconcentration of microorganisms (gX/L)volatile organic carbonYcell yield (mg biomass/mg hydrocarbon)VOCx

Conversion FactorsTo convert . . .to . . .multiply by . . .cubic feetcubic meters0.02831685cubic feetcubic inchesliterscubic centimeters0.03531610.2cubic yards (tons)cubic yards (tons)cubic meterskilograms0.7646907.1843darcysquare centimeter9.869233 x 10-9darcydegrees Fahrenheitsquare meterdegrees Celsius9.869233 x 10-13t C (t F - 32)/1.8degrees Fahrenheitfeetdegrees Kelvinmeterst K (t F - localoriescentimetersjoules2.544,186.8millimeters of mercury ( C)parts per millionPascalsmilligrams per liter133.3221parts per millionpoundsgrams per literkilograms1,0000.45354237pounds per square inchkiloPascals6.895square inchestonssquare centimetersmetric tons6.45160.90718474U.S. gallonsliters3.785xi

AcknowledgmentsThis manual was prepared by Andrea Leeson and Robert Hinchee of Battelle Memorial Institute,Columbus, Ohio, for the U.S. Environmental Protection Agency’s (EPA’s) National Risk ManagementResearch Laboratory, Cincinnati, Ohio; the U.S. Air Force Environics Directorate of the ArmstrongLaboratory, Tyndall AFB, Florida; and the U.S. Air Force Center for Environmental Excellence,Technology Transfer Division, Brooks AFB, Texas.The project managers for this manual were Lt. Colonel Ross Miller, U.S. Air Force Center forEnvironmental Excellence; Gregory Sayles, EPA National Risk Management Research Laboratory;and Catherine Vogel, U.S. Air Force Environics Directorate, Armstrong Laboratory. These individualsalso contributed to the content of the manual.The manual was peer reviewed by:Ryan Dupont, Utah State UniversityChi-Yuan Fan, U.S. EPA National Risk Management Research LaboratoryPaul Johnson, Arizona State UniversityJack van Eyck, Delft GeotechnicAcknowledgments are also given to the following individuals who contributed to this document:Bruce Alleman, Battelle Memorial InstituteDouglas Downey, Parsons Engineering ScienceGregory Headington, Battelle Memorial InstituteJeffrey Kittel, Battelle Memorial InstitutePriti Kumar, Battelle Memorial InstituteSay Kee Ong, Iowa State UniversityLawrence Smith, Battelle Memorial InstituteEastern Research Group, Inc., Lexington, Massachusetts, copy edited and prepared camera-readycopy of this manual.xii

This document is a product of the bioventing research and development efforts sponsored by theU.S. Air Force Armstrong Laboratory, the Bioventing Initiative sponsored by the U.S. Air ForceCenter for Environmental Excellence (AFCEE) Technology Transfer Division, and the Bioremediation Field Initiative sponsored by the U.S. Environmental Protection Agency (EPA).The Armstrong Laboratory Environics Directorate (AL/EQ), an element of the Air Force HumanSystems Center, began its bioventing research and development program in 1988 with a study atHill Air Force Base (AFB), Utah. Follow-up efforts included field research studies at Tyndall AFB,Florida; Eielson AFB, Alaska; and F.E. Warren AFB, Wyoming, to monitor and optimize processvariables. The results of these research efforts led to the Bioventing Initiative and are discussed inthis document.The AFCEE’s Bioventing Initiative has involved conducting field treatability studies to evaluatebioventing feasibility at over 125 sites throughout the United States. At those sites where feasibilitystudies produced positive results, pilot-scale bioventing systems were installed and operated for 1year. Results from these pilot-scale studies culminated in the production of this document.EPA’s Bioremediation Field Initiative was established to provide EPA and state project managers,consulting engineers, and industry with timely information regarding new developments in theapplication of bioremediation at hazardous waste sites. This program has sponsored field researchto enable EPA laboratories to more fully document newly developing bioremediation technologies.As part of the EPA Bioremediation Field Initiative, EPA has contributed to the Air Force BioventingInitiative in the development of the test plan for conducting the pilot-scale bioventing studies andassisted in the development of this manual.The results from bioventing research and development efforts and from the pilot-scale bioventingsystems have been used to produce this two-volume manual. Although this design manual has beenwritten based on extensive experience with petroleum hydrocarbons (and thus, many examples usethis contaminant), the concepts here should be applicable to any aerobically biodegradable compound. The manual provides details on bioventing principles; site characterization; field treatabilitystudies; system design, installation, and operation; process monitoring; and site closure. Thissecond volume focuses on bioventing design and process monitoring. The first volume describesbasic principles of bioventing.xiii

Chapter 1Site CharacterizationSite characterization is an important step in determiningthe feasibility of bioventing and in providing informationfor a full-scale bioventing design. Chapter 1 discussessite characterization methods that are recommended forbioventing sites based on field experience and a statistical analysis of Bioventing Initiative data. These parameters have proven to be the most useful in predictingthe potential applicability of bioventing at a contaminated site. Figure 1-1 summarizes the sequence ofevents for site characterization of a typical site. Eachstep presented in Figure 1-1 is discussed in the followingsections.Site characterization activities to be conducted at

EPA/540/R-95/534a September 1995 Manual Principles and Practices of Bioventing Volume II: Bioventing Design U.S. Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory Center for Environmental Research Information Cincinnati, Ohio U.S. Air Force Center for Environmental Excellence

Related Documents:

Defense Advanced Research Projects Agency. Defense Commissary Agency. Defense Contract Audit Agency. Defense Contract Management Agency * Defense Finance and Accounting Service. Defense Health Agency * Defense Information Systems Agency * Defense Intelligence Agency * Defense Legal Services Agency. Defense Logistics Agency * Defense POW/MIA .

United States Office of Environmental Environmental Protection Information EPA/600/B-07/001 Agency Washington, DC 20460 April 2007

Foy Insurance of MA, LLC 198 Frank Consolati Insurance Agency, Inc. 198 County Insurance Agency, Inc. 198 Woodrow W Cross Agency 214 Woodland Insurance Agency, Inc. 214 Tegeler Insurance Services of CT, Inc. 214 Pantano/VonKahle Insurance Agency, Inc. 214 . Hanson Insurance Agency, Inc. 287 J.H. Slattery Insurance Agency, Inc. 287

5. George Washington is honored on Valentine's Day. YES NO 6. Washington State is on the East Coast of the U.S. YES NO 7. George Washington's birthday is in January. YES NO 8. George Washington's face is on the 5 bill. YES NO 9. George Washington was a general in the Vietnam War. YES NO 10. George Washington was an important movie star .

United States Environmental Protection Agency 1EPA Solid Waste and Emergency Response (5306W) EPA530-K-00-001 July 2000 ww.epa.gov/osw/kids.htm Planet Protectors Discover the Hidden Reasons To Reduce, Reuse, and Recycle T r a s h a nd Cl i m a t e C ha ng e nd t e booklet.qxd 6/27/00 5:20 PM Page 2

Plain English Guide to the Part 75 Rule U.S. Environmental Protection Agency Clear Air Markets Division 1200 Pennsylvania Avenue, NW Washington, DC 20460

EPA/630/R-01/004 Final Report EXPLORATION OF PERINATAL PHARMACOKINETIC ISSUES Contract No. 68-C-99-238 Task Order No. 13 Prepared for: Risk Assessment Forum Office of Research and Development U.S. Environmental Protection Agency Washington, D.C. 20460 Prepared by: Versar, Inc. 6850 Versar Center Springfield, VA 22151 May 10, 2001

PROF. P.B. SHARMA Vice Chancellor Delhi Technological University (formerly Delhi College of Engineering) (Govt. of NCT of Delhi) Founder Vice Chancellor RAJIV GANDHI TECHNOLOGICAL UNIVERSITY (State Technical University of Madhya Pradesh) 01. Name: Professor Pritam B. Sharma 02. Present Position: Vice Chancellor Delhi Technological University (formerly Delhi College of Engineering) Bawana Road .