Annex - CERN

2y ago
10 Views
2 Downloads
958.99 KB
32 Pages
Last View : 5m ago
Last Download : 3m ago
Upload by : Kairi Hasson
Transcription

AnnexMaterial dataThe basic parameters of acoustic materials are the impedance and the surface shape. The equations given in Sect. 3.1 are applicable as first-orderapproximations of the impedance and reflection factor of acoustic materials. To discuss more details, other information such as angle-dependentimpedance, porosity, tortuosity, etc., is required. These material data include all necessary information required for calculation of the reflectedand the transmitted field. In many cases of sound prediction, however, theabsorbed or transmitted energy is a sufficient quantity. Thus, for the scopeof predicting the exterior sound field for auralization, the absorption coefficient and the scattering coefficient for random incidence are importantinput data used in room acoustics simulation software. To predict soundinsulation, the sound reduction index or other standardized sound transmission data are required.Most data in the following tables are extracted from the most recentlyestablished and widely used database of absorption coefficients. The database was developed by Ingolf Bork in the project of the “round robin” onroom acoustical computer simulations.93 Other data were obtained fromproduct data given by manufacturers.The reference methods used for determining these data are standardized methods for material testing, ISO354 for absorption coefficients,ISO17497, part 1 for scattering coefficients and ISO140 for sound insulation quantities. All standards describe measurement methods obtained inreverberation chambers. For more details, see Bork (2005b)94 and thelisted ISO standards.These data are applicable for geometric or other energetic predictionmodels such as ray tracing or SEA. They don’t have the precision and information required for numerical wave nk.htm

304AnnexTables of random-incidence absorption coefficients, αUnless not explicitly specified otherwise, the data given are randomincidence absorption coefficients, αs (see Sect. 3.1)Massive constructions and hard surfacesMaterialWalls, hard surfaces average(brick walls, plaster, hard floors, etc.)Walls, rendered brickworkRough concreteSmooth unpainted concreteRough lime washSmooth brickwork with flush pointing,paintedSmooth brickwork, 10 mm deeppointing, pit sand mortarBrick wall, stuccoed with a rough finishCeramic tiles with a smooth surfaceLimestone wallsReverberation chamber wallsConcrete floorMarble floorOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.02 0.02 0.03 0.03 0.04 0.05 0.020.040.070.050.030.020.040.070.050.020.020.08 0.09 0.12 0.16 0.22 0.24 070.020.050.040.020.02Lightweight constructions and liningsMaterial2 * 13 mm plasterboard on steel frame,50 mm mineral wool in cavity, surfacepaintedWooden lining, 12 mm fixed on frameOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.15 0.10 0.06 0.04 0.04 0.05 0.050.27 0.23 0.22 0.15 0.10 0.07 0.06

Annex305GlazingMaterialSingle pane of glass, 3 mmGlass window, 0.68 kg/m2Lead glazingDouble glazing, 2–3 mm glass, 30 mm gapDouble glazing, 2–3 mm glass,10 mm gapDouble glazing, lead on the insideOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.08 0.04 0.03 0.03 0.02 0.02 0.020.10 0.05 0.04 0.03 0.03 0.03 0.030.30 0.20 0.14 0.10 0.05 0.05 –0.15 0.05 0.03 0.03 0.02 0.02 0.020.10 0.07 0.05 0.03 0.02 0.02 0.020.15 0.30 0.18 0.10 0.05 0.05–WoodMaterialWood, 1.6 cm thick,on 4 cm wooden planksThin plywood panelling16 mm wood on 40 mm studsAudience floor, 2 layers,33 mm on sleepers over concreteWood, stage floor, 2 layers,27 mm over airspaceSolid wooden doorOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.18 0.12 0.10 0.09 0.08 0.07 0.070.42 0.21 0.10 0.08 0.06 0.06 –0.18 0.12 0.10 0.09 0.08 0.07 0.070.09 0.06 0.05 0.05 0.05 0.04 –0.10 0.07 0.06 0.06 0.06 0.06–0.14 0.10 0.06 0.08 0.10 0.10 0.10Floor coveringsMaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8kLinoleum, asphalt, rubber,or cork tile on concreteCotton carpetLoop pile tufted carpet, 1.4 kg/m2,9.5 mm pile height: On hair pad,3.0 kg/m2Thin carpet, cemented to concrete6 mm pile carpet bonded toclosed-cell foam underlay0.02 0.03 0.03 0.03 0.03 0.02–0.07 0.31 0.49 0.81 0.66 0.54 0.480.10 0.40 0.62 0.70 0.63 0.88 –0.02 0.04 0.08 0.20 0.35 0.40 –0.03 0.09 0.25 0.31 0.33 0.44 0.44

306AnnexFloor coverings (cont’d)Material6 mm pile carpet bonded to open-cellfoam underlay9 mm tufted pile carpet on felt underlayNeedle felt 5 mm stuck to concrete10 mm soft carpet on concreteHairy carpet on 3 mm felt5 mm rubber carpet on concreteCarpet 1.35 kg/m2, on hair feltor foam rubberCocos fibre roll felt, 29 mm thick(unstressed), reverse side cladwith paper, 2.2 kg/m2, 2 RaylOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.03 0.09 0.20 0.54 0.70 0.72 0.750.300.270.270.100.710.80 0.800.40 0.400.37 –0.25 0.250.10 –0.73 –0.10 0.13 0.22 0.35 0.47 0.57–CurtainsMaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8kCotton curtains (0.5 kg/m2) draped to3/4 area approx. 130 mm from wallCurtains (0.2 kg/m2) hung 90 mmfrom wallCotton cloth (0.33 kg/m2) foldedto 7/8 areaDensely woven window curtains90 mm from wallVertical blinds, 15 cm from wall,half opened (45 )Vertical blinds, 15 cm from wall,open (90 )Tight velvet curtainsCurtain fabric, 15 cm from wallCurtain fabric, folded, 15 cm from wallCurtains of close-woven glass mathung 50 mm from wallStudio curtains, 22 cm from wall0.30 0.45 0.65 0.56 0.59 0.71 0.710.05 0.06 0.39 0.63 0.70 0.73 0.730.03 0.12 0.15 0.27 0.37 0.42–0.06 0.10 0.38 0.63 0.70 0.73–0.03 0.09 0.24 0.46 0.79 0.76–0.03 0.06 0.13 0.28 0.49 80.150.450.521.00.400.380.551.00.500.36 0.360.65 –1.0 1.00.50 0.500.36 0.26 0.51 0.45 0.62 0.76–

Annex307Seating (2 seats per m2)MaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8kWooden chairs without cushionUnoccupied plastic chairsMedium upholstered concert chairs,emptyHeavily upholstered seats, unoccupiedEmpty chairs, upholstered with clothcoverEmpty chairs, upholstered with leathercoverUnoccupied, moderately upholsteredchairs (0.90 m 0.55 m)0.05 0.08 0.10 0.12 0.12 0.12 –0.06 0.10 0.10 0.20 0.30 0.20 0.200.49 0.66 0.80 0.88 0.82 0.70 –0.70 0.76 0.81 0.84 0.84 0.81 –0.44 0.60 0.77 0.89 0.82 0.70 0.700.40 0.50 0.58 0.61 0.58 0.50 0.500.44 0.56 0.67 0.74 0.83 0.87–Audience (unless not specified explicitly, 2 persons per m2)Octave band frequency in Hz125 250 500 1k 2k 4k 8kAreas with audience, orchestra or choirincluding narrow aislesAudience on wooden chairs, 1 per m2Audience on wooden chairs, 2 per m2Orchestra with instruments on podium,1.5 m2 per personAudience area, 0.72 persons / m2Audience area, 1 person / m2Audience area, 1.5 persons / m2Audience area, 2 persons / m2Audience in moderately upholsteredchairs 0,85 m 0,63 mAudience in moderately upholsteredchairs 0,90 m 0,55 m0.60 0.74 0.88 0.96 0.93 0.85 0.850.16 0.24 0.56 0.69 0.81 0.78 0.780.24 0.40 0.78 0.98 0.96 0.87 0.870.27 0.53 0.67 0.93 0.87 0.80 0.940.710.900.990.990.87–––––0.55 0.86 0.83 0.87 0.90 0.87–

308AnnexWall absorbersMaterialFabric-covered panel, 6 pcf rockwoolcoreFabric-covered panel, 8 pcf rockwoolcoreFacing-brick brickwork, open butt joins,brick dimensions 230 50 55 mmAcoustical plaster, approx. 25 mm thick,3.5 kg/m2/cmRockwool thickness 50 mm, 80 kg/m3Rockwool thickness 50 mm, 40 kg/m350 mm mineral wool (40 kg/m3),glued to wall, untreated surface50 mm mineral wool (70 kg/m3)300 mm in front of wallGypsum board, perforation 19.6%, holediameter 15 mm, backed by fibrous web12 Rayl, 100 mm cavity filled withmineral fibre mat 1,05 kg/m2, 7,5 RaylPerforated veneered chipboard, 50 mm,1 mm holes, 3 mm spacing, 9% holesurface ratio, 150 mm cavity filled with30 mm mineral woolFibre absorber, mineral fibre, 20 mmthick, 3.4 kg/m2, 50 mm cavityFibre absorber, mats of porous flexiblefibrous web fabric, self-extinguishingOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.46 0.93 1.0 1.0 1.0 1.0 1.00.21 0.66 1.01.0 0.97 0.98 0.980.04 0.14 0.49 0.35 0.31 0.36–0.17 0.36 0.66 0.65 0.62 0.68–0.22 0.6 0.92 0.90 0.88 0.88 0.880.23 0.59 0.86 0.86 0.86 0.86 0860.15 0.70 0.60 0.60 0.85 0.90 0.900.70 0.45 0.65 0.60 0.75 0.65 0.650.30 0.69 1.0 0.81 0.66 0.62–0.41 0.67 0.58 0.59 0.68 0.35–0.20 0.56 0.82 0.87 0.70 0.53–0.07 0.07 0.2 0.41 0.75 0.97–

Annex309Ceiling absorbersMaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8kPlasterboard ceiling on battens withlarge air-space aboveFibre absorber on perforated sheet metalcartridge, 0,5 mm zinc-plated steel,1.5 mm hole diameter, 200 mm cavityfilled with 20 mm mineral wool(20 kg/m3), inflammableFissured ceiling tilePerforated 27 mm gypsum board (16%),d 4,5 mm, 300 mm from ceilingWedge-shaped, melamine foam, ceilingtileMetal panel ceiling, backed by 20 mmSillan acoustic tiles, panel width 85 mm,panel spacing 15 mm, cavity 35 cm0.20 0.15 0.10 0.08 0.04 0.020.48 0.97 1.0 0.97 1.01.0–1.00.49 0.53 0.53 0.75 0.92 0.990.45 0.55 0.60 0.90 0.86 0.75––0.12 0.33 0.83 0.97 0.98 0.95–0.59 0.80 0.82 0.65 0.27 0.23–Special absorbersMaterialMicroperforated foil “Microsorber”(Kaefer)Microperforated glass sheets,5 mm cavityHanging absorber panels (foam),400 mm depth, 400 mm distanceHanging absorber panels (foam),400 mm depth, 700 mm distanceOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.06 0.28 0.70 0.68 0.74 0.53 –0.10 0.45 0.85 0.30 0.10 0.05–0.25 0.45 0.80 0.90 0.85 0.80–0.20 0.30 0.60 0.75 0.70 0.70–

310AnnexEquivalent absorption area, A, of single objects in m2MaterialSingle chair, woodSingle chair, upholsteredSingle person in group, sitting orstanding, 1 per 6 m2 area; typicalminimumSingle person in a group, sitting,1 per 6 m2 area; typical maximumSingle person in a group, standing,1 per 6 m2 area; typical maximumOctave band frequency in Hz125 250 500 1k 2k 4k0.02 0.02 0.03 0.04 0.04 0.040.10 0.20 0.25 0.30 0.35 0.350.05 0.10 0.20 0.35 0.50 0.658k–––0.12 0.45 0.80 0.90 0.95 1.01.10.12 0.45 0.80 1.20 1.30 1.40 1.45Air attenuation coefficient, in 10–3 m–1MaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8k10 , 30–50%10 , 50–70%10 , 70–90%20 , 30–50%20 , 50–70%20 , 45.94.45.84.13.529.021.115.820.313.510.6

Annex311Tables of random-incidence scattering coefficients, sRandom-incidence scattering coefficients according to the definition inISO 17497-1 (see also Sect. 3.3.2) are related to the surface shape and size.Relevant surface parameters are the characteristic length and depth of surface corrugations. It is assumed that the total surface area is large compared with the corrugations and the wavelengths. Note that this concept isnot applicable to single scattering objects.95To consider the amount of scattering, it is essential that the shape is described by its characteristic dimensions, the average structural depth, h,and the average structural length, a. The random-incidence scattering coefficients, s, given, are dependent on the normalized frequency a/λ f a/c.Below a/λ 0.125, the random-incidence scattering coefficient, s, is generally smaller than 0.05.The data listed are rounded values from publications by (Vorländer andMommertz 2000; Jeon et al. 2003; Jeon et al. 2004; Embrechts et al. 2004)and results from other measurements. More information on diffusers andmore detailed data are in given in (Cox and D’Antonio 2004).ahhaaFig. A.1. Definition of surface dimensions of 1-D and 2-D corrugations95See Cox and D’Antonio (2004) for more information on the single-object diffusion coefficient.

312Annex2-D surfacesa/λ0.125 0.25 0.5 10.1 0.2 0.5 0.620.640.780.8Densely placed identical hemispheresof radius h, h/a 0.5 in regular pattern0.05 0.05 0.10.60.60.6–Hemispheres of average radius h,randomly distributed, coverage 25%(h/a 0.15)0.10.30.40.40.4Wooden cubes, regular pattern,h/a 0.50.05 0.05 0.25 0.30.70.9–Wooden cubes, random distanceand orientation h/a 0.50.05 0.05 0.20.30.60.7–Ceramic tiles, densely packed;heights h distributed in a rangebetween 1 and 10, average h/a 1.0.10.70.70.7–Shape of corrugationHemispheres of average radius h,randomly distributed, coverage40% (h/a 0.25)0.10.40.20.9

Annex3132-D surfaces (cont’d)Shape of corrugationWooden boxes of various sizes,random pattern, average h/a 0.5Trapezoidal gratingh/a 0.5a/λ0.125 0.25 0.5 10.05 0.05 0.15 0.420.740.98–0.05 0.05 0.10.80.90.90.91-D surfacesShape of corrugationStairs (sawtooth) h/a 0.3a/λ0.125 0.25 0.5 10.05 0.05 0.2 0.3240.4 0.458–Aperiodically distributed rectangularbattens, h/a 0.50.10.60.50.40.30.4–Periodically distributed rectangularbattens, h/a 0.50.10.60.60.50.50.5–

314Annex1-D surfaces (cont’d)Shape of corrugationPeriodically distributed hemicylindersh/a 0.25Sinusoidal, h/a 0.31a/λ0.125 0.25 0.5 10.10.1 0.3 0.720.840.80.050.80.85 –0.05 0.20.78–DiffusersTypeOctave band frequency in Hz125 250 500 1k 2k 4k 8kRPG “Skyline”0.010.08 0.45 0.82 1.0RPG “QRD”0.060.15 0.45 0.95 0.88 0.91 –(Courtesy of RPG Diffusor Systems, Inc.; www.rpginc.com)––

Annex315Seating and audienceShape of corrugationTheatre audienceOctave band frequency in Hz125 250 500 1k 2k 4k 8k0.3 0.5 0.6 0.6 0.7 0.7 0.7Amphitheatre steps, length 82 cm,height 30 cm (Farnetani 2005)0.05 0.45 0.75 0.90.9––Rows of classroom tables and personson chairs0.20.50.60.60.30.40.5Round Robin III – wall and ceilingShape of corrugationRectangular and prism boxes(studio wall)“Round Robin III”(after (Bork 2005a))Trapezoidal boxes(studio ceiling)“Round Robin III”(after (Bork 2005a))Octave band frequency in Hz125 250 500 1k 2k 4k 8k0.50 0.90 0.95 0.95 0.95 0.95 –0.13 0.56 0.95 0.95 0.95 0.95 –

316AnnexTables of sound reduction indices, RMasonryMaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8kLightweight concrete (1200 kg/m3)140 mmConcrete (2300 kg/m3) 240 mmAerated concrete (400 kg/m3) 150 mm,render 2 10 mmBrick (1400 kg/m3) 175 mm,render 2 15 mmCalcium silicate (1200 kg/m3) 115 mmCalcium silicate (2000 kg/m3) 175 mm,render 2 15 mm30.9 32.1 42.0 49.1 54.4 59.9 4545.6 51.9 58.7 66.0 70.7 72.3 6324.1 25.9 35.6 42.4 47.7 53.2 3928.6 43.0 50.3 58.1 63.2 68.1 5229.1 33.0 40.1 47.8 54.9 60.4 4439.6 45.6 52.7 60.3 65.4 70.0 56Lightweight constructionsMaterialGypsum board 2 12.5 mmwith 25 mm filled gap2 15 mm WallBoard 146 mm,‘C’ studs, 25 mm Isowool APR 1200Octave band frequency in Hz125 250 500 1k 2k 4k 8k30.0 43.0 53.0 60.0 65.0 50.0 5133.8 35.6 51.7 56.2 59.5 49.8 51

Annex317DoorsMaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8kChipboard. 13 mm, P 3 20 mm,chipboard. 13 mmVeener 6 mm, TW 1 40 mm, gypsumboard. 12.5 mm, veneer 10 mmVeneer 6 mm, TW 1 50 mm,veneer 10 mmWood fibre 3.5 mm, slats,wood fibre 3.5 mm19.2 35.0 37.9 3.9 35.6 42.0 3822.0 33.0 40.0 40.0 44.0 40.0 4021.0 21.0 36.0 37.0 41.0 40.0 3527.0 27.0 29.0 28.0 30.0 35.0 30GlazingMaterialOctave band frequency in Hz125 250 500 1k 2k 4k 8kSingle pane 3 mm18.7 22.0 24.2 28.6 34.7 29.4 296 mm23.4 27.4 31.8 35.2 26.8 35.5 3210 mm26.6 30.1 32.2 30.6 34.9 45.3 3312 mm31.3 33.1 31.5 32.3 39.4 45.7 34Double glazing 4-6-425.7 25.0 23.4 34.1 40.4 36.5 31Double glazing 8-12-829.2 27.3 31.1 36.8 35.0 46.7 34

ReferencesAhnert W, Feistel R (1991) Binaural Auralization from a Sound System Simulation Programme. Proc. 91th AES Convention, New York, Preprint 3127Alarcão D, Bento Coelho JL (2003) Lambertian enclosures – a first step towardsfast room acoustics simulation. Building Acoustics 10, 33Allen JB, Berkley DA (1979) Image method for efficiently simulating small-roomacoustics. J. Acoust. Soc. Am. 65, 943Aretz M (2007) Modellierung der wechselseitigen Kopplung von Luftschall mitPlattenstrukturen für raumakustische FEM Simulationen (Modelling of themutual coupling of airborne sound with plate structures for room acousticFEM simulations). Diploma (MSc) thesis RWTH Aachen University, Aachen,GermanyAtal BS, M.R. Schroeder MR (1963) Apparent sound source translator, Tech. report, US Patent 3,236,949, February 23, 1963.Atal B, Schroeder MR, Sessler GM (1965) Subjective reverberation time and itsrelation to sound decay. Proc. ICA, Liège, Belgium, G32AUSIM3D (2006): http://www.ausim3d.com.Barron M (1971) The subjective effects of first reflections in concert halls – theneed for lateral reflections. J. Sound Vib. 15, 475Barron M (2000) Auditorium acoustics and architectural design. E&FN Spon,LondonBass HE, Sutherland LC, Zuckerwar AJ, Blackstock DT, Hester DM (1995) Atmospheric absorption of sound: Further developments. J. Acoust. Soc. Am.97, 680Bauer BB (1963) Stereophonic earphones and binaural loudspeakers. J. AudioEng. Soc. 9, 148Begault D (1991) Challenges to the successful implementation od 3-D sound.J. Audio Eng. Soc. 39, 864Begault D (1994) 3-D sound for virtual reality and multimedia. Academic PressProfessional, Cambridge, MABehler G, Müller S (2000) Technique for the derivation of wide band room impulse response. Proc.Tecniacustica / FIA Madrid, paper aaq11Behler G, Genuit K, Sottek R, Vorländer M (2006) Description of broadbandstructure-borne and airborne noise transmission from the powertrain. Proc.Fisita, World Automotive Congress, Yokohama, JapanBento Coelho JL, Alarcão D, Almeida AM, Abreu T, Fonseca N (2001) Contributions on room acoustical computer simulation – room acoustics design bya sound energy transition approach. Acustica united wih Acta Acustica 86, 903

320ReferencesBerkhout AJ (1988) A holographic approach to acoustic control. J. Audio Eng.Soc. 36, 977Biot MA, Tolstoy I (1957) Formulation of wave propagation in infinite media bynormal coordinates with an application to diffraction. J. Acoust. Soc. Am. 29,381Blauert J (1996) Spatial hearing: The psychophysics of human sound localization,2nd edn. MIT Press Cambridge, MABlauert J (Ed.) (2005) Communication acoustics. Springer Berlin HeidelbergNew YorkBlesser B (2001) An interdisciplinary synthesis of reverberation viewpoints.J. Audio Eng. Soc. 49, 867Börger G, Blauert J, Laws P (1977) Sterephone Kopfhörerwiedergabe mit Steuerung bestimmter Übertragungsfaktoren durch Kopfdrehbewegungen. Acustica39, 22Borish J (1984) Extension of the image model to arbitrary polyhedra. J. Acoust.Soc. Am. 75, 1827Bork I (2000) A comparison of room simulation software – the 2nd round robin onroom acoustical computer simulation. Acustica united with Acta Acustica 84,943Bork I (2005a) Report on the 3rd round robin on room acoustical computer simulation, Part I: Measurements. Acta Acustica united with Acustica 91, 740Bork I (2005b) Report on the 3rd round robin on room acoustical computer simulation, Part II: Calculations. Acta Acustica united with Acustica 91, 753Braasch J (2005) Modelling of binaural hearing. In: Blauert J (ed) Communicationacoustics, Springer Berlin Heidelberg New York.Bronkhorst AW, Veltman JAH, van Breda L (1996) Application of a three-dimensional auditory display in a flight task. Hum. Fact.38, 23Brungart DS, Rabinowitz WM, Durlach NI (1996) Auditory localization ofa nearby point source. J. Acoust. Soc. Am. 100, 2593Brungart DS, Simpson BD, McKinley RL, Kordik AJ, Dallman RC, OvenshireDA (2004) The interaction between head-tracker latency, source duration, andresponse time in the localization of virtual sound sources. Proc. ICAD ‘04 –10th meeting of the International Conference on Auditory Display, SydneyBrunskog J, Hammer P (2003) The interaction between the ISO tapping machineand lightweight floors. Acta Acustica united with Acustica 89, 296Burkhard MD, Sachs RM (1

input data used in room acoustics simulation software. To predict sound insulation, the sound reduction index or other standardized sound trans-mission data are required. Most data in the following tables are extracted from th

Related Documents:

(mailto:cern.reception@cern.ch) cern.reception@cern.ch 41 (0)22 767 76 76 European Organization for Nuclear Research CERN,CH-1211 Genève 23, Switzerland Organisation Européenne pour la Recherche Nucléaire, F-01631 CERN Cedex, France Lat N: 46.2314284 Long E: 6.0539718 R

They are prepared with one of the CAD systems used at CERN and they are formatted in accordance with the appropriate CERN design standards, [ 3], [ 4 ], [5].! A copy of the native CAD data is transferred to CERN and stored in the corresponding CERN CAD database. The transfer to CERN of the CAD data shall take place before drawings are released. -

Annex 5: Response ECCO Annex 6: Response Gabor Annex 7: Response M&S Annex 8: Response PUMA Annex 9: Response Van Lier Annex 10: Response Primark Annex 11: Response MVO Nederland (CSR Netherlands) Annex 12: Response Leather Working Group . Child labour in the production of brand name leather shoes. in India." .

CERN PS”, CERN/PS 2000-038 (RF) References. 2 J. Belleman - CERN A new trajectory measurement system for the CERN PS Booster CB TT2 TT70 East hall LEIR North hall Linac II South hall Y Radi

ICAO Annex 1 – Amdt.172 Annex 6 – Amdt.38 PANS-TRG – Amdt. 3 Doc 10011 02/2014 ICAO amendments to Annex 1, Annex 6 and PANS-TRG (Doc 9868) to a) Meet the UPRT requirements for an MPL, contained in Annex 1 b) Provide UPRT recommendations for a CPL(A), contained in Annex 1 c) Meet the requirements for type-rating, contained

Bills of Exchange Annex Equities Annex Gilts Annex Italian Annex Japanese Annex ** RITS Annex Abu Dhabi X X X X X X Australia X X X X X X X X Bahamas X X X X X X Bahrain X X X X X X Bermuda X X X X X X British Virgin Islands X X X X X X Cayman Islands X X X X X X . Section 730 of the UK Taxes Act

Annex 6 Operation of Aircraft Annex 7 Aircraft Nationality and Registration Marks Annex 8 Airworthiness of Aircraft Annex 9 Facilitation Annex 10 Aeronautical Telecommunications Annex 11 Air Traffic Services . Therefore, ICAO has implemented the

EU GMP Guide-Annex 15 Qualification & Validation draft released In February 2014, a draft of the revised Annex 15 was released by the European Commission (EC) for public comment. The draft version is based on an EMA Concept Paper, published in November 2012 which outlined various reasons for the revision of Annex 15.File Size: 553KBPage Count: 17Explore furtherEU GMP Annex 15: Qualification and Validation - ECA Acad www.gmp-compliance.orgEU GMP Annex 15 Revisions: Improving Qualification and .www.cleanroomtechnology.c GUIDELINES ON VALIDATION APPENDIX 6 VALIDATION O www.who.intGuideline on Process Validationwww.ema.europa.euEudraLex - Volume 4 - Good Manufacturing Practice (GMP .ec.europa.euRecommended to you b