Basic- NMR- Experiments

2y ago
31 Views
2 Downloads
504.91 KB
129 Pages
Last View : 24d ago
Last Download : 3m ago
Upload by : Laura Ramon
Transcription

150BasicNMRExperimentsMMO January 2000Version 2.0

2CONTENTSINTRODUCTION8CHAPTER 2 - DETERMINATION OF THE PULSE-DURATION9SUMMARY9Experiment 2.1 - Determination of the 90 1H Transmitter Pulse Duration91310110Experiment 2.2 - Determination of the 90 C Transmitter Pulse DurationExperiment 2.3 - Determination of the 90 H Decoupler Pulse Duration11113Experiment 2.5 - The 90 C Decoupler Pulse with Inverse Configuration11Experiment 2.6 - Composite Pulses12Experiment 2.7 - Radiation Damping13Experiment 2.8 - Pulse and Receiver Phases13Experiment 2.9 - Determination of Radiofrequency Power14Experiment 2.4 - The 90 H Pulse with Inverse Spectrometer ConfigurationCHAPTER 3 - ROUTINE NMR SPECTROSCOPY AND STANDARD TESTS15SUMMARY1511513Experiment 3.2 - The Standard C NMR Experiment16Experiment 3.3 - The Application of Window Functions16Experiment 3.4 - Computer-aided Spectral Analysis17Experiment 3.1 - The Standard H NMR Experiment1Experiment 3.5 - Line-Shape Test for H NMR Spectroscopy1Experiment 3.6 - Resolution Test for H NMR Spectroscopy1Experiment 3.7 - Sensitivity Test for H NMR Spectroscopy13Experiment 3.8 - Line-Shape Test for C NMR Spectroscopy13Experiment 3.9 - ASTM Sensitivity Test for C NMR Spectroscopy131718181920Experiment 3.10 - Sensitivity Test for C NMR Spectroscopy20Experiment 3.11 - Quadrature Image Test21Experiment 3.12 - Dynamic Range Test for Signal Amplitudes21Experiment 3.13 – 13 Phase Stability Test22CHAPTER 4 - DECOUPLING TECHNIQUES23SUMMARY23Experiment 4.1 - Decoupler Calibration for Homonuclear Decoupling23Experiment 4.2 - Decoupler Calibration for Heteronuclear Decoupling24

3Experiment 4.3 - Low Power Calibration for Heteronuclear Decoupling25Experiment 4.4 - Homonuclear Decoupling25Experiment 4.5 - Homonuclear Decoupling at Two Frequencies26Experiment 4.6 - The Homonuclear SPT Experiment26Experiment 4.7 - The Heteronuclear SPT Experiment27Experiment 4.8 - 1D Nuclear Overhauser Difference Spectroscopy27Experiment 4.9 - 1D NOE Spectroscopy with Multiple Selective Irradiation28113Experiment 4.10 - H Off-Resonance Decoupled C NMR Spectra1Experiment 4.11 - The Gated H-Decoupling Technique1Experiment 4.12 - The Inverse Gated H-Decoupling Technique113Experiment 4.13 - H Single Frequency Decoupling of C NMR Spectra11329293030Experiment 4.14 - H Low Power Decoupling of C NMR Spectra31Experiment 4.15 - Measurement of the Heteronuclear Overhauser Effect32CHAPTER 5 - DYNAMIC NMR SPECTROSCOPY33SUMMARY33Experiment 5.1 - Low Temperature Calibration with Methanol33Experiment 5.2 - High Temperature Calibration with 1,2-Ethandiol331Experiment 5.3 - Dynamic H NMR Spectroscopy on Dimethylformamid34Experiment 5.4 - The Saturation Transfer Experiment34Experiment 5.5 - Measurement of the Rotating Frame Relaxation Time T1p35CHAPTER 6 - 1D MULTIPULSE SEQUENCES36SUMMARY36Experiment 6.1 - Measurement of the Spin-Lattice Relaxation Time T136Experiment 6.2 - Measurement of the Spin-Spin Relaxation Time T237133813Experiment 6.4 - C NMR Spectra with APT38Experiment 6.5 - The Basic INEPT Technique39Experiment 6.6 - INEPT 40Experiment 6.7 - Refocused INEPT40Experiment 6.8 - Reverse INEPT41Experiment 6.9 - DEPT-13542Experiment 6.3 - C NMR Spectra with SEFT13Experiment 6.10 - Editing C NMR Spectra with DEPT42Experiment 6.11 - Multiplicity Determination with PENDANT43Experiment 6.12 - 1D-INADEQUATE44Experiment 6.13 - The BIRD Filter45Experiment 6.14 - TANGO45

4Experiment 6.15 - The Heteronuclear Double Quantum Filter46Experiment 6.16 - Purging with a Spin-Lock Pulse46Experiment 6.17 - Water Suppression by Presaturation47Experiment 6.18 - Water Suppression by the Jump and Return Method48CHAPTER 7 - NMR SPECTROSCOPY WITH SELECTIVE PULSES49SUMMARY49o 149o 150Experiment 7.1 - Determination of a Shaped 90 H Transmitter PulseExperiment 7.2 - Determination of a Shaped 90 H Decoupler Pulseo 13Experiment 7.3 - Determination of a Shaped 90C Decoupler PulseExperiment 7.4 - Selective Excitation with DANTE5051Experiment 7.5 - SELCOSY521Experiment 7.6 - SELINCOR: Selective Inverse H,C Correlation via J (C,H)52Experiment 7.7 - SELINQUATE53Experiment 7.8 - Selective TOCSY54Experiment 7.9 - INAPT55Experiment 7.10 - Determination of Long-Range C,H Coupling Constants56Experiment 7.11 - SELRESOLV57Experiment 7.12 - SERF57CHAPTER 8 - AUXILIARY REAGENTS, QUANTITATIVE DETERMINATIONS ANDREACTION MECHANISM59SUMMARY59Experiment 8.1 - Signal Separation Using a Lanthanide Shift Reagent59Experiment 8.2 - Signal Separation of Enantiomers Using a Chiral Shift Reagent60Experiment 8.3 - Signal Separation of Enantiomers Using a Chiral Solvating Agent60Experiment 8.4 - Determination of Enantiomeric Purity with Pirkle’s Reagent6131Experiment 8.5 - Determination of Enantiomeric Purity by P NMR61Experiment 8.6 - Determination of Absolute Configuration by the Advanced Mosher Method62Experiment 8.7 - Aromatic Solvent-Induced Shift (ASIS)62Experiment 8.8 - NMR Spectroscopy of OH-Protons and H/D Exchange63Experiment 8.9 - Isotope Effects on Chemical Shielding6413Experiment 8.10 - pKa Determination with C NMR64Experiment 8.11 - The Relaxation Reagent Cr(acac)365Experiment 8.12 - Determination of Paramagnetic Susceptibility by NMR65113Experiment 8.13 - H and C NMR of Paramagnetic Compounds66Experiment 8.14 - The CIDNP Effect671Experiment 8.15 - Quantitative H NMR Spectroscopy: Determination of the Alcohol Content ofPolish Vodka67

5131Experiment 8.16 - Quantitative C NMR Spectroscopy with Inverse Gated H-Decoupling68Experiment 8.17 - NMR Using Liquid-Crystal Solvents68CHAPTER 9 - HETERONUCLEAR NMR SPECROSCOPY70SUMMARY70115Experiment 9.1 - H-Decoupled N NMR Spectra with DEPT115Experiment 9.2 - H-Coupled N NMR Spectra with DEPT71197129722973Experiment 9.3 - F NMR SpectroscopyExperiment 9.4 - Si NMR Spectroscopy with DEPTExperiment 9.5 - Si NMR Spectroscopy with Spin-Lock PolarizationExperiment 9.6 -70119Sn NMR Spectroscopy7327411741775Experiment 9.7 - H NMR SpectroscopyExperiment 9.8 - B NMR SpectroscopyExperiment 9.9 - O NMR Spectroscopy with RIDEExperiment 9.10 -47/49Ti NMR Spectroscopy with ARING76CHAPTER 10 - THE SECOND DIMENSION77SUMMARY7717713Experiment 10.2 - 2D J-Resolved C NMR Spectroscopy78Experiment 10.3 - The Basic H,H-COSY-Experiment79Experiment 10.4 - Long-Range COSY79Experiment 10.5 - Phase-Sensitive COSY80Experiment 10.6 - Phase-Sensitive COSY-4581Experiment 10.7 - E.COSY82Experiment 10.8 - Double Quantum Filtered COSY with Presaturation82Experiment 10.9 - Fully Coupled C,H Correlation (FUCOUP)83Experiment 10.10 - C,H Correlation by Polarization Transfer (HETCOR)84Experiment 10.11 - Long-Range C,H Correlation by Polarization Transfer85Experiment 10.12 - C,H Correlation via Long-Range Couplings (COLOC)86Experiment 10.13 - The Basic HMQC Experiment86Experiment 10.14 - Phase-Sensitive HMQC with BIRD Filter and GARP Decoupling87Experiment 10.15 - Poor Man’s Gradient HMQC88Experiment 10.16 - Phase-Sensitive HMBC with BIRD Filter89Experiment 10.17 - The Basic HSQC Experiment90Experiment 10.18 - The HOHAHA or TOCSY Experiment91Experiment 10.19 - The NOESY Experiment92Experiment 10.20 - The CAMELSPIN or ROESY Experiment93Experiment 10.1 - 2D J-Resolved H NMR Spectroscopy

6Experiment 10.21 - The HOESY Experiment94Experiment 10.22 - 2D-INADEQUATE94Experiment 10.23 - The EXSY Experiment95Experiment 10.24 - X, Y Correlation96CHAPTER 11 - NMR SPECTROSCOPY WITH PULSED FIELD GRADIENTS98SUMMARY98Experiment 11.1 - Calibration of Pulsed Field Gradients98Experiment 11.2 - Gradient Preemphasis99Experiment 11.3 - Gradient Amplifier Test99Experiment 11.4 - Determination of Pulsed Field Gradient Ring-Down Delays100Experiment 11.5 - The Pulsed Gradient Spin-Echo Experiment100Experiment 11.6 - Excitation Pattern of Selective Pulses101Experiment 11.7 - The Gradient zz-Filter102Experiment 11.8 - gs-SELCOSY102Experiment 11.9 - gs-SELTOCSY103Experiment 11.10 - DPFGSE-NOE104Experiment 11.11 - gs-SELINCOR105Experiment 11.12 - GRECCO106Experiment 11.13 - WATERGATE106Experiment 11.14 - Water Suppression by Excitation Sculpting107CHAPTER 12 - 2D NMR SPECTROSCOPY WITH FIELD GRADIENTS108SUMMARY108Experiment 12.1 - gs-COSY108Experiment 12.2 - Phase-Sensitive gs-DQF-COSY109Experiment 12.3 - gs-HMQC110Experiment 12.4 - gs-HMBC110Experiment 12.5 - ACCORD-HMBC111Experiment 12.6 - Phase-Sensitive gs-HSQC with Sensitivity Enhancement112Experiment 12.7 - gs-TOCSY113Experiment 12.8 - gs-HMQC-TOCSY114Experiment 12.9 - 2Q-HMBC1151Experiment 12.10 - Gradient-Selected H-Detected 2D INEPT-INADEQUATE116Experiment 12.11 - gs-NOESY117Experiment 12.12 - gs-HSQC-NOESY118Experiment 12.13 - gs-HOESY119115Experiment 12.14 - H, N Correlation with gs-HMQC119

7CHAPTER 13 - THE THIRD DIMENSION121SUMMARY121Experiment 13.1 - 3D HMQC-COSY121Experiment 13.2 - 3D gs-HSQC-TOCSY122Experiment 13.3 - 3D H,C,P-Correlation122Experiment 13.4 - 3D HMBC123CHAPTER 14 - SOLID-STATE NMR SPECTROSCOPY124SUMMARY124Experiment 14.1 - Shimming Solid-State Probe-Heads124Experiment 14.2 – Adjusting the Magic Angle125Experiment 14.3 - Hartmann-Hahn Matching126Experiment 14.4 – The Basic CP/MAS Experiment127Experiment 14.5 - TOSS127Experiment 14.6 - SELTICS128Experiment 14.7 - Multiplicity Determination in the Solid-State129

8,QWURGXFWLRQHere you will find some information about the Bruker pulse programs andparameters, which are needed to repeat the experiments shown in thebook: “150 and More Basic NMR Experiments” written by S. Braun, H.-O.Kalinowski, S. Berger, VCH Weinheim, Germany.First you will find the experiment number, followed by the Bruker pulseprogram, the settings of the different channels and a list of the acquisitionand processing parameters.The number of the chapters are identically with the number of thechapters in the book.The book contains a lot of very interesting experiments. If you want torepeat such experiments with a BRUKER Avance instrument you needthe pulse program and the parameters belonging to the pulse program.The needed parameters are sometimes different or more then mentionedin the book. BRUKER has its own nomenclature for the parameters,which is different from the book. For example the 90 transmitter pulse isalways P1, D2 is a delay depending on the coupling constant (1/2 J) andso on.It is possible that the needed pulse program isn’t yet in your library, in thatcase send me an e-mail: Monika.Moertter@bruker.de.

9Chapter 2- Determination of the Pulse-DurationSummaryExperimentPulse decp902.6exp2 6a.mo andexp2 6b.mozg0zgzgDetermination of the 90 HTransmitter Pulse-Duration13Determination of the 90 CTransmitter Pulse-Duration1Determination of the 90 HDecoupler Pulse-Duration1The 90 H Pulse with InverseSpectrometer Configuration13The 90 C Decoupler Pulsewith Inverse ConfigurationComposite Pulses2.72.82.91Radiation DampingPulse and Receiver PhasesDetermination of RadiofrequencyPowerExperiment 2.1- Determination of the 90 1H Transmitter Pulse Durationpulse program:zg01D-sequence, using p0 for any flip angle. Result is a routine proton NMRspectrum.Setting of the needed channels:F1:F2:1HoffAcquisition parameters1PL1 : F1 channel - high power level for Htransmitter pulse, here 3dB was usedD1 : 30 sec - relaxation delaySW : 500 HzNS : 1Processing parametersSI :2 KWDW :EMFT :fourier transformationbaseline correction :ABS1P0 : F1 channel - H transmitter pulse, to bevaried, 1 usec as initial value andincrease by 2 usecTD : 4 KO1 : on resonance of CHCl3 signalRG : receiver gain for correct ADC inputBC mod :quadLB :1 Hzphase correction :adjust the phase of thefirst spectrum to pureabsorption and for all otherexperiments use the samevalues for the phasecorrection (PK)plot :use XWINPLOT

10Experiment 2.213- Determination of the 90 C Transmitter Pulse Durationpulse program:zg0dc1D-sequence with F2 decoupling, using p0 for any flip angle. Result is a standard13C NMR spectrum with proton broad-band decoupling.Setting of the needed channels:F1:F2:131CHAcquisition parameters13PL1 :F1 channel - high power level for Ctransmitter pulse, here 3 dB was usedPL12 :F2 channel - power level for CPDdecouplingCPD2 :WALTZ16 - CPD decouplingsequence, defined by cpdprg2D1 :60 sec - relaxation delayTD :4 K13O1 :on resonance of C signalNS :1Processing parametersSI :2 KWDW :EMFT :fourier transformation13P0 :F1 channel - C transmitter pulse, 7 usecfor experiment a and 14 usec forexperiment bPCPD2 :F2 channel – 90 pulse fordecoupling sequenceD11 :30 msec - delay for disk I/OSW :500 Hz1O2 :middle of H NMR spectrumRG :receiver gain for correct ADC inputBC mod :quadLB :1 Hzphase correction :adjust the phase of thefirst spectrum to pureabsorption and for allother experiments use thesame values for thephase correction (PK)plot : use XWINPLOTbaseline correction : ABSExperiment 2.31- Determination of the 90 H Decoupler Pulse Durationpulse program:decp901D-sequence to determine the 90 decoupler pulse-durationSetting of the needed channels:F1:F2:131CHAcquisition parameters13PL1 :F1 channel - high power level for Ctransmitter pulse1PL2 :F2 channel - high power level for Hdecoupler pulse, here 0 dB was usedD1 :60 sec - relaxation delayTD :4 K13O1 :on resonance of C signalNS :113P1 :F1 channel - 90 C transmitter pulse1P3 :F2 channel - H decoupler pulse, use 1usec as starting value, to be variedD2 :1/[2J(C,H)] 2.36 msec, calculated from1J(C,H) 212 HzSW :500 Hz1O2 :on resonance of H NMR signalRG :receiver gain for correct ADC input

11In a second set of experiments use high decoupler attenuation (PL2 22 dB) and vary it so thatP3 is in the region of 100 usec (for WALTZ).Processing parametersSI :2 KWDW :EMFT :fourier transformationBC mod :quadLB :2 Hzphase correction :adjust the doublet inantiphase and use thesame values for the otherphase corrections (PK).plot :use XWINPLOTbaseline correction :ABSExperiment 2.41- The 90 H Pulse with Inverse Spectrometer Configurationpulse program:zg0compare with Experiment 2.1Setting of the needed channels:F1:F2:1HoffAcquisition parameters1PL1 :F1 channel - high power level for Htransmitter pulseD1 :5 sec - relaxation delayTD :4 KO1 :100 Hz towards higher frequency ofCHCl3 signalNS :81P0 :F1 channel - H transmitter pulse, near360 as starting value, to be variedSW :500 HzRG : receiver gain for correct ADC inputProcessing parametersNo signal processing is required, since the FID is directly observed.Experiment 2.513- The 90 C Decoupler Pulse with Inverse Configurationpulse program:decp90compare with Experiment 2.3Setting of the needed channels:F1:F2:1HC13Acquisition parameters1PL1 :F1 channel - high power level for Htransmitter pulse13PL2 :F2 channel - high power level for Cdecoupler pulse, here 0 dB was usedD1 :20 sec - relaxation delayTD :4 K1O1 :on resonance of H signal1P1 :F1 channel - 90 H transmitter pulse13P3 :F2 channel - C decoupler pulse, 1 usecas starting value, to be varied.D2 :1/[2J(C,H)] 2.33 msec, calculated from1J(C,H) 215 HzSW :500 Hz13O2 :on resonance of C NMR signal

12NS :1RG :receiver gain for correct ADC inputIn a second set of experiments use high decoupler attenuation (PL2) and vary it so that P3becomes in the range of 70 usec (for GARP).Processing parametersSI :2 KWDW :EMFT :fourier transformationBC mod :quadLB : 1 Hzphase correction :adjust the phase of the bigsignal descended from the12protons bound to C indispersion: look for a clean13anti phase pattern of the Csatellites and use the samevalues for the next phasecorrection (PK).plot :use XWINPLOTbaseline correction :ABSExperiment 2.6- Composite Pulsesa)pulse program: exp2 6a.moSequence with a normal 180 pulse to compensate pulse imperfections.Setting of the needed channels:F1:F2:1HoffAcquisition parametersPerform two experiments, one with the pulse program exp2 6.mo and one with exp2 2b.mo.Use the same parameters for both experiments.11P1 :F1 channel – 90 H transmitter pulsePL1 :F1 channel - high power level for Htransmitter pulse, 3dB was used here1P2 :F1 channel – 180 H transmitter pulseD1 :30 sec - relaxation delayD15 :10 msec - fixed delayTD :64 KSW :80 ppmO1 :10 kHz towards higher frequencies fromthe resonance of the CHCl3 signalNS :8RG : receiver gain for correct ADC inputProcessing parametersUse the same processing parameters for both experimentsSI :32 KBC mod :quadWDW :EMLB :1 HzFT :fourier transformationphase correction :adjust the phase of theCHCl3 signal to benegativebaseline correction :ABSplot :use XWINPLOTb)pulse program: exp2 6b.mooA sequence with a 180 composite pulse to compensate pulse imperfections.Setting of the needed channels:F1:F2:1Hoff

13Acquisition parameters1PL1 :F1 channel - high power level for Htransmitter pulse, 3dB was used here1P1 :F1 channel – 90 H transmitter pulse1D1 :30 sec - relaxation delayTD :64 KO1 :10 kHz towards higher frequencies fromthe resonance of the CHCl3 signalNS :8P2 :F1 channel – 180 H transmitter pulseD15 :10 msec - fixed delaySW :80 ppmRG : receiver gain for correct ADC inputProcessing parametersUse the same processing parameters for both experimentsSI :32 KBC mod :quadWDW :EMLB :1 HzFT :fourier transformationphase correction :adjust the phase of theCHCl3 signal to benegativebaseline correction :ABSplot :use XWINPLOTExperiment 2.7- Radiation Dampingpulse program:zg0compare with Experiment 2.1Setting of the needed channels:F1:F2:1HoffAcquisition parametersPerform two experiments with different pulses.11P0 :F1 channel - H transmitter pulse, a) 360 PL1 :F1 channel - high power level for Htransmitter pulse (3 dB)and b) 180 D1 :2 sec - relaxation delayTD :4 KSW :500 HzO1 :on resonance of H2O signalNS :1RG : receiver gain for correct ADC inputProcessing parametersprocess the two FIDs with the sameparametersSI :2 KWDW :EMFT :fourier transformationbaseline correction :ABSBC mod :quadLB :0.3 Hzphase correction :adjust the phase to pureabsorptionplot :use XWINPLOT, both traces should beplotted on the same vertical scaleExperiment 2.8- Pulse and Receiver Phasespulse program:zgo1D-sequence, using a 90 pulse. Result is a routine proton NMR spectrum

14Setting of the needed channels:F1:F2:1HoffAcquisition parametersDisplay both quadrature channels of the receiver. Record an FID with the offset on resonanceand change the transmitter phase in the pulse program so that only the left quadrature channelreceives a signal. Then set the offset 50 Hz off resonance and repeat the experiment. Nowochange the transmitter phase in 90 steps and observe the changes on both FID channels andon the spectrum.11P1 :F1 channel – 90 H transmitter pulsePL1 :F1 channel - high power level for Htransmitter pulse (3 dB)D1 :1 sec - relaxation delayTD :4 KSW :500 HzNS :1O1 :50 Hz off resonance of CHCl3 signalRG : receiver gain for correct ADC inputProcessing parametersSI :2 KWDW :EMFT :fourier transformationBC mod :quadLB :1 Hzphase correction :adjust the phase of the firstspectrum for pureabsorption and use thesame values for the otherphase corrections (PK).plot :use XWINPLOTbaseline correction :ABSExperiment 2.9- Determination of Radiofrequency Powerpulse program:zgcompare with Experiment 2.8Setting of the needed channels:F1:F2:1HoffAcquisition parameters1PL1 :F1 channel - high power level for Htransmitter pulse, 0 dB initial value, to beincreased in 3 dB steps.D1 :60 sec - relaxation delayTD :4 K1O1 :on resonance of H signalNS :1Processing parametersSI :2 KWDW : EMFT :fourier transformationbaseline correction :ABS1P1 :F1 channel - 90 H transmitter pulse, to bedeterminred for each attenuation level.SW :500 HzRG :receiver gain for correct ADC inputBC mod :quadLB :1 Hzphase correction :adjust the phase to pureabsorption and use the samevalues for the next phasecorrection (PK).

15Chapter 3- Routine NMR Spectroscopy and Standard TestsSummaryExperimentPulse se.moThe Standard H NMRExperiment13The Standard C NMRExperimentThe Application of WindowFunctionsComputer-aided SpectralAnalysis1Line-Shape Test for H NMRSpectrosco

5 Experiment 8.16 - Quantitative 13C NMR Spectroscopy with Inverse Gated 1H-Decoupling 68 Experiment 8.17 - NMR Using Liquid-Crystal Solvents 68 CHAPTER 9 - HETERONUCLEAR NMR SPECROSCOPY 70 SUMMARY 70 Experiment 9.1 - 1H-Decoupled 15N NMR Spectra with DEPT 70 Experiment 9.2 - 1H-Coupled 15N NMR Spectra

Related Documents:

Aug 01, 2018 · 1H NMR, 19F NMR, 31P NMR experiments -about 3 5 mg 13C NMR short run experiment (0.5 -1 hr) about 20 50 mg; long run experiment about 5 10 mg 0.6-0.7 ml of NMR solvent is appropriate for the right solvent level in NMR tube. Unsuitable solvent level can lea

1985 –First Protein Structure solved by NMR 2009 –First 1 Gigahertz NMR Spectrometer (23.5 T) 2019 –High Temperature Superconducting Magnets 1.1 GHz NMR, St. Jude, Memphis TN 1.2 GHz NMR, Florence, Italy 1938 –NMR of LiCl molecular beams. Rabi (Columbia University) 1946 –NMR

NMR SOLVENTS Deuterated Solvents for NMR NMR Solvents NMR Reference Standards NMR Tubes. Cambridge Isotope Laboratories, Inc. www.isotope.com s tel: 978-749-8000 800-322-1174 (USA) fax: 978-749-2768 cilsales@isotope.com TABLE OF CONTENTS

5 nuclear magnetic resonance (nmr) spectroscopy 33 5.1 the physics of nuclear spins and nmr instruments 33 5.2 continuous wave (cw) nmr spectroscopy 37 5.3 fourier-transform (ft) nmr spectroscopy 39 5.4 chemical shift in 1h nmr spectroscopy 40 5.5 spin-spin coupling in 1h nmr spectroscopy 50

14.1 An Introduction to NMR Spectroscopy A. The Basics of Nuclear Magnetic Resonance (NMR) Spectroscopy nuclei with odd atomic number have a S ½ with two spin states ( 1/2 and -1/2) 1H NMR (proton NMR): determines number and type of H atoms 13C NMR (proton

4. The Listener invokes NMR Scripts in the Magical or AU scripting languages to control the NMR. Installation The One-Minute NMR Software comes pre-installed on a PC. For Windows-based spectrometers it is possible to install the One-Minute NMR software on the NMR console computer. Detailed installation inform

NMR techniques for the structural characterisation of these heterocyclic compounds. 1 . unobservable on a high resolution NMR spectrometer. The 1D 15N NMR experiment is much less sensitive than 1H and 13C NMR experiments, it yields narrow lines and has a large chemical shift range. It

Accounting is an art of recording financial transactions of a business concern. There is a limitation for human memory. It is not possible to remember all transactions of the business. Therefore, the information is recorded in a set of books called Journal and other subsidiary books and it is useful for management in its decision making process. AcroPDF - A Quality PDF Writer and PDF Converter .