Computational Fluid Dynamics (CFD, CHD)*

2y ago
24 Views
2 Downloads
512.77 KB
20 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Aliana Wahl
Transcription

Computational Fluid Dynamics (CFD, CHD)*PDE (Shocks 1st); Part I: Basics, Part II: Vorticity FieldsRubin H LandauSally Haerer, Producer-DirectorBased onA Survey of Computational PhysicsbyLandau, Páez, & Bordeianuwith Support from the National Science FoundationCourse: Computational Physics II1/1

Problem: Placement of Boulders for Migrating SalmonWake Block “Force” of eep, wide, fast-flowing streams“Boulder” long rectangular beam, platesObjects not disturb surface/bottom flowProblem: large enough wake for 1m salmon2/1

Theory: HydrodynamicsAssumptions; Continuity m ρ(x, t) ·j 0 tdefj ρ v(x, t)(1): Continuity equation ρ constant1st eqtn hydrodynamicsFriction (viscosity)Incompressible fluidSteady state, v 6 v (t)(1)(2)3/1

Navier–Stokes: 2nd Hydrodynamic EquationHydrodynamic Time DerivativeDv def v (v · )vDt t(1)For quantity within moving fluidRate of change wrt stationary frameVelocity of material in fluid elementChange due to motion explicit t dependenceDv/Dt: 2nd O v nonlinearities Fictitious (inertial) forcesFluid’s rest frame accelerates4/1

Now Really the Navier–Stokes EquationTransport Fluid Momentum Due to Forces & FlowDv1 T , x) ν 2 v P(ρ,Dtρ(1)zzX 2 vxX vx1 P vx ν vj2 t xjρ x xjj xj xν viscosity, P pressureRecall dp/dt Fdef v/ tDv/Dt (v · )vv · v:transport via flowv · v:advection :change P(Vector Form)due to P(x component)ν 2 v:(2)due to viscosityP(ρ, T , x):equation stateAssume P(x)Steady-state t vi 0Incompressible t ρ 05/1

Resulting Hydrodynamic EquationsAssumed: Steady State, Incompressible, P P(x) ·v X vi 0 xi(Continuity)(1)i ν 2 v 1 P (v · )vρ(Navier–Stokes)(2)(1) Continuity equation: Incompressibility, in outStream width beam z dimension z v ' 0 vy vx 0 x y 2 vx vx1 P vx 2 vxν vx vy x 2 y 2 x yρ x ν 2 vy 2 vy x 2 y 2 vx vy vy1 P vy x yρ y(3)(4)(5)6/1

Boundary Conditions for Parallel PlatesPhysics Determines BC Unique SolutionLHConstant stream velocity Upstream unaffectedLow V0 , high viscosity Solve rectangular regionLaminar: smooth, no cross streamlines of motionL, H Rstream uniformdownThin plates laminar flowFar top, bot symmetry7/1

Analytic Solution for Parallel Plates (See Text)Bernoulli Effect: Pressure Drop Through PlatesRiversurfaceRiversurfaceyyLxxbottombottomvx (y ) HL1 P 2(y yH)2ρν x P known constant xV0 1 m/s, ρ 1 kg/m3 , ν 1 m2 /s, H 1 m P 12, xvx (y ) 6y (1 y )(1)(2)(3)(4)8/1

Finite-Difference Navier–Stokes Algorithm SORRectangular grid x ih,y jh3 Simultaneous equations 2 (v y 0)yyxxvi 1,j vi 1,j vi,j 1 vi,j 1 0(1)xxxxxvi 1,j vi 1,j vi,j 1 vi,j 1 4vi,j(2) hh x xh y xxxvi,j 1 vi,j 1 [Pi 1,j Pi 1,j ]vi,j vi 1,j vi 1,j vi,j222Rearrange as algorithm for Successive Over Relaxationxxxxx4vi,j vi 1,j vi 1,j vi,j 1 vi,j 1 h x xxvi,j vi 1,j vi 1,j2 hh y xxv vi,j 1 vi,j 1 [Pi 1,j Pi 1,j ]2 i,j2(3)Accelerate convergence SOR; ω 2 unstable9/1

End Part I: 0 / 1

Part II: Vorticity Form of Navier–Stokes Equation2 HD Equations in Terms of Stream Function u(x) ·v 0 Continuity(1)1 (v · )v P ν 2 vρNavier–Stokes(2)Like EM, simpler via (scalar & vector) potentialsIrrotational Flow: no turbulence, scalar potentialRotational Flow: 2 vector potentials; 1st stream functiondef v u(x) ˆx uy uz y z(3) ˆy ux uz z x · ( u) 0 automatic continuity equation (4)11 / 1

2 HD Equations in Terms of Stream Function (cont)2-D flow: u Constant Contour Lines Streamlinesdef v u(x) ˆx (1) uy uz y z ˆy ux uz z x (2)vz 0 u(x) u ˆz(3) u x(4)vx u, yvy 12 / 1

Introduce Vorticity w(x) ω Vortex: Spinning, Often Turbulent Fluid Flowdef w v(x) wz (1) vy vx x y (2)Measure of v ’s rotationw 0 uniformRH rule fluid elementMoving field linesw 0 irrotationalRelate to stream function:13 / 1

Introduce Vorticity w(x) ω Poisson’s equation 2 φ 4πρw(x,y)012y-16200040x80xy50 0def v(x)w v ( u) ( · u) 2 uw ·u 0yet u u(x, y ) ˆz 2u w (1)(2)(3)(4)Like Poisson with ea w component source14 / 1

Vorticity Form of Navier–Stokes EquationTake Curl of Velocity Formh1 (v · )v ν 2 v Pρ (Navier–Stokes) u) · ]w ν 2 w [( (1)(2)In 2-D only z components: 2u 2u w x 2 y 2 ν 2w 2w 2 x y 2 u w u w y x x y(3)(4)Simultaneous, nonlinear, elliptic PDEs for u & w Poisson’s wave equation friction variable ρ15 / 1

Relaxation Algorithm (SOR) for Vorticity Equationsx ih,y jhCD Laplacians, 1st derivatives 1 (1)ui 1,j ui 1,j ui,j 1 ui,j 1 h2 wi,j41R (wi 1,j wi 1,j wi,j 1 wi,j 1 ) {[ui,j 1 ui,j 1 ]416ui,j wi,jR [wi 1,j wi 1,j ] [ui 1,j ui 1,j ] [wi,j 1 wi,j 1 ]}(2)1V0 h νν(3)(in normal units)R grid Reynolds number (h Rpipe ); measure nonlinearSmall R: smooth flow, friction damps fluctuationsLarge R (' 2000): laminar turbulent flowOnset of turbulence: hard to simulate (need kick)16 / 1

Boundary Conditions for BeamSurface Gvy -du/dx 0vx du/dy V0w 0vy -du/dx 0w u 0yxEw 0du/dx 0u 0CHalfBeamDdw/dx 0Outlet HInlet Fvx du/dy V0u 0w u 0Bcenter lineAWell-defined solution of elliptic PDEs requires u, w BCAssume inlet, outlet, surface far from beamFreeflow: No beamNB w 0 no rotationSymmetry: identical flow above, below centerline, not thru17 / 1

Boundary Conditions for Beam (cont)See Text for More ExplanationsCenterline: streamline, u const 0 (no v No flow in, out beam to it u 0 all beam surfacesSymmetry vorticity w 0 along centerlineInlet: horizontal fluid flow, v vx V0 :Surface: Undisturbed free-flow conditions:Outlet: Matters little; convenient choice: x u x wBeamsides: v u 0; viscous vk 0Yet, over specify BC only no-slip vorticity w:Viscosity vx u y 0(beam top)Smooth flow on beam top vy 0 no x variation: vy vx 2u 0 w 2 x y y(1)18 / 1

Implementation & Assessment:SOR on a GridBasic soltn vorticity form Navier–Stokes: Beam.pyNB relaxation simple, BC 6 simpleSeparate relaxation of stream function & vorticityExplore convergence of up & downstream uDetermine number iterations for 3 place with ω 0, 0.3Change beam’s horizontal position so see wave developMake surface plots of u, w, v with contours; explainIs there a resting place for salmon?19 / 1

Resultsw(x,y)120y-16200040x80xy50 020 / 1

Computational Fluid Dynamics (CFD, CHD)* PDE (Shocks 1st); Part I:Basics, Part II:Vorticity Fields Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from the National Science Fo

Related Documents:

1.1 What is computational fluid dynamics? 1.2 Basic principles of CFD 1.3 Stages in a CFD simulation 1.4 Fluid-flow equations 1.5 The main discretisation methods Appendices Examples 1.1 What is Computational Fluid Dynamics? Computational fluid dynamics (CFD) is the use of computers and

Computational fluid dynamics can be summarized by the following definitions: Computational The computational part of CFD means using computers to solve problems in fluid dynamics. This can be compared to the other main areas of fluid dynamics, suc

4. Computational fluid dynamics (CFD) Computational Fluid Dynamics (CFD) is a technique which uses conservation principles and rigorous equations of fluid flow (Navier-Stokes) along with specialized turbulence models (k-H, k-Z, SST among others). These models are more accura

Thermal and Energy Performance of Double Skin Facades in Different Climate Types 2.2 COMPUTATIONAL FLUID DYNAMICS (CFD) ANALYSIS Computational Fluid Dynamics (CFD) analysis implements numerical simulation methods to seek solutions to fluid flow problems. For this study, Ansys Fluent 17.1 CFD simulation program was

refrigerator & freezer . service manual (cfd units) model: cfd-1rr . cfd-2rr . cfd-3rr . cfd-1ff . cfd-2ff . cfd-3ff . 1 table of contents

What is Computational Fluid Dynamics ? Fluid (gas and liquid) flows are governed by partial differential equations (PDE) which represent conservation laws for the mass, momentum, and energy Computational Fluid Dynamics (CFD) consist in replacing PDE systems by a set of algebraic equations which can be solved using computers. p u g Dt Du

Work in Progress: Integration of Hands -on Computational Fluid Dynamics (CFD) in Undergraduate Curriculum Abstract Applied research facilit ies, such as computational fluid dynamics (CFD), wind tunnel testing and other experimental fluid mechanics facilities , will bolst

SILABUS AKUNTANSI BIAYA Program Studi : Pendidikan Akuntansi Mata Kuliah : Akuntansi Biaya Kode : PAK 425 SKS : 4 Dosen : M. Djazari, MPd / Mujtahid Subagyo, M. Laws, Ak Prodi/Jurusan : Pendidikan Akuntansi/Pendidikan Ekonomi I. Deskripsi Mata Kuliah Mata kuliah ini membahas akuntansi biaya dan beberapa pengertian dasar siklus akuntansi biaya dan laporan harga pokok barang yang diproduksi .