Manual For The Design Of Pipe Systems And Pumps

3y ago
24 Views
4 Downloads
530.76 KB
56 Pages
Last View : 17d ago
Last Download : 3m ago
Upload by : Konnor Frawley
Transcription

Manual for the Design of Pipe Systems and Pumpsengineering for a better worldGEA Mechanical Equipment

2GEA Tuchenhagen

Table of ContentsPage1GeneralPreface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5Formula, Units, Designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . tionPipe systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7Centrifugal pump or positive displacement pump . . . . . . . . . . . . . . . . .8Tuchenhagen VARIFLOW Programme . . . . . . . . . . . . . . . . . . . . . . . . . . .8Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Capacity range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9Special features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10Connection fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10Accessories and Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10Self-priming centrifugal pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11Rotary lobe pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1133.13.23.33.43.53.6Physical FundamentalsDensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Vapour pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12Dynamic viscosity / Kinematice viscosity . . . . . . . . . . . . . . . . . . . . . . . .12Fluid behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1344.14.24.34.44.5Hydraulic FundamentalsPressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Atmospheric pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Relation of pressure to elevation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14Friction losses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15Reynolds number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1555.15.25.35.45.55.65.7Technical FundamentalsInstallation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16Suction pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17Delivery pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17NPSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Suction and delivery conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18Cavitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193GEA Tuchenhagen

Page5.85.95.105.115.125.135.14Q-H characteristic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20Flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Flow head . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Plant charcteristic curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Operating point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21Pressure drops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22Theoretical calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.56.46.4.16.4.2Design of Centrifugal PumpsPractical calculation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24Explanations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25Calculation of the NPSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25Characteristic curve interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28Throttling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28Changing the speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28Reducing the impeller size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29Operation in parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29Operation in series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29Pumping of viscous media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30Correction for high viscosities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30Calculation of the correction factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3177.17.27.37.47.5Design of Rotary Lobe PumpsFundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32Pump rating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33Rating the pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m for the calculation of pressure drops . . . . . . . . . . . . . . . . . . . . .36Pressure drops of fittings in metre equivalent pipe length . . . . . . . . . . .37Pressure drops of valves in metre equivalent pipe length . . . . . . . . . . . .37Vapour pressure table for water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39Pressure drops depending on viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . .40SI - Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45Conversion table of foreign units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46Viscosity table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47Mechanical seals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49Pump data sheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51Assembly instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .524GEA Tuchenhagen

PrefaceArchimedes - the ingenious scientist of the ancient world recognized the functionality of pumps as early as in the middle ofthe 3rd cent. B.C. Through the invention of the Archimedean screw,the irrigation of the fields became much more effective.2200 years later GEA Tuchenhagen is building high-tech pumps for hygienic process technology giving the process lines the optimal impetus.Selecting the right pump to serve the purpose is not always that easy andrequires special knowledge. GEA Tuchenhagen has set up this Manual forgiving support in finding out the optimal pump design. Special attentionwas given to produce a Manual that is interesting and informative foreverybody, from the competent engineer tothe layman.The contents is self-explanatoryand built up one after theother. Simplifications werepartly accepted and profound theories dispensedwith. We hope that thisManual will give you anextended comprehensionof this subject and willhelp you solving anyproblems that might occur.5GEA Tuchenhagen

Formula, Units, DesignationFormulaBDDN or DesignationSI - UnitOperating pointImpeller diameterNominal width of the pipe or pump portAcceleration of the fall 9.81 m/s2Flow headFlow head of the systemGeodetic flow headGeodetic suction headGeodetic pressure headStatic suction headFlow head viscous mediumPressure dropsPressure drops, suction sidePressure drops, delivery sideCorrection factor for the flow headCorrection factor for the flow rateCorrection factor for the efficiencyPipe roughnessPipe lengthSpeedNPSH (pump)NPSH (system)Power consumptionPower consumption viscous mediumPressurePressure at the outlet cross section of a systemAir pressure / ambient pressureVapour pressure of pumped liquidsPressure at the inlet cross section of a systemFlow rateFlow rate viscous mediumReynolds numberFlow speedFlow speed at the outlet cross section of a systemFlow speed at the inlet cross section of a system(Zeta)Loss value(Eta)Efficiency of the pump(Eta)Efficiency of the pump for viscous medium(Lambda) Efficiency value(Ny)Kinematic viscosity(Eta)Dynamic viscosity(Rho)Density6GEA rbarbarm3/hm3/hm/sm/sm/smm2/sPa st/m3

2 IntroductionThe requirements made on process plants steadily increase, both regarding thequality of the products and the profitability of the processes. Making liquids flow solelydue to the earth’s gravitational force is today unthinkable. Liquids are forced throughpipes, valves, heat exchangers, filters and other components, and all of them cause anincreased resistance of flow and thus pressure drops.Pumps are therefore installed in different sections of a plant. The choice of the right pump atthe right place is crucial and will be responsible for the success or failure of the process.The following factors should be taken into consideration:1.Installation of the pump2. Suction and delivery pipes3. The pump type chosen must correspond to product viscosity, product density,temperature, system pressure, material of the pump, shearing tendency of theproduct etc.4. The pump size must conform to the flow rate, pressure, speed,suction conditons etc.As a manufacturer and supplier of centrifugal pumps and positive displacement pumps weoffer the optimum for both applications.Generally spoken, the pump is a device that conveys a certain volume of a specific liquidfrom point A to point B within a unit of time.For optimal pumping, it is essential before selecting the pump to have examined the pipesystem very carefully as well as the liquid to be conveyed.2.1PipesystemsPipe systems have always special characterstics and must be closely inspected for the choiceof the appropriate pump. Details as to considerations of pipe systems are given in Chapter 6,"Design of pumps".2.2LiquidsEach liquid possesses diverse characteristics that may influence not only the choice of thepump, but also its configuration such as the type of the mechanical seal or the motor.Fundamental characteristics in this respect are: Viscosity (friction losses)Corrodibility (corrosion)AbrasionTemperature (cavitation)DensityChemical reaction (gasket material)7GEA Tuchenhagen

Besides these fundamental criteria, some liquids need special care during the transport.The main reasons are: The product is sensitive to shearing and could get damaged, such as yoghurt or yoghurtwith fruit pulp The liquid must be processed under highest hygienic conditions as practised in thepharmaceutical industry or food industry The product is very expensive or toxic and requires hermetically closed transport paths asused in the chemical or pharmaceutical industry.2.3Experience of many years in research and development of pumps enablesCentrifugalGEA Tuchenhagen today to offer a wide range of hygienic pumps for the food andor positivedisplacement beverage industry as well as the pharmaceutical and chemical industry.pumpWe offer efficient, operationally safe, low-noise pumps for your processes and this Manualshall help you to make the right choice.The first step on the way to the optimal pump is the selection between a centrifugal pump ora positive displacement pump. The difference lies on one hand in the prin-ciple of transporting the liquid and on the other hand in the pumping characteristic. There are two types ofcentrifugal pumps: "non-self priming" and "selfpriming".Centrifugal pumps are for most of the cases the right choice, because they are easily installed,adapted to different operating parameters and easily cleaned. Competitive purchase costs andreliable transport for most of the liquids are the reason for their steady presence in processplants. Restrictions must be expected in the following cases: with viscous media the capacity limit is quickly reached, the use is also restricted with media being sensitive to shearing, with abbrasive liquids the service life of the centrifugal pump is reducedbecause of earlier wear.2.4GEATuchenhagen VARIFLOWProgrammeThe GEA Tuchenhagen -VARIFLOW Pump Programme conforms to today’s requirementsmade on cleanability, gentle product handling, efficiency and ease of maintenance.The different technical innovations made on the pumps for the optimization ofcleanability have been EHEDG-certified.8GEA Tuchenhagen

2.5ApplicationsThe new GEA Tuchenhagen -VARIFLOW pumps are preferably used in the brewing andbeverage industry as well as in dairies and in process plants for chemical, pharmaceutical andhealth care products where highest hygienic standards are set. They are used in these industries mainly as transfer pumps, ClP supply pumps and booster pumps.Fig. 1 - GEA Tuchenhagen -VARIFLOW Centrifugal Pump, Type TP2.6CapacityrangeThe GEA Tuchenhagen -VARIFLOW series is designed for flow rates up to 220 m3/h andflow heads up to 92 m liquid column2.7DesignPumps of the GEA Tuchenhagen -VARIFLOW series are non-self priming,one-stage centrifugal pumps with single bent vanes. All pumps of the GEA Tuchenhagen -VARIFLOW series are driven by standard motorsof type IM B35. A spiral housing is used as guiding device for the GEA Tuchenhagen -VARIFLOW series .It provides high efficiency so that the operating costs can be lowered.Besides high efficiency, special emphasis has been given to gentle product handling.After the product leaves the impeller, it is gently discharged in flow direction via thespiral housing. GEA Tuchenhagen -VARIFLOW pumps have been certified according toEHEDG and 3A.9GEA Tuchenhagen

Main components:Pump cover, impeller, pump housinglantern, shaft and motorPumphousingOne-part lanternMotorPump shaftwithoutfeather keyImpellerPumpcoverMech.Sealing according to theshaft seal VARIVENT principleFig 2 - GEA Tuchenhagen -VARIFLOW, TP2.8Specialfeatures All parts in stainless steel, product wetted components are made ofAISI 316L (1.4404). High efficiency Gentle product handling Low noise Ease of maintenance Excellent hygienic properties.2.9Connectionfittings Accessoriesand Options Mechanical seals in different materials Carbon/Silicon carbide orSilicon carbide/Silicon carbide Different designs as single acting, single with flush (Quench) or double acting FDA approved soft seals: EPDM and FPM Stainless steel protection hood, mobile baseframe, drainage valve Adjustable calotte type feet frame Inducer2.10Threaded joint as per DIN 11851 (Standard)VARIVENT flange connectionAseptic flanges as per DIN 11864-2Aseptic union as per DIN 11864-1Other marketable connections according to BS, SMS, RJT, Tri-ClampMetric and Inch diameters10GEA Tuchenhagen

2.11Self-primingcentrifugalpumpsThe GEA Tuchenhagen self-priming pump of the TPS series are used for conveyingaggressive, clean liquids that are free of abrasive constituents. Pumps of the TPS series arehorizontal, self-priming pumps. They stand out by their sturdy construction and highoperational reliability and are preferably used in the food processing and luxuryfood industry as a CIP return pump.Fig. 3 - Self-priming centrifugal pump, type TPS2.12Rotary lobepumpsGEA Tuchenhagen rotary lobe pumps of the VPSH and VPSU series are used wheneverviscous, sensitive or solids-containing liquids must be gently transferred.Type VPSH is used in hygienic applications of all kinds.Type VPSU has been designed especially for high aseptic requirements that are standard insterile areas.The special design of the Skimitar rotors and the pump’s design enable the pump to convey awide range of media: from low-viscous media to products with a viscosity ofup to 1,000,000 mPas or even media with suspended solids.Due to the shape of the Skimitar rotors, a particularly high efficiency is achieved.Fig. 4 - Rotary lobe pump VPSH11GEA Tuchenhagen

3 Physical FundamentalsFluids - a subject matter of this Manual - include liquids, gases and mixtures of liquids,solids and gases. All these fluids have specific characteristics that will be explained in thischapter.Density (ρ Rho) - former specific weight - of a fluid is its weight per unit volume,usually expressed in units of grams per cubic centimeter (g/cm3).Example: If weight is 80 g in a cube of one cubic centimeter, the density of the medium is80 g/cm3. The density of a fluid changes with the temperature.3.1Density3.2Temperature Temperature (t) is usually expressed in units of degrees centigrade ( C) or Kelvin (K). Thetemperature of a fluid at the pump inlet is of great importance, because it has a strong effecton the suction characteristic of a pump.3.3VapourpressureThe vapour pressure (pD) of a liquid is the absolute pressure at a given temperature at whichthe liquid will change to vapour. Each liquid has its own specific point where it starts toevaporate. Vapour pressure is expressed in bar (absolute).3.4ViscosityViscosity of a medium is a measure of its tendency to resist shearing force.Media of high viscosity require a greater force to shear at a given rate than fluids oflow viscositiy.3.5Dynamic and One has to distinguish between kinematic viscosity (ν Ny) and dynamic viscosity(η Eta). Centipoise (cP) is the traditional unit for expressing dynamic viscosity.kinematicCentistokes (cSt) or Millipascal (mPa) express the kinematic viscosity.viscosityRatio: kinematic viscosity dynamic viscositydensityViscosity is not constant and thus depending on external factors. The viscous behaviour ofmedia is more clearly expresed in effective viscosity or shearing force. The behaviour of viscous fluids varies.One distinguishes between Newtonian and Non-Newtonian fluids.12GEA Tuchenhagen

The flow curve is a diagram which shows the correlation between viscosity (η) and the shearrate (D). The shear rate is calculated from the ratio between the difference in flow velocity oftwo adjacent fluid layers and their distance to eachother.vΔyD ΔvΔyΔvFig. 5 - Shear rateThe flow curve for an ideal fluid is a straight line. This means constant viscosity at all shearrates. All fluids of this characteristic are "Newtonian fluids". Examples are water, mineral oils,syrup, resins.31ViscosityFluidbehaviour1 Newtonianfluids2 Intrinsicallyviscous fluids3 Dilatent fluids2Shear rateFig. 6 - F

giving support in finding out the optimal pump design. Special attention was given to produce a Manual that is interesting and informative for everybody, from the competent engineer to the layman. The contents is self-explanatory and built up one after the other. Simplifications were partly accepted and profo-und theories dispensed with. We .

Related Documents:

May 02, 2018 · D. Program Evaluation ͟The organization has provided a description of the framework for how each program will be evaluated. The framework should include all the elements below: ͟The evaluation methods are cost-effective for the organization ͟Quantitative and qualitative data is being collected (at Basics tier, data collection must have begun)

Silat is a combative art of self-defense and survival rooted from Matay archipelago. It was traced at thé early of Langkasuka Kingdom (2nd century CE) till thé reign of Melaka (Malaysia) Sultanate era (13th century). Silat has now evolved to become part of social culture and tradition with thé appearance of a fine physical and spiritual .

On an exceptional basis, Member States may request UNESCO to provide thé candidates with access to thé platform so they can complète thé form by themselves. Thèse requests must be addressed to esd rize unesco. or by 15 A ril 2021 UNESCO will provide thé nomineewith accessto thé platform via their émail address.

̶The leading indicator of employee engagement is based on the quality of the relationship between employee and supervisor Empower your managers! ̶Help them understand the impact on the organization ̶Share important changes, plan options, tasks, and deadlines ̶Provide key messages and talking points ̶Prepare them to answer employee questions

Dr. Sunita Bharatwal** Dr. Pawan Garga*** Abstract Customer satisfaction is derived from thè functionalities and values, a product or Service can provide. The current study aims to segregate thè dimensions of ordine Service quality and gather insights on its impact on web shopping. The trends of purchases have

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

Chính Văn.- Còn đức Thế tôn thì tuệ giác cực kỳ trong sạch 8: hiện hành bất nhị 9, đạt đến vô tướng 10, đứng vào chỗ đứng của các đức Thế tôn 11, thể hiện tính bình đẳng của các Ngài, đến chỗ không còn chướng ngại 12, giáo pháp không thể khuynh đảo, tâm thức không bị cản trở, cái được

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan