Section 5.4: Collisions

3y ago
31 Views
2 Downloads
2.13 MB
11 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Dahlia Ryals
Transcription

Section 5.4: CollisionsTutorial 1 Practice, page 243!!1. Given: m1 80.0 g 0.0800 kg; vi 7.0 m/s [W] ; m2 60.0 g 0.0600 kg; vi 2 0 m/s1! !Required: vf ; vf12Analysis: Since the second ball is initially at rest in the head-on elastic collision, use the" m ! m2 % !! 2m1 !!!simplified equations, vf 1vi and vf #'& vi .12# m1 m2 & 1" m1 m2 % 1" m1 ! m2 % !!Solution: vf 1 ' vi# m1 m2 & 1" 0.0800 kg ! 0.0600 kg % ' (7.0 m/s [W])# 0.0800 kg 0.0600 kg &!vf 1.0 m/s [W]1! 2m1 !!vf #& vi2" m1 m2 % 1! 2(0.0800 kg ) #& (7.0 m/s [W])" 0.0800 kg 0.0600 kg %!vf 8.0 m/s [W]1Statement: The final velocity of ball 1 is 1.0 m/s [W], and the final velocity of ball 2 is8.0 m/s [W].!2. Given: m1 1.5 kg; vi 1 36.5 cm/s [E] 0.365 m/s [E] ; m2 5 kg;!vi 42.8 cm/s [W] !0.428 m/s [E]2! !Required: vf 1 ; vf 2" m ! m2 % !" 2m2 % !" m ! m1 % !" 2m1 % !!!Analysis: vf 1vi vi ; vf 2vi '''' vi12# m1 m2 & 1 # m1 m2 & 2# m1 m2 & 2 # m1 m2 & 1" m1 ! m2 % !" 2m2 % !!vi Solution: vf 1 '' vi# m1 m2 & 1 # m1 m2 & 2" 1.5 kg ! 5 kg %"2(5 kg ) % ' (0.365 m/s [E]) ' (!0.428 m/s [E])# 1.5 kg 5 kg &# 1.5 kg 5 kg &!vf !0.9 m/s1Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-1

" m ! m1 % !" 2m1 % !!vf 2vi '' vi2# m1 m2 & 2 # m1 m2 & 1" 5 kg ! 1.5 kg %" 2(1.5 kg ) % ' (!0.428 m/s [E]) ' (0.365 m/s [E])# 1.5 kg 5 kg &# 1.5 kg 5 kg &!vf 2 !0.06 m/s [E]Statement: The final velocity of cart 1 is 90 cm/s [W], and the final velocity of cart 2 is6 cm/s [W].Tutorial 2 Practice, page 247!!1. (a) Given: m1 1.2 kg; vi 1 3.0 m/s [right] ; m2 1.2 kg; vi 2 3.0 m/s [left] ;!vf 1.5 m/s [right]2Required: xAnalysis: Use the conservation of momentum equation to determine the velocity of glider 1during the collision, when glider 2 is moving at 1.5 m/s [right]. Rearrange this equation toexpress the final velocity of glider 1 in terms of the other given values.m1vi m2 vi m1vf m2 vf121vf 2m1vi m2 vi ! m2 vf122m1Then, apply conservation of mechanical energy to determine the compression of the spring atthis particular moment during the collision. Consider right to be positive and left to be negative,and omit the vector notation. Clear fractions first, and then isolate x.m1vi m2 vi ! m2 vf122Solution: vf 1 m11 ( 1.2 kg )(3.0 m/s) ( 1.2 kg )(!3.0 m/s) ! ( 1.2 kg )(1.5 m/s)1.2 kgvf !1.5 m/s11111m1vi2 m2 vi2 (m1vf2 m2 vf2 ) kx 212122222m1vi2 m2 vi2 ! (m1vf2 m2 vf2 ) kx 21x 212m v m v ! (m v m2 vf2 )21 i122 i221 f12k(1.2 kg)(3.0 m/s)2 (1.2 kg)(!3.0 m/s)2 ! (1.2 kg)(!1.5 m/s)2 (1.2 kg)(1.5 m/s)26.0 " 104 N/mx 0.016 mStatement: The compression of the spring when the second glider is moving at 1.5 m/s [right] is1.6 cm. Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-2

!!(b) Given: m1 1.2 kg; vi 1 3.0 m/s [right] ; m2 1.2 kg; vi 2 3.0 m/s [left] ;!vf 1.5 m/s [right]2Required: xAnalysis: At the beginning of the collision, as the gliders come together and the spring is beingcompressed, glider 1 and glider 2 are moving at the same speed, in opposite directions.Immediately after the collision, the gliders will reverse direction, but still have the same speed.At the point of maximum compression of the spring, the two gliders will have the same velocity,!vf . Use the conservation of momentum equation to determine this velocity.m1vi m2 vi (m1 m2 )vf12vf m1vi m2 vi12m1 m2Then, apply the conservation of mechanical energy to calculate the maximum compression of thespring.m1vi m2 vi12Solution: vf m1 m21 (1.2 kg )(3.0 m/s) (1.2 kg )(!3.0 m/s)1.2 kg 1.2 kgvf 0 m/sNow use the law of conservation of mechanical energy to determine the maximum compressionof the spring, using the fact that vf 0 m/s.1111m1vi2 m2 vi2 (m1 m2 )vf2 kx 2122222m1vi2 m2 vi2 kx 212x m1vi2 m2 vi212k(1.2 kg)(3.0 m/s)2 (1.2 kg)(!3.0 m/s)26.0 " 104 N/mx 0.019 mStatement: The maximum compression of the spring is 1.9 cm. Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-3

!!2. Given: m1 4.4 102 kg; vi 1 3.0 m/s [E] ; m2 4.0 102 kg; vi 2 3.3 m/s [W] ; x 44 cm 0.44 mRequired: kAnalysis: At the point of maximum compression of the spring, the two carts will have the same!velocity, vf . Use the conservation of momentum equation to determine this velocity.m1vi m2 vi (m1 m2 )vf12vf m1vi m2 vi12m1 m2Then apply the conservation of mechanical energy to calculate the spring constant.m1vi m2 vi12Solution: vf m1 m21 (4.4 ! 102 kg )(3.0 m/s) (4.0 ! 102 kg )("3.3 m/s)4.4 ! 102 kg 4.0 ! 102 kgvf 0 m/sNow use the law of conservation of mechanical energy to determine the spring constant, usingthe fact that vf 0.1111m1vi2 m2 vi2 (m1 m2 )vf2 k(!x)2122222m1vi2 m2 vi2 k(!x)212k m1vi2 m2 vi21(!x)22(4.4 " 102 kg)(3.0 m/s)2 (4.0 " 102 kg)(#3.3 m/s)2 (0.44 m)2k 4.3 " 104 N/mStatement: The spring constant is 4.3 104 N/m.Section 5.4 Questions, page 2481. Answers may vary. Sample answer: Elastic collision: No, it is not possible for two movingmasses to undergo an elastic head-on collision and both be at rest immediately after the collision.In an elastic collision, kinetic energy is conserved. Therefore, if the objects were moving beforethe collision, at least one of the objects has to be moving after the collision.Inelastic collision: Yes, it is possible for two moving masses to undergo an elastic head-oncollision and both be at rest immediately after the collision. Kinetic energy is not conserved in aninelastic collision. If the masses have equal but opposite momentum before the collision, then thetotal momentum is zero. After the collision, they could both be at rest and still conservemomentum.Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-4

2. Answers may vary. Sample answer: The two curling stones have the same mass. In an elasticcollision, the momentum of the first object can transfer completely to the other object if theobjects have the same mass. Thus, the speed of the first object is zero, and the speed of thesecond object is equal to the initial speed of the first object.!3. Given: m1 1.5 g 0.0015 kg; m2 3.5 g 0.0035 kg; vi 12 m/s [right];1!vi 7.5 m/s [left]2! !Required: vf ; vf12" m ! m2 % !" 2m2 % !" m2 ! m1 % !" 2m1 % !!!Analysis: vf 1;v vv v ' i ' i m m ' i 2 m m ' vi 1f21# m1 m2 & 1 # m1 m2 & 2# 1# 12&2&" m1 ! m2 % !" 2m2 % !!v Solution: vf 1 ' i ' vi# m1 m2 & 1 # m1 m2 & 2" 0.0015 kg ! 0.0035 kg %"%2(0.0035 kg ) (12m/s) ' ' (!7.5 m/s)# 0.0015 kg 0.0035 kg &# 0.0015 kg 0.0035 kg &!vf !15 m/s1" m ! m1 % !" 2m1 % !!vf 2vi '' vi2# m1 m2 & 2 # m1 m2 & 1" 0.0035 kg ! 0.0015 kg %"%2(0.0015 kg ) ' (!7.5 m/s) ' (12 m/s)# 0.0015 kg 0.0035 kg &# 0.0015 kg 0.0035 kg &!vf 4.2 m/s2Statement: The velocity of particle 1 after the collision is 15 m/s [left]. The velocity of particle 2after the collision is 4.2 m/s [right].!!4. Given: m1 2.67 kg; m2 5.83 kg; vf 1 185 m/s [right] ; vf 2 172 m/s [right]! !Required: vi ; vi12Analysis: Consider right to be positive, and let the direction of the chunks’ final motion be" m ! m2 % !" 2m2 % !!positive. Use the final velocity equations, vf 1vi '' vi and1# m1 m2 & 1 # m1 m2 & 2" m ! m1 % !" 2m1 % !!vf 2vi '' vi . Then, solve the resulting linear system.2# m1 m2 & 2 # m1 m2 & 1Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-5

Solution:" m ! m2 % !" 2m2 % !!vf 1v ' i ' vi1# m1 m2 & 1 # m1 m2 & 2" 2.67 kg ! 5.83 kg % !"%!2(5.83 kg )185 m/s v ' i1 ' vi 22.67kg 5.83kg2.67kg 5.83kg#&#&" !3.16 % !" 11.66 % !185 m/s v v# 8.50 '& i 1 # 8.50 '& i 2!!1572.5 m/s –3.16vi 11.66vi12" m ! m1 % !" 2m1 % !!vf 2vi '' vi2# m1 m2 & 2 # m1 m2 & 1" 5.83 kg ! 2.67 kg % !"%!2(2.67 kg )172 m/s ' vi 2 ' vi 1# 2.67 kg 5.83 kg &# 2.67 kg 5.83 kg &" 5.83 kg ! 2.67 kg % !" 2(2.67 kg ) % !172 m/s ' vi 2 ' vi 18.508.50#&#&!!1462 m/s 3.16vi 5.34vi21Solve the linear system.!!!3.16vi 11.66vi 1572.5 m/s Equation 112!!5.34vi 3.16vi 1462 m/s Equation 212534Multiply Equation 1 byand add.316!!!5.34vi 19.704vi 2657.3 m/s Equation 112!!5.34vi 3.16vi 1462 m/s Equation 212!22.864vi 4119.32 180.2 m/s [right] (one extra digit carried)!vi 1.80 " 102 m/s [right]2!Substitute vi 2 180.2 into Equation 2.!!5.34vi 3.16vi 1462 m/s12!5.34vi (3.16)(180.2 m/s) 1462 m/s1!5.34vi 892.568 m/s1!vi 167 m/s [right]1Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-6

Statement: The initial velocity of the more massive chunk is 1.80 102 m/s [right], and theinitial velocity of the less massive chunk is 167 m/s [right]. (Since all initial and final velocitiesare in the same direction, the more massive chunk overtakes the less massive one and impartssome of its momentum to it.)!!5. (a) Given: m1 0.84 kg; vi 4.2 m/s [right] ; m2 0.48 kg; vi 2.4 m/s [left] ;123k 8.0 10 N/m! !Required: vf ; vf12" m ! m2 % !" 2m2 % !" m ! m1 % !" 2m1 % !!!Analysis: vf 1vi vi ; vf 2vi '''' vi12# m1 m2 & 1 # m1 m2 & 2# m1 m2 & 2 # m1 m2 & 1" m1 ! m2 % !" 2m2 % !!vi Solution: vf 1 '' vi# m1 m2 & 1 # m1 m2 & 2" 0.84 kg ! 0.48 kg %"%2(0.48 kg ) ' (4.2 m/s) ' (!2.4 m/s)# 0.84 kg 0.48 kg &# 0.84 kg 0.48 kg &!vf !0.60 m/s1" m ! m1 % !" 2m1 % !!vf 2v ' i ' vi2# m1 m2 & 2 # m1 m2 & 1" 0.48 kg ! 0.84 kg %"%2(0.84 kg ) ' (!2.4 m/s) ' (4.2 m/s)# 0.84 kg 0.48 kg &# 0.84 kg 0.48 kg &!vf 6.0 m/s2Statement: The velocity of cart 1 after the collision is 0.60 m/s [left]. The velocity of cart 2 afterthe collision is 6.0 m/s [right].!!(b) Given: m1 0.84 kg; vi 4.2 m/s [right] ; m2 0.48 kg; vi 2.4 m/s [left] ;12!3vf 3.0 m/s [right] ; k 8.0 10 N/m1Analysis: Use the conservation of momentum to determine the velocity of cart 2 during thecollision, when cart 2 is moving 3.0 m/s [right]. Rearrange the conservation of momentumequation to express the final velocity of cart 2 in terms of the other given values.m1vi m2 vi m1vf m2 vf12vf 12m1vi m2 vi ! m1vf121m2Then, use conservation of mechanical energy to determine the compression of the spring at thisparticular moment during the collision. Consider right to be positive, and omit the vectornotation.2Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-7

Solution: vf 2 m1vi m2 vi ! m1vf121m2(0.84 kg)(4.2 m/s) (0.48 kg)(!2.4 m/s) ! (0.84 kg)(3.0 m/s)0.48 kgvf !0.30 m/s 2Now use the law of conservation of mechanical energy to determine the compression of thespring. Clear fractions first, and then isolate x.1111m1vi2 m2 vi2 (m1vf2 m2 vf2 ) kx 212122222m1vi2 m2 vi2 ! (m1vf2 m2 vf2 ) kx 21212m v m v ! (m v m2 vf2 )21 i1x 22 i221 f12k(0.84 kg)(4.2 m/s)2 (0.48 kg)(!2.4 m/s)2 ! (0.84 kg)(3.0 m/s)2 (0.48 kg)(!0.30 m/s)2 8.0 " 103 N/mx 0.035 mStatement: The compression of the spring when cart 1 is moving at 3.0 m/s [right] is3.5 10 2 m.!!(c) Given: m1 0.84 kg; vi 4.2 m/s [right] ; m2 0.48 kg; vi 2.4 m/s [left] ;12k 8.0 103 N/mRequired: xAnalysis: At the point of maximum compression of the spring, the two carts will have the same!velocity, vf . Use the conservation of momentum equation to determine this velocity.m1vi m2 vi (m1 m2 )vf12vf m1vi m2 vi12m1 m2Then use the law of conservation of mechanical energy to determine the maximum compressionof the spring.m1vi m2 vi12Solution: vf m1 m21(0.84 kg)(4.2 m/s) (0.48 kg)(!2.4 m/s)0.84 kg 0.48 kgvf 1.8 m/s Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-8

1111m1vi2 m2 vi2 (m1 m2 )vf2 kx 2122222m1vi2 m2 vi2 (m1 m2 )vf2 kx 212kx 2 m1vi2 m2 vi2 ! (m1 m2 )vf21x 2x 2m v m v ! (m1 m2 )vf221 i122 i2km v m2 vi2 ! (m1 m2 )vf221 i12k(0.84 kg)(4.2 m/s)2 (0.48 kg)(!2.4 m/s)2 ! (0.84 kg 0.48 kg)(1.8 m/s)2 8.0 " 103 N/mx 0.041 mStatement: The maximum compression of the spring is 4.1 10 2 m.!6. (a) Given: m1 2.0 kg; m2 4.0 kg; θ 60.0 ; length of two strings 3.0 m; vi 1 0 m/s! !Required: vf ; vf12Analysis: Draw a diagram of the situation. Let the y 0 reference point be the vertical positionof ball 1 before the collision. Let y be the vertical height of ball 2 above ball 1. Let l2 be thevertical distance of ball 2 from the post.Use conservation of energy to find the velocity of ball 2 just before the collision, at y 0. Then,use the equations for perfectly elastic collisions to find the velocities of the balls just after thecollision." m ! m2 % !" 2m2 % !" m2 ! m1 % !" 2m1 % !!!Ek Eg; vf 1;v vv v ' i ' i m m ' i 2 m m ' vi 1f21# m1 m2 & 1 # m1 m2 & 2# 1# 12&2&Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-9

Solution: From the diagram, l2 (3.0 m)cos 60 1.5 m. Thus, y 1.5 m.Use conservation of energy.Ek Eg1m v 2 m2 g!y2 2 i2vi 2g!y2 2(9.8 m/s 2 )(1.5 m)vi 5.42 m/s (one extra digit carried)2!Now, use the equations for perfectly elastic collisions, using the fact that vi 1 0 m/s ." m ! m2 % !" 2m2 % !!vf 1v ' i ' vi1# m1 m2 & 1 # m1 m2 & 2" 2m2 % ! ' vi# m1 m2 & 2"2(4.0 kg ) % ' (5.42 m/s)# 2.0 kg 4.0 kg &!vf 7.23 m/s (one extra digit carried)1" m ! m1 % !!vf 2' vi2# m1 m2 & 2" m ! m1 % ! 2' vi# m1 m2 & 2" 4.0 kg ! 2.0 kg % ' (5.42 m/s)# 2.0 kg 4.0 kg &!vf 1.81 m/s (one extra digit carried)2Statement: The speed of ball 1 is 7.2 m/s, and the speed of ball 2 is 1.8 m/s.!!(b) Given: m1 2.0 kg; m2 4.0 kg; vf 7.23 m/s ; vf 1.81 m/s12Required: hmax 1; hmax 2Analysis: Use conservation of energy, Eg Ek.Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-10

Eg EkSolution:1m1 ghmax 1 hmax 1 11m1 vf2122vf12g(7.23 m/s ) 22(9.8 m/ s 2 )hmax 1 2.7 mEg Ek2m2 ghmax 2 hmax 2 21m v22 2 f2vf222g(1.81 m/s ) 22(9.8 m/ s 2 )hmax 2 0.17 mStatement: After the first collision, the maximum height of ball 1 is 2.7 m, and the maximumheight of ball 2 is 0.17 m.Copyright 2012 Nelson Education Ltd.Chapter 5: Momentum and Collisions5.4-11

Answers may vary. Sample answer: Elastic collision: No, it is not possible for two moving masses to undergo an elastic head-on collision and both be at rest immediately after the collision.

Related Documents:

Momentum is conserved in all collisions Elastic collisions: no deformation occurs Kinetic energy is also conserved Inelastic collisions: deformation occurs Kinetic energy is "lost" Perfectly inelastic collisions Objects stick together; kinetic energy is "lost" Explosions Reverse of perfectly inelastic collisions;

mechanics 2 collisions . collisions m2 reminder of m1 type question. 3 newton’s law of restitution for direct impact. 4 loss of mechanical energy 7 collisions and vector notation 11 questions a 12 impact of a particle with a fixed surfac

Actual solutions: Monte Carlo simulations . Basic models for heavy -ion collisions Microscopic transport models provide a unique dynamical description of nonequilibrium effects in heavy -ion collisions 4. Models of heavy -ion collisions . the single -particle Hartree -Fock Hamiltonian operator can be written as h(r,t ) T (r ) d r V (r r ,t .

9.1 Linear Momentum and Its Conservation 9.2 Impulse and Momentum 9.3 Collisions in One Dimension 9.4 Two-Dimensional Collisions 9.5 The Center of Mass 9.6 Motion of a System of Particles 9.7 Rocket Propulsion Linear Momentum and Collisions ANSWERS TO QUESTIONS Q9.1 No. Impulse, Ft , depends on the force and the time for which it is applied.

Impulse, Momentum 2011, Richard White www.crashwhite.com ! This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring a knowledge . Conservation of linear momentum cannot be used to find the final .

Inelastic collisions energy is not preserved. Objects stop in place, stick together, etc. are easy to implement Backing out or stopping process. Elastic collisions Energy is fully preserved. e.g.(ideal) billiard balls. More difficult to calculate. Magnitude of resulting velocities Types of Collisions

AP Physics Practice Test: Impulse, Momentum 2011, Richard White www.crashwhite.com This test covers momentum, impulse, conservation of momentum, elastic collisions, inelastic collisions, perfectly inelastic collisions, 2-D collisions, and center-of-mass, with some problems requiring a knowledge of basic calculus. Part I. Multiple Choice 1.

Book review: Forensic Analysis of Seat Belts 16 Technical Corner: Vehicle/Pedestrian collisions 17‐18 Adver se with CAARS 19 SEPTEMBER 2012 VOLUME 14, NUMBER 3 www.ca2rs.com Vehicle/Pedestrian Collisions