Chemical Reaction Engineering Module

2y ago
549 Views
5 Downloads
3.60 MB
390 Pages
Last View : 4d ago
Last Download : 3m ago
Upload by : Milo Davies
Transcription

Chemical ReactionEngineering ModuleUser’s Guide

Chemical Reaction Engineering Module User’s Guide 1998–2018 COMSOLProtected by patents listed on www.comsol.com/patents, and U.S. Patents 7,519,518; 7,596,474;7,623,991; 8,219,373; 8,457,932; 8,954,302; 9,098,106; 9,146,652; 9,323,503; 9,372,673; and9,454,625. Patents pending.This Documentation and the Programs described herein are furnished under the COMSOL Software LicenseAgreement (www.comsol.com/comsol-license-agreement) and may be used or copied only under the termsof the license agreement.COMSOL, the COMSOL logo, COMSOL Multiphysics, COMSOL Desktop, COMSOL Server, andLiveLink are either registered trademarks or trademarks of COMSOL AB. All other trademarks are theproperty of their respective owners, and COMSOL AB and its subsidiaries and products are not affiliatedwith, endorsed by, sponsored by, or supported by those trademark owners. For a list of such trademarkowners, see www.comsol.com/trademarks.Version: COMSOL 5.4Contact InformationVisit the Contact COMSOL page at www.comsol.com/contact to submit generalinquiries, contact Technical Support, or search for an address and phone number. You canalso visit the Worldwide Sales Offices page at www.comsol.com/contact/offices foraddress and contact information.If you need to contact Support, an online request form is located at the COMSOL Accesspage at www.comsol.com/support/case. Other useful links include: Support Center: www.comsol.com/support Product Download: www.comsol.com/product-download Product Updates: www.comsol.com/support/updates COMSOL Blog: www.comsol.com/blogs Discussion Forum: www.comsol.com/community Events: www.comsol.com/events COMSOL Video Gallery: www.comsol.com/video Support Knowledge Base: www.comsol.com/support/knowledgebasePart number: CM021601

C o n t e n t sChapter 1: User’s Guide IntroductionAbout the Chemical Reaction Engineering Module14The Scope of the Chemical Reaction Engineering Module . . . . . . . 14The Chemical Reaction Engineering Module Physics Interface Guide . . . 15The Material Database . . . . . . . . . . . . . . . . . . . . . 19Common Physics Interface and Feature Settings and Nodes. . . . . . 19Where Do I Access the Documentation and Application Libraries? . . . . 19Overview of the User’s Guide23Chapter 2: The Chemistry and Reaction EngineeringInterfacesOverview of the Reaction Engineering and Chemistryinterfaces26Using the Reaction Node. . . . . . . . . . . . . . . . . . . . 27Using the Species Node . . . . . . . . . . . . . . . . . . . . 30Using the Equation View Node - Reactions and Species . . . . . . . . 32Theory for the Reaction Engineering and Chemistry Interfaces34Reaction Kinetics and Rate Expressions . . . . . . . . . . . . . . 34The Equilibrium Constant . . . . . . . . . . . . . . . . . . . 35Handling of Equilibrium Reactions . . . . . . . . . . . . . . . . 39Reactor Types in the Reaction Engineering Interface . . . . . . . . . 42Transport Properties . . . . . . . . . . . . . . . . . . . . . 49CHEMKIN Data and NASA Polynomials . . . . . . . . . . . . . . 53Working with Predefined Expressions . . . . . . . . . . . . . . . 54References for the Reaction Engineering Interface . . . . . . . . . . 56CONTENTS 3

The Reaction Engineering Interface58Features Nodes Available for the Reaction Engineering Interface . . . . . 66Initial Values. . . . . . . . . . . . . . . . . . . . . . . . 66Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 67Species. . . . . . . . . . . . . . . . . . . . . . . . . . 71Reversible Reaction Group . . . . . . . . . . . . . . . . . . . 75Equilibrium Reaction Group. . . . . . . . . . . . . . . . . . . 77Species Group . . . . . . . . . . . . . . . . . . . . . . . . 78Additional Source . . . . . . . . . . . . . . . . . . . . . . 79Reaction Thermodynamics . . . . . . . . . . . . . . . . . . . 80Species Activity . . . . . . . . . . . . . . . . . . . . . . . 80Species Thermodynamics. . . . . . . . . . . . . . . . . . . . 80Feed Inlet. . . . . . . . . . . . . . . . . . . . . . . . . . 81Generate Space-Dependent Model . . . . . . . . . . . . . . . . 82Parameter Estimation . . . . . . . . . . . . . . . . . . . . . 90Experiment . . . . . . . . . . . . . . . . . . . . . . . . . 91The Chemistry Interface94Feature Nodes Available for the Chemistry Interface . . . . . . . . . 97Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . 98Species. . . . . . . . . . . . . . . . . . . . . . . . .102Reversible Reaction Group . . . . . . . . . . . . . . . . . .105Equilibrium Reaction Group. . . . . . . . . . . . . . . . . .106Species Group . . . . . . . . . . . . . . . . . . . . . . .108Reaction Thermodynamics . . . . . . . . . . . . . . . . . .108Species Activity . . . . . . . . . . . . . . . . . . . . . .109Species Thermodynamics. . . . . . . . . . . . . . . . . . .109Study Steps for the Reaction Engineering Interface110Reactor Types and Solver Study Steps . . . . . . . . . . . . . .110Solver Study Steps for Parameter Estimation . . . . . . . . . . .110Chapter 3: Chemical Species Transport Interfaces4 CONTENTSOverview of Chemical Species Transport Interfaces115Available Physics Interfaces . . . . . . . . . . . . . . . . . .115

Coupling to Other Physics Interfaces . . . . . . . . . . . . . .117Adding a Chemical Species Transport Interface and Specifying theNumber of Species . . . . . . . . . . . . . . . . . . . .117Theory for the Transport of Diluted Species Interface120Mass Balance Equation . . . . . . . . . . . . . . . . . . . .121Equilibrium Reaction Theory . . . . . . . . . . . . . . . . .122Convective Term Formulation. . . . . . . . . . . . . . . . .124Solving a Diffusion Equation Only. . . . . . . . . . . . . . .Mass Sources for Species Transport. . . . . . . . . . . . . .124125Adding Transport Through Migration . . . . . . . . . . . . . .127Supporting Electrolytes . . . . . . . . . . . . . . . . . . .128Crosswind Diffusion . . . . . . . . . . . . . . . . . . . .129Danckwerts Inflow Boundary Condition . . . . . . . . . . . . .130Mass Balance Equation for Transport of Diluted Species in PorousMedia . . . . . . . . . . . . . . . . . . . . . . . . .131Convection in Porous Media . . . . . . . . . . . . . . . . .132Diffusion in Porous Media . . . . . . . . . . . . . . . . . .134Dispersion . . . . . . . . . . . . . . . . . . . . . . . .135Adsorption . . . . . . . . . . . . . . . . . . . . . . . .137Reactions. . . . . . . . . . . . . . . . . . . . . . . . .138Mass Transport in Fractures . . . . . . . . . . . . . . . . .139Theory for the Reactive Pellet Bed . . . . . . . . . . . . . . .140References . . . . . . . . . . . . . . . . . . . . . . . .148Theory for the Transport of Concentrated Species Interface150Multicomponent Mass Transport . . . . . . . . . . . . . . . .150Multicomponent Gas Diffusion: Maxwell-Stefan Description . . . . .151Multicomponent Diffusivities . . . . . . . . . . . . . . . . .153Multicomponent Diffusion: Mixture-Averaged Approximation . . . . .155Multispecies Diffusion: Fick’s Law Approximation . . . . . . . . .157Multicomponent Thermal Diffusion . . . . . . . . . . . . . . .158Regularization of Reaction Rate Expression . . . . . . . . . . . .158References for the Transport of Concentrated Species Interface . . . .159CONTENTS 5

Theory for the Electrophoretic Transport Interface160Theory for the Surface Reactions Interface166Governing Equations for the Surface Concentrations . . . . . . . .166Governing Equations for the Bulk Concentrations . . . . . . . . .167ODE Formulations for Surface Concentrations . . . . . . . . . .169Surface Reaction Equations on Deforming Geometries . . . . . . .170Reference for the Surface Reactions Interface . . . . . . . . . . .171Theory for the Nernst-Planck Equations Interface172Governing Equations for the Nernst-Planck Formulation . . . . . . .172Convective Term Formulation. . . . . . . . . . . . . . . . .174Theory for the Reacting Laminar Flow Interface175Pseudo Time Stepping for Mass Transport . . . . . . . . . . . .175The Stefan Velocity . . . . . . . . . . . . . . . . . . . . .175The Chemical Reaction Rate . . . . . . . . . . . . . . . . .177The Transport of Diluted Species Interface179The Transport of Diluted Species in Porous Media Interface . . . . .183Domain, Boundary, and Pair Nodes for the Transport of DilutedSpecies Interface. . . . . . . . . . . . . . . . . . . . .184Transport Properties . . . . . . . . . . . . . . . . . . . .186Turbulent Mixing . . . . . . . . . . . . . . . . . . . . . .188Initial Values6 CONTENTS. . . . . . . . . . . . . . . . . . . . . . .189Mass-Based Concentrations . . . . . . . . . . . . . . . . . .189Reactions. . . . . . . . . . . . . . . . . . . . . . . . .189No Flux . . . . . . . . . . . . . . . . . . . . . . . . .191Inflow . . . . . . . . . . . . . . . . . . . . . . . . . .191Outflow . . . . . . . . . . . . . . . . . . . . . . . . .192Concentration . . . . . . . . . . . . . . . . . . . . . . .192Flux . . . . . . . . . . . . . . . . . . . . . . . . . . .192Symmetry . . . . . . . . . . . . . . . . . . . . . . . .193Flux Discontinuity . . . . . . . . . . . . . . . . . . . . .193Partition Condition . . . . . . . . . . . . . . . . . . . . .194Periodic Condition . . . . . . . . . . . . . . . . . . . . .195Line Mass Source . . . . . . . . . . . . . . . . . . . . . .195Point Mass Source . . . . . . . . . . . . . . . . . . . . .196

Open Boundary . . . . . . . . . . . . . . . . . . . . . .197Thin Diffusion Barrier . . . . . . . . . . . . . . . . . . . .197Thin Impermeable Barrier . . . . . . . . . . . . . . . . . .197Equilibrium Reaction . . . . . . . . . . . . . . . . . . . .198Surface Reactions. . . . . . . . . . . . . . . . . . . . .199Surface Equilibrium Reaction . . . . . . . . . . . . . . . . .199Fast Irreversible Surface Reaction . . . . . . . . . . . . . . .200Porous Electrode Coupling . . . . . . . . . . . . . . . . . .200Reaction Coefficients . . . . . . . . . . . . . . . . . . . .201Electrode Surface Coupling . . . . . . . . . . . . . . . . . .201Porous Media Transport Properties. . . . . . . . . . . . . . .202Adsorption . . . . . . . . . . . . . . . . . . . . . . . .204Partially Saturated Porous Media . . . . . . . . . . . . . . . .205Volatilization . . . . . . . . . . . . . . . . . . . . . . .207Reactive Pellet Bed . . . . . . . . . . . . . . . . . . . . .208Reactions. . . . . . . . . . . . . . . . . . . . . . . . .211Species Source. . . . . . . . . . . . . . . . . . . . . . .212Hygroscopic Swelling . . . . . . . . . . . . . . . . . . . .213Fracture . . . . . . . . . . . . . . . . . . . . . . . . .213The Transport of Diluted Species in Fractures Interface215Boundary, Edge, Point, and Pair Nodes for the Transport of DilutedSpecies in Fractures Interface . . . . . . . . . . . . . . . .217Adsorption . . . . . . . . . . . . . . . . . . . . . . . .218Concentration . . . . . . . . . . . . . . . . . . . . . . .219Flux . . . . . . . . . . . . . . . . . . . . . . . . . . .219Fracture . . . . . . . . . . . . . . . . . . . . . . . . .219Inflow . . . . . . . . . . . . . . . . . . . . . . . . . .220No Flux . . . . . . . . . . . . . . . . . . . . . . . . .221Outflow . . . . . . . . . . . . . . . . . . . . . . . . .221Reactions. . . . . . . . . . . . . . . . . . . . . . . . .221Species Source. . . . . . . . . . . . . . . . . . . . . . .222The Transport of Concentrated Species Interface223Domain, Boundary, and Pair Nodes for the Transport ofConcentrated Species Interface . . . . . . . . . . . . . . .229Transport Properties . . . . . . . . . . . . . . . . . . . .230Porous Media Transport Properties. . . . . . . . . . . . . . .234CONTENTS 7

Electrode Surface Coupling . . . . . . . . . . . . . . . . . .237Turbulent Mixing . . . . . . . . . . . . . . . . . . . . . .238Reaction . . . . . . . . . . . . . . . . . . . . . . . . .239Reaction Sources . . . . . . . . . . . . . . . . . . . . . .240Initial Values241. . . . . . . . . . . . . . . . . . . . . . .Mass Fraction . . . . . . . . . . . . . . . . . . . . . . .242Flux . . . . . . . . . . . . . . . . . . . . . . . . . . .242Inflow . . . . . . . . . . . . . . . . . . . . . . . . . .243No Flux . . . . . . . . . . . . . . . . . . . . . . . . .244Outflow . . . . . . . . . . . . . . . . . . . . . . . . .244Symmetry . . . . . . . . . . . . . . . . . . . . . . . .245Flux Discontinuity . . . . . . . . . . . . . . . . . . . . .245Open Boundary . . . . . . . . . . . . . . . . . . . . . .246Equilibrium Reaction . . . . . . . . . . . . . . . . . . . .246Surface Equilibrium Reaction . . . . . . . . . . . . . . . . .247The Nernst-Planck Equations Interface249Domain and Boundary Nodes for the Nernst-Planck EquationsInterface. . . . . . . . . . . . . . . . . . . . . . . .252Convection, Diffusion, and Migration . . . . . . . . . . . . . .253Electric Insulation8 CONTENTS. . . . . . . . . . . . . . . . . . . . .255No Flux . . . . . . . . . . . . . . . . . . . . . . . . .255Initial Values255. . . . . . . . . . . . . . . . . . . . . . .Reactions. . . . . . . . . . . . . . . . . . . . . . . . .255Concentration . . . . . . . . . . . . . . . . . . . . . . .256Flux . . . . . . . . . . . . . . . . . . . . . . . . . . .256Symmetry . . . . . . . . . . . . . . . . . . . . . . . .257Inflow . . . . . . . . . . . . . . . . . . . . . . . . . .257Outflow . . . . . . . . . . . . . . . . . . . . . . . . .258Flux Discontinuity . . . . . . . . . . . . . . . . . . . . .258Current Density . . . . . . . . . . . . . . . . . . . . . .258Current Discontinuity . . . . . . . . . . . . . . . . . . . .259Open Boundary . . . . . . . . . . . . . . . . . . . . . .259Reference for the Nernst Planck Equations Interface . . . . . . . .260

The Nernst-Planck-Poisson Equations Interface261The Electrophoretic Transport Interface262Common Settings for the Species nodes in the Electrophoretic. . . . . . . . . . . . . . . . . . .266Diffusion and Migration Settings . . . . . . . . . . . . . . . .Transport Interface267Domain, Boundary, and Pair Nodes for the Electrophoretic TransportInterface. . . . . . . . . . . . . . . . . . . . . . . .Solvent. . . . . . . . . . . . . . . . . . . . . . . . .Porous Matrix Properties268269. . . . . . . . . . . . . . . . . .269Fully Dissociated Species . . . . . . . . . . . . . . . . . . .270Uncharged Species . . . . . . . . . . . . . . . . . . . . .270Weak Acid . . . . . . . . . . . . . . . . . . . . . . . .270Weak Base . . . . . . . . . . . . . . . . . . . . . . . .270Ampholyte . . . . . . . . . . . . . . . . . . . . . . . .271Protein. . . . . . . . . . . . . . . . . . . . . . . . .271Current Source . . . . . . . . . . . . . . . . . . . . . .271Initial Potential. . . . . . . . . . . . . . . . . . . . . . .271Current . . . . . . . . . . . . . . . . . . . . . . . . .272Current Density . . . . . . . . . . . . . . . . . . . . . .272Insulation . . . . . . . . . . . . . . . . . . . . . . . . .272Potential . . . . . . . . . . . . . . . . . . . . . . . . .272Species Source. . . . . . . . . . . . . . . . . . . . . . .273Initial Concentration . . . . . . . . . . . . . . . . . . . .273Concentration . . . . . . . . . . . . . . . . . . . . . . .273No Flux . . . . . . . . . . . . . . . . . . . . . . . . .273Flux . . . . . . . . . . . . . . . . . . . . . . . . . . .274Inflow . . . . . . . . . . . . . . . . . . . . . . . . . .274Outflow . . . . . . . . . . . . . . . . . . . . . . . . .275The Surface Reactions Interface276Boundary, Edge, Point, and Pair Nodes for the Surface ReactionsInterface. . . . . . . . . . . . . . . . . . . . . . . .277Surface Properties . . . . . . . . . . . . . . . . . . . . .278Initial Values279. . . . . . . . . . . . . . . . . . . . . . .Reactions. . . . . . . . . . . . . . . . . . . . . . . . .279Surface Concentration . . . . . . . . . . . . . . . . . . . .280CONTENTS 9

The Reacting Flow Multiphysics Interface281The Reacting Laminar Flow Interface . . . . . . . . . . . . . .281The Reacting Flow Coupling Feature . . . . . . . . . . . . . .282Physics Interface Features . . . . . . . . . . . . . . . . . .284The Reacting Flow in Porous Media Multiphysics Interface286The Reacting Flow in Porous Media, Transport of Diluted SpeciesInterface. . . . . . . . . . . . . . . . . . . . . . . .286The Reacting Flow in Porous Media, Transport of ConcentratedSpecies Interface. . . . . . . . . . . . . . . . . . . . .287The Reacting Flow, Diluted Species Coupling Feature . . . . . . . .287The Reacting Flow Coupling Feature . . . . . . . . . . . . . .288Physics Interface Features . . . . . . . . . . . . . . . . . .288Chapter 4: Fluid Flow InterfacesModeling Fluid Flow290Available Physics Interfaces . . . . . . . . . . . . . . . . . .290Coupling to Other Physics Interfaces . . . . . . . . . . . . . .291Chapter 5: Heat Transfer InterfacesModeling Heat Transfer294Available Physics Interfaces . . . . . . . . . . . . . . . . . .294Coupling Heat Transfer with Other Physics Interfaces. . . . . . . .294Chapter 6: ThermodynamicsUsing Thermodynamic Properties10 C O N T E N T S296Workflow for Thermodynamics Property Calculations . . . . . . .296Thermodynamics . . . . . . . . . . . . . . . . . . . . . .297Thermodynamic System . . . . . . . . . . . . . . . . . . .299External Thermodynamic Packages . . . . . . . . . . . . . . .308

External Thermodynamic System . . . . . . . . . . . . . . . .309Exporting and Importing Thermodynamic Systems . . . . . . . . .313Species Property . . . . . . . . . . . . . . . . . . . . . .313Mixture Property. . . . . . . . . . . . . . . . . . . . . .319Equilibrium Calculation . . . . . . . . . . . . . . . . . . .321Coupling with the Reaction Engineering and the Chemistry Interfaces . .326Evaluating a Property Function in a Physics Interface . . . . . . . .330User Defined Species . . . . . . . . . . . . . . . . . . . .331References . . . . . . . . . . . . . . . . . . . . . . . .339Thermodynamic Models and Theory340Introduction. . . . . . . . . . . . . . . . . . . . . . .340Thermodynamic Models . . . . . . . . . . . . . . . . . . .340Selecting the Right Thermodynamic Model . . . . . . . . . . . .355Thermodynamic Properties Definitions . . . . . . . . . . . . .357Standard Enthalpy of Formation and Absolute Entropy terms . . . . .360Reference State . . . . . . . . . . . . . . . . . . . . . .362Transport Properties . . . . . . . . . . . . . . . . . . . .362Surface Tension . . . . . . . . . . . . . . . . . . . . . .375References . . . . . . . . . . . . . . . . . . . . . . . .375Chapter 7: GlossaryGlossary of Terms382CONTENTS 11

12 C O N T E N T S

1User’s Guide IntroductionThis guide describes the Chemical Reaction Engineering Module, an optionalpackage that extends the COMSOL Multiphysics modeling environment withcustomized physics interfaces and functionality for the analysis of mass transport,chemical reactions, thermodynamic properties, and other features that areimportant for chemical engineering simulation.This chapter introduces you to the capabilities of the module. A summary of thephysics interfaces and where you can find documentation and model examples isalso included. The last section is a brief overview with links to each chapter in thisguide. About the Chemical Reaction Engineering Module Overview of the User’s Guide13

About the Chemical ReactionEngineering ModuleIn this section: The Scope of the Chemical Reaction Engineering Module The Chemical Reaction Engineering Module Physics Interface Guide Common Physics Interface and Feature Settings and Nodes The Material Database Where Do I Access the Documentation and Application Libraries?The Scope of the Chemical Reaction Engineering ModuleThe Chemical Reaction Engineering Module is tailor-made for the modeling ofchemical systems primarily affected by chemical composition, reaction kinetics, fluidflow, and temperature as functions of space, time, and each other. It has a number ofphysics interfaces to model chemical reaction kinetics, mass transport in dilute,concentrated, and electric potential-affected solutions, laminar and porous mediaflows, and energy transport.Included in these physics interfaces are the kinetic expressions for the reacting systemsand models for the definition of mass transport. A variety of ready-made expressionsare also accessible in order to calculate a system’s thermodynamic and transportproperties.Like all COMSOL modules, the physics interfaces described in this guide include allthe steps available for the modeling process, which are described in detail in theCOMSOL Multiphysics Reference Manual (see Where Do I Access theDocumentation and Application Libraries?), for example: Definitions of parameters and model variables. Creating, importing, and manipulating a geometry. Specifying the chemical and transport material properties. Defining the reaction formulas and physics in the system and on boundaries, andcoupling them to other features.14 CHAPTER 1: USER’S GUIDE INTRODUCTION

Meshing a modeling domain with appropriate consideration given to the reactionsystem’s behavior. Solving the equations that describe a system for stationary or dynamic behavior, oras a parametric or optimization study. Analyzing results to present for further use.Once a model is defined, you can go back and make changes to all the branches listedabove, while maintaining consistency in the other definitions throughout. You canrestart the solver, for example, using the existing solution as an initial guess or evenalter the geometry, while the equations and boundary conditions are kept consistentthrough the associative geometry feature. It is also useful to review the Introductionto the Chemical Reaction Engineering Module included with the module’sdocumentation.While a major focus of this module is on chemical reactors and reacting systems, it isalso extensively used for systems where mass transport is the major component. Thisincludes unit operations equipment, separation and mixing processes, corrosion,chromatography, and electrophoresis. The module is also widely used for educationalpurposes including courses about chemical engineering, chemical reactionengineering, electrochemical engineering, biotechnology, and transport phenomena.In addition to its application in traditional chemical industries, it is a popular tool forinvestigating clean technology processes (for example, catalytic monoliths and reactivefilters), applications such as microlaboratories in biotechnology, and in thedevelopment of sensors and equipment in analytical chemistry.The notations and structure in this module were inspired by the bookTransport Phenomena by Bird, Stewart, and Lightfoot. The work by H.Scott Fogler, Elements of Chemical Reaction Engineering, was also usedas an inspiration.The Chemical Reaction Engineering Module Physics Interface GuideThe appropriate physics interface for modeling a system is first chosen from the ModelWizard. The branches are visible (AC/DC, Acoustics, Structural Mechanics, andMathematics) as well as the core physics interfaces (Electrostatics, for example)included with COMSOL Multiphysics. The Heat Transfer in Fluids, Single-PhaseFlow, Laminar Flow, and Transport of Diluted Species interfaces are also included inABOUT THE CHEMICAL REACTION ENGINEERING MODULE 15

the base package but have increased functionality with this module. See the COMSOLMultiphysics Reference Manual for details pertaining to the base package. Modeling Fluid Flow Modeling Heat Transfer Creating a New Model in the COMSOL Multiphysics ReferenceManualWhen one or several physics interfaces are chosen from the Model Wizard (or if youopen the Add Study window), you select an analysis type (stationary, dynamic, orparametric) and then the modeling interface(s) are available as a node(s) in the ModelBuilder along with all the other nodes required for modeling (Definitions, Geometry,and so forth).By adding another physics interface, you can account for a phenomenon not previouslydescribed in a model. To do this, right-click a Component node in the Model Builder toopen the Add Physics window. You can do this at any stage during the modelingprocess. This action still retains the existing geometry, equations, boundaryconditions, and current solution, which you can build upon for further developmentof the model.The table below lists all the physics interfaces specifically available or enhanced withthis module (in addition to the basic COMSOL Multiphysics license). These physicsinterfaces form the backbone of the module and are based on the equations forchemical reaction kinetics, chemical species transport, as well as for fluid flow and heattransfer in porous media fundamentals.In the COMSOL Multiphysics Reference Manual: Studies and Solvers The Physics Interfaces For a list of all the core physics interfaces included with a COMSOLMultiphysics license, see Physics Interface Guide.16 CHAPTER 1: USER’S GUIDE INTRODUCTION

PHYSICS INTERFACEICONTAGSPACEDIMENSIONAVAILABLE STUDY TYPEChemical Species TransportSurface Reactionssrall dimensionsstationary (3D, 2D, and 2Daxisymmetric models only);time dependentTransport of DilutedSpecies1tdsall dimensionsstationary; time dependentTransport of DilutedSpecies in Porous Mediatdsall dimensionsstationary; time dependentTransport of DilutedSpecies in Fracturesdsf3D, 2D, 2Daxisymmetricstationary; time dependentElectrophoretic Transportelall dimensionsstationary; stationary withinitialization; timedependent; time dependentwith initializationChemistrychemall dimensionsstationary; time dependentTransport ofConcentrated Speciestcsall dimensionsstationary; time dependentNernst-Planck Equationsnpeall dimensionsstationary; time dependentNernst-Planck-PoissonEquationstds esall dimensionsstationary; time dependent;stationary source sweep;small-signal analysis,frequency domainReaction Engineeringre0Dtime dependent; stationaryplug flowLaminar Flow—3D, 2D, 2Daxisymmetricstationary; time dependentLaminar Flow, DilutedSpecies1—3D, 2D, 2Daxisymmetricstationary; time dependentReacting FlowABOUT THE CHEMICAL REACTION ENGINEERING MODULE 17

PHYSICS INTERFACEICONTAGSPACEDIMENSIONAVAILABLE STUDY TYPEReacting Flow in Porous MediaTransport of DilutedSpeciesrfds3D, 2D, 2Daxisymmetricstationary; time dependentTransport ofConcentrated Speciesrfcs3D, 2D, 2Daxisymmetricstationary; time dependentCreeping Flowspf3D, 2D, 2Daxisymmetricstationary; time dependentLaminar Flow1spf3D, 2D, 2Daxisymmetricstationary; time dependentFluid FlowSingle-Phase FlowPorous Media and Subsurface FlowBrinkman Equationsbr3D, 2D, 2Daxisymmetricstationary; time dependentDarcy’s Lawdlall dimensionsstationary; time dependentFree and Porous MediaFlowfp3D, 2D, 2Daxisymmetricstationary; time dependentHeat Transfer in Fluids1htall dimensionsstationary; time dependentHeat Transfer in Solids andFluids1htall dimensionsstationary; time dependentHeat Transfer in PorousMediahtall dimensionsstationary; time dependentHeat Transfer1This physics interface is included with the core COMSOL package but has addedfunctionality for this module.18 CHAPTER 1: USER’S GUIDE INTRODUCTION

The Material DatabaseThe Chemical Reaction Engineering Module includes an additional Liquids and Gasesmaterial database with temperature-dependent fluid dynamic and thermal properties. Liquids and Gases Materials Database MaterialsCommon Physics Interface and Feature Settings and NodesThere are several common settings and sections available for the physics interfaces andfeature nodes. Some of these sections also have similar settings or are implemented inthe same way no matter the physics interface or feature being used. There are also somephysics feature nodes that display in COMSOL Multiphysics.In each module’s documentation, only unique or extra information is included;standard information and procedures are centralized in the COMSOL MultiphysicsReference Manual.In the COMSOL Multiphysics Reference Manual see Table 2-3 forlinks to common sections and Table 2-4 to common feature nodes.You can also search for information: press F1 to open the Helpwindow or Ctrl F1 to open the Documentation window.Where Do I Access the Documentation and Application Libraries?A number of internet resources have more information about COMSOL, includinglicensing and technical information. The electronic documentation, topic-based (orcontext-based) help, and the application libraries are all accessed through theCOMSOL Desktop.If you are reading the documentation as a PDF file on your computer,the blue links do not work to open an application or contentreferenced in a different guide. However, if you are using the Helpsystem in COMSOL Multiphysics, these links work to open othermodules, application examples, and documentation sets.ABOUT THE CHEMICAL REACTION ENGINEERING MODULE 19

THE DOCUMENTATION AND ONLINE HELPThe COMSOL Multiphysics Reference Manual describes the core physics interfacesand functionality included with the COMSOL Multiphysics license. This book also hasinstructions about how to use COMSOL Multiphysics and how to access theelectronic Documentation and Help content.Opening Topic-Based HelpThe Help window is useful as it is connected to the features in the COMSOL Desktop.To learn more about a node in the Model Builder, or a window on the Desktop, clickto highlight a node or window, then press F1 to open the Help window, which thendisplays information about that feature (or click a node in the Model Builder followed). This is called topic-based (or context) help.by the Help button (To open the Help window: In the Model Builder, Application Builder, or Physics Builder click a node orwindow and then press F1. On any toolbar (for example, Home, Definitions, or Geometry), hover themouse over a button (for example, Add Physics or Build All) and thenpress F1. From the File menu, click Help (). In the upper-right corner of the COMSOL Desktop, click the Help (button.)To open the Help window: In the Model Builder or Physics Builder click a node or window and thenpress F1.

The Chemical Reaction Engineering Module is tailor-made for the modeling of chemical systems primarily affected by chemical composition, reaction kinetics, fluid flow, and temperature as functions of space, time, and each other. It has a number of physics interfaces to model chemical reaction kinetics, mass transport in dilute,

Related Documents:

Levenspiel (2004, p. iii) has given a concise and apt description of chemical reaction engineering (CRE): Chemical reaction engineering is that engineering activity concerned with the ex-ploitation of chemical reactions on a commercial scale. Its goal is the successful design and operation of chemical reactors, and probably more than any other ac-File Size: 344KBPage Count: 56Explore further(PDF) Chemical Reaction Engineering, 3rd Edition by Octave .www.academia.edu(PDF) Elements of Chemical Reaction Engineering Fifth .www.academia.eduIntroduction to Chemical Engineering: Chemical Reaction .ethz.chFundamentals of Chemical Reactor Theory1www.seas.ucla.eduRecommended to you b

CHEMICAL REACTION ENGINEERING LABORATORY LAB MANUAL List of Experiments:- 1 To determine the order of reaction (n) and the reaction rate constant (k) for the given sponification reaction of ethyl acetate in aqueous sodium hydroxide solution in a Batch Reactor 2 To determine the order of reaction (n) and the reaction rate constant (k) for the

Teacher’s Book B LEVEL - English in school 6 Contents Prologue 8 Test paper answers 10 Practice Test 1 11 Module 1 11 Module 2 12 Module 3 15 Practice Test 2 16 Module 1 16 Module 2 17 Module 3 20 Practice Test 3 21 Module 1 21 Module 2 22 Module 3 25 Practice Test 4 26 Module 1 26 Module 2 27 Module 3 30 Practice Test 5 31 Module 1 31 Module .

Chemical Formulas and Equations continued How Are Chemical Formulas Used to Write Chemical Equations? Scientists use chemical equations to describe reac-tions. A chemical equation uses chemical symbols and formulas as a short way to show what happens in a chemical reaction. A chemical equation shows that atoms are only rearranged in a chemical .

WinDbg Commands . 0:000 k . Module!FunctionD Module!FunctionC 130 Module!FunctionB 220 Module!FunctionA 110 . User Stack for TID 102. Module!FunctionA Module!FunctionB Module!FunctionC Saves return address Module!FunctionA 110 Saves return address Module!FunctionB 220 Module!FunctionD Saves return address Module!FunctionC 130 Resumes from address

XBEE PRO S2C Wire XBEE Base Board (AADD) XBEE PRO S2C U.FL XBEE Pro S1 Wire RF & TRANSRECEIVER MODULE XBEE MODULE 2. SIM800A/800 Module SIM800C Module SIM868 Module SIM808 Module SIM7600EI MODULE SIM7600CE-L Module SIM7600I Module SIM800L With ESP32 Wrover B M590 MODULE GSM Card SIM800A LM2576

Word & Chemical Equations Scientists represent chemical reactions in two ways: Word equations – uses chemical names, plus signs, and an arrow to show the reaction. Example: Chemical equations – uses chemical formulas, plus signs, and an arrow to show the reaction.States of matter are also shown in subscripts after each chemical substance. Example:

Concave blades, 100 pack ASTBC floors Straight blades, 100 pack ASTBS not available in Canada floors Hooked blades, 100 pack ASTBH floors Trimming tools Walls pull scraper ALWSCRAPER walls 5a 5e 5j 5b 5f 5k 5c 5g 5m 5h 5n 5d Non-stock item USA, 7-10 days for delivery