RF Power LDMOS Transistor - NXP

2y ago
13 Views
2 Downloads
1.17 MB
23 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Oscar Steel
Transcription

NXP SemiconductorsTechnical DataDocument Number: MRFX1K80HRev. 1, 09/2018RF Power LDMOS TransistorHigh Ruggedness N--ChannelEnhancement--Mode Lateral MOSFETMRFX1K80HThis high ruggedness device is designed for use in high VSWR industrial,medical, broadcast, aerospace and mobile radio applications. Its unmatchedinput and output design supports frequency use from 1.8 to 400 MHz.1.8–400 MHz, 1800 W CW, 65 VWIDEBANDRF POWER LDMOS TRANSISTORTypical PerformanceFrequency(MHz)Signal TypeVDD(V)Pout(W)Gps(dB) D(%)27 (1)CW651800 CW27.875.664Pulse (100 sec, 10% Duty Cycle)651800 Peak27.169.581.36CW621800 CW25.178.787.5–108 (2,3)CW601600 CW23.682.5123/128Pulse (100 sec, 10% Duty Cycle)651800 Peak25.969.0144CW651800 CW23.578.0175CW601560 CW23.575.9174–230Doherty (3)DVB--T (8k OFDM)63250 Avg.21.343.3230 (4)Pulse (100 sec, 20% Duty Cycle)651800 Peak25.175.1325Pulse (12 sec, 10% Duty Cycle)631700 Peak22.864.9NI--1230H--4SGate A 31 Drain AGate B 42 Drain BLoad Mismatch/RuggednessFrequency(MHz)230 (4)Signal TypeVSWRPulse(100 sec, 20%Duty Cycle) 65:1 at allPhase AnglesPin(W)TestVoltage14 Peak(3 dBOverdrive)65ResultNo DeviceDegradation1. Measured in 27 MHz reference circuit (page 6).2. Measured in 87.5–108 MHz broadband reference circuit (page 11).3. The values shown are the center band performance numbers across the indicatedfrequency range.4. Measured in 230 MHz production test fixture (page 17).(Top View)Note: The backside of the package is thesource terminal for the transistor.Figure 1. Pin ConnectionsFeatures Unmatched input and output allowing wide frequency range utilization Device can be used single--ended or in a push--pull configuration Qualified up to a maximum of 65 VDD operation Characterized from 30 to 65 V for extended power range High breakdown voltage for enhanced reliability Suitable for linear application with appropriate biasing Integrated ESD protection with greater negative gate--source voltage range for improved Class C operation Lower thermal resistance option in over--molded plastic package: MRFX1K80N Included in NXP product longevity program with assured supply for a minimum of 15 years after launchTypical Applications Radio and VHF TV broadcast Industrial, scientific, medical (ISM)– Laser generation Aerospace– Plasma generation– HF communications– Particle accelerators– Radar– MRI, RF ablation and skin treatment– Industrial heating, welding and drying systems 2017–2018 NXP B.V.RF Device DataNXP SemiconductorsMRFX1K80H1

Table 1. Maximum RatingsRatingSymbolValueUnitDrain--Source VoltageVDSS–0.5, 179VdcGate--Source VoltageVGS–6.0, 10VdcStorage Temperature RangeTstg– 65 to 150 CCase Operating Temperature RangeTC–40 to 150 COperating Junction Temperature Range(1,2)TJ–40 to 225 CPD224711.2WW/ CSymbolValue (2,3)UnitThermal Resistance, Junction to CaseCW: Case Temperature 99 C, 1800 W CW, 65 Vdc, IDQ(A B) 150 mA, 98 MHzR JC0.09 C/WThermal Impedance, Junction to CasePulse: Case Temperature 65 C, 1800 W Peak, 100 sec Pulse Width, 20% Duty Cycle,65 Vdc, IDQ(A B) 100 mA, 230 MHzZ JC0.017 C/WTotal Device Dissipation @ TC 25 CDerate above 25 CTable 2. Thermal CharacteristicsCharacteristicTable 3. ESD Protection CharacteristicsTest MethodologyClassHuman Body Model (per JESD22--A114)2, passes 2500 VCharge Device Model (per JESD22--C101)C3, passes 2000 VTable 4. Electrical Characteristics (TA 25 C unless otherwise noted)CharacteristicOff CharacteristicsSymbolMinTypMaxUnitIGSS——1 Adc179193—Vdc(4)Gate--Source Leakage Current(VGS 5 Vdc, VDS 0 Vdc)Drain--Source Breakdown Voltage(VGS 0 Vdc, ID 100 mAdc)V(BR)DSSZero Gate Voltage Drain Leakage Current(VDS 65 Vdc, VGS 0 Vdc)IDSS——10 AdcZero Gate Voltage Drain Leakage Current(VDS 179 Vdc, VGS 0 Vdc)IDSS——100mAdcGate Threshold Voltage (4)(VDS 10 Vdc, ID 740 Adc)VGS(th)2.12.52.9VdcGate Quiescent Voltage(VDD 65 Vdc, ID(A B) 100 mAdc, Measured in Functional Test)VGS(Q)2.42.83.2VdcDrain--Source On--Voltage (4)(VGS 10 Vdc, ID 2.76 Adc)VDS(on)—0.21—Vdcgfs—44.7—SOn CharacteristicsForward Transconductance (4)(VDS 10 Vdc, ID 43 Adc)1.2.3.4.Continuous use at maximum temperature will affect MTTF.MTTF calculator available at http://www.nxp.com/RF/calculators.Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.Each side of device measured separately.(continued)MRFX1K80H2RF Device DataNXP Semiconductors

Table 4. Electrical Characteristics (TA 25 C unless otherwise noted) e Transfer Capacitance(VDS 65 Vdc 30 mV(rms)ac @ 1 MHz, VGS 0 Vdc)Crss—2.9—pFOutput Capacitance(VDS 65 Vdc 30 mV(rms)ac @ 1 MHz, VGS 0 Vdc)Coss—203—pFInput Capacitance(VDS 65 Vdc, VGS 0 Vdc 30 mV(rms)ac @ 1 MHz)Ciss—760—pFDynamic Characteristics (1)Functional Tests (In NXP Production Test Fixture, 50 ohm system) VDD 65 Vdc, IDQ(A B) 100 mA, Pout 1800 W Peak (360 W Avg.),f 230 MHz, 100 sec Pulse Width, 20% Duty CyclePower GainGps24.025.126.5dBDrain Efficiency D70.075.1—%Input Return LossIRL—–14.4–9dBTable 5. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) IDQ(A B) 100 mAFrequency(MHz)230Signal TypeVSWRPin(W)Pulse(100 sec, 20% Duty Cycle) 65:1 at allPhase Angles14 W Peak(3 dB Overdrive)Test Voltage, VDDResult65No Device DegradationTable 6. Ordering InformationDeviceMRFX1K80HR5Tape and Reel InformationR5 Suffix 50 Units, 56 mm Tape Width, 13--inch ReelPackageNI--1230H--4S1. Each side of device measured separately.MRFX1K80HRF Device DataNXP Semiconductors3

TYPICAL CHARACTERISTICS20001.081000NORMALIZED VGS(Q)C, CAPACITANCE (pF)Coss1001011.041.02VDD 65 Vdc500 mA1.06CissIDQ(A B) 100 mA1000 mA1500 mA1.000.980.96Measured with 30 mV(rms)ac @ 1 MHzVGS 0 Vdc0102030400.94Crss50600.92–5070–250VDS, DRAIN--SOURCE VOLTAGE (VOLTS)255075100TC, CASE TEMPERATURE ( C)Note: Each side of device measured separately.IDQ (mA)Slope (mV/ C)100–3.21500–2.791000–2.691500–2.61Figure 2. Capacitance versus Drain--Source VoltageFigure 3. Normalized VGS versus QuiescentCurrent and Case Temperature109MTTF (HOURS)108VDD 65 VdcID 28.1 AmpsID 32.2 Amps107ID 35.6 Amps10610590110130150170190210230250TJ, JUNCTION TEMPERATURE ( C)Note: MTTF value represents the total cumulative operating timeunder indicated test conditions.MTTF calculator available at http:/www.nxp.com/RF/calculators.Figure 4. MTTF versus Junction Temperature – CWMRFX1K80H4RF Device DataNXP Semiconductors

LINEAR MODEL890 pF0.2 nH4 pF2.9 pF0.2 GATE ADRAIN A18 VGSA753 pF3 0.2 nH3.1 196 pF4 pFVGS890 pF0.2 nH4 pF2.9 pF0.2 GATE B3 0.2 nHDRAIN B753 pF18 VGSA3.1 196 pF4 pFVGSFigure 5. Simple Linear Model for the MRFX1K80HMRFX1K80HRF Device DataNXP Semiconductors5

27 MHz REFERENCE CIRCUIT – 2.9 6.9 (73 mm 175 mm)Table 7. 27 MHz Performance (In NXP Reference Circuit, 50 ohm system)IDQ(A B) 200 mA, Pin 3 W, CWFrequency(MHz)VDD(V)Pout(W)Gps(dB) MRFX1K80H6RF Device DataNXP Semiconductors

27 MHz REFERENCE CIRCUIT – 2.9 6.9 (73 mm 175 mm)Temperature CompensationD94843L2Q2C12C17C7C6C15C19 R1L1C10C5Q1T1C1 C2C11R2C16C8C9C18 C20MRFX1K80HMRF1K50HMRFE6VP61K25HT2Rev. 0R3D1C13Note: Component numbers C3, C4 and C14 are not used.C101C109C103 C104 C105 C106U101D101R103R104R105R101R102R109 C107 C108R106C110Q101C102R107R108Temperature Compensation DetailD50876T2 Transformer DetailFigure 6. MRFX1K80H Reference Circuit Component Layout – 27 MHzMRFX1K80HRF Device DataNXP Semiconductors7

27 MHz REFERENCE CIRCUIT – 2.9 6.9 (73 mm 175 mm)Table 8. MRFX1K80H Reference Circuit Component Designations and Values – 27 MHzPartDescriptionPart NumberManufacturerC1, C17, C181000 pF Chip CapacitorATC100B102JT50XTATCC2, C15, C1639 K pF Chip CapacitorATC200B393KT50XTATCC5470 pF Chip CapacitorATC100C471JT2500XTATCC6, C82.2 F Chip CapacitorHMK432B7225KM-TTaiyo YudenC7, C9, C19, C20470 pF Chip CapacitorATC100B471JT200XTATCC10, C1122 pF Chip CapacitorATC100B220JT500XTATCC12470 F, 100 V Electrolytic CapacitorMCGPR100V477M16X32-RHMulticompC131000 pF Chip CapacitorC2012X7R2E102MTDKD1Green LED, 1206LG N971-KN-1OSRAML182 nH Inductor1812SMS-82NJLCCoilcraftL27 Turns, #16 AWG, ID 10 mm Inductor,Hand Wound8074BeldenQ1RF Power LDMOS TransistorMRFX1K80HNXPR1, R233 , 3 W Chip Resistor1-2176070-3TE ConnectivityR39.1 k 1/4 W Chip ResistorCRCW12069K10FKEAVishayPCBArlon TC350 0.030 r 3.5D94843MTLT1 CoreMulti-Aperture Core, 43 Material2843000302Fair-RiteT1 Primary2 Turns, #20 AWG Magnetic Wire8076BeldenT1 Secondary1 Turn, #24 AWG Teflon Wire5854/7 BL005Alpha WireT2 Core61 Round Cable Core, x42661102002Fair-RiteT2 PrimaryCopper Pipe, Type L, ID 3/8 , OD 1/2 ,cut to 2.4 LH03010MuellerT2 Secondary3 Turns, #16 AWG PTFE Covered Wire, TwistedTEF16RF Parts CompanyT2 PCBArlon TC350 0.030 r 3.5, x2D50876MTLC101, C102, C104, C106,C108, C1101 F Chip CapacitorGRM21BR71H105KA12LMurataC103, C105, C107, C1091 nF Chip CapacitorC2012X7R2E102MTDKD101Red LED, 1206LH N974-KN-1OSRAMQ101NPN Bipolar TransistorBC847ALT1GON SemiconductorR1012.2 k , 1/8 W Chip ResistorCRCW08052K20JNEAVishayR102, R1091.2 k , 1/8 W Chip ResistorCRCW08051K20FKEAVishayR10310 , 1/8 W Chip ResistorRK73H2ATTD10R0FKOA SpeerR1041 k , 1/8 W Chip ResistorRR1220P-102-DSusumuR1053.9 k , 1/8 W Chip ResistorCRCW08053K90JNEAVishayR106200 1/8 W Chip ResistorCRCW0805200RJNEAVishayR1075 k Multi--turn Cermet Trimming Potentiometer,11 Turns3224W-1-502EBournsR10810 1/4 W Chip ResistorCRCW120610R0JNEAVishayU101Voltage Regulator 5 V, Micro8LP2951ACDMR2GON SemiconductorTransformerTemperature CompensationNote: Refer to MRFX1K80H’s printed circuit boards and schematics to download the 27 MHz heatsink drawing.MRFX1K80H8RF Device DataNXP Semiconductors

TYPICAL CHARACTERISTICSVDD 65 V3257.5 V30160014001200Gps, POWER GAIN (dB)Pout, OUTPUT POWER (WATTS)180050 V1000800600400IDQ(A B) 200 mA, f 27 MHz012345678927602650Gps242250 V57.5 V65 V3020IDQ(A B) 200 mA, f 27 MHz02004006004010800 1000 1200 1400 1600 1800 2000Pout, OUTPUT POWER (WATTS)Pin, INPUT POWER (WATTS)f(MHz)65 V 807028189057.5 V D202000VDD 50 V D, DRAIN EFFICIENCY 6511501900Figure 8. Power Gain and Drain Efficiencyversus CW Output Power andDrain--Source VoltageFigure 7. CW Output Power versus Input Powerand Drain--Source VoltageMRFX1K80HRF Device DataNXP Semiconductors9

27 MHz REFERENCE CIRCUITfMHzZsource Zload 278.70 j6.286.21 j2.68Zsource Test circuit impedance as measured fromgate to gate, balanced configuration.Zload50 InputMatchingNetwork Test circuit impedance as measured fromdrain to drain, balanced configuration. -ZsourceDeviceUnderTest--OutputMatchingNetwork50 ZloadFigure 9. Series Equivalent Source and Load Impedance – 27 MHzMRFX1K80H10RF Device DataNXP Semiconductors

87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2.9 5.1 (73 mm 130 mm)Table 9. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system)IDQ(A B) 200 mA, Pin 7 W, CWFrequency(MHz)VDD(V)Pout(W)Gps(dB) 580.0MRFX1K80HRF Device DataNXP Semiconductors11

87.5–108 MHz BROADBAND REFERENCE CIRCUIT – 2.9 5.1 (73 mm 130 mm)C28C25D94849C26C22C6 2L2C23*C15*R3C14C8MRFX1K80HMRF1K50HMRFE6VP61K25HC9 C10*C15 and C23 are mounted vertically.Note: Component numbers C12 and C13 are not used.Rev. 00.34(9)0.45(11)0.22(6)L3 total wire length 1.7 (43 mm)Inches(mm)Figure 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component LayoutFigure 11. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Layout – BottomMRFX1K80H12RF Device DataNXP Semiconductors

Table 10. MRFX1K80H 87.5–108 MHz Broadband Reference Circuit Component Designations and ValuesPartDescriptionPart NumberManufacturerC1, C3, C6, C9, C18, C19,C20, C21, C221000 pF Chip CapacitorATC100B102JT50XTATCC233 pF Chip CapacitorATC100B330JT500XTATCC4, C5, C810,000 pF Chip CapacitorATC200B103KT50XTATCC7, C10, C15, C16, C17, C23470 pF Chip CapacitorATC100B471JT200XTATCC11100 pF, 300 V Mica CapacitorMIN02-002EC101J-FCDEC14, C2412 pF Chip CapacitorATC100B120GT500XTATCC25, C26, C27220 F, 100 V Electrolytic CapacitorEEV-FC2A221MPanasonic--ECGC2822 F, 35 V Electrolytic CapacitorUUD1V220MCL1GSNichiconL1, L217.5 nH Inductor, 6 TurnsB06TJLCCoilcraftL31.5 mm Non--Tarnish Silver Plated Copper Wire,Total Wire Length 1.7 /43 mmSP1500NT-001Scientific Wire CompanyL422 nH Inductor1212VS-22NMEBCoilcraftQ1RF Power LDMOS TransistorMRFX1K80HNXPR110 , 1/4 W Chip ResistorCRCW120610R0JNEAVishayR2, R333 , 2 W Chip Resistor1-2176070-3TE ConnectivityThermal PadTG Series Soft Thermal Conductive PadTG6050-150-150-5.0-0t-Global TechnologyPCBArlon TC350 0.030 , r 3.5D94849MTLNote: Refer to MRFX1K80H’s printed circuit boards and schematics to download the 87.5–108 MHz heatsink drawing.MRFX1K80HRF Device DataNXP Semiconductors13

90268525 D, DRAINEFFICIENCY (%)2780 D2475Gps2370170022211600Pout201918871500VDD 60 Vdc, Pin 7 W, lDQ(A B) 200 mA899195939799101 103 1051400Pout, OUTPUTPOWER (WATTS)Gps, POWER GAIN (dB)TYPICAL CHARACTERISTICS – 87.5–108 MHz, 60 VBROADBAND REFERENCE CIRCUIT1300107 109f, FREQUENCY (MHz)Figure 12. Power Gain, Drain Efficiency and CW OutputPower versus Frequency at a Constant Input Power180098 MHzPout, OUTPUT POWER (WATTS)16001400120087.5 MHz108 MHz10008006004002000VDD 60 Vdc, IDQ(A B) 200 mA042861012Pin, INPUT POWER (WATTS)Figure 13. CW Output Power versus Input Power and Frequency9034f 87.5 MHz80Gps302826605087.5 MHz D2498 MHz40108 MHz222070108 MHz98 MHz D, DRAIN EFFICIENCY (%)Gps, POWER GAIN (dB)3230VDD 60 Vdc, lDQ(A B) 200 mA020040060080010001200 14001600201800Pout, OUTPUT POWER (WATTS)Figure 14. Power Gain and Drain Efficiency versusCW Output Power and FrequencyMRFX1K80H14RF Device DataNXP Semiconductors

87.5–108 MHz BROADBAND REFERENCE CIRCUITZo 10 Zsourcef 87.5 MHzf 108 MHzf 87.5 MHzf 108 MHzZloadfMHzZsource Zload 87.53.69 j5.193.90 j4.73983.60 j4.903.88 j3.991083.16 j4.693.35 j3.95Zsource Test circuit impedance as measured fromgate to gate, balanced configuration.Zload50 Test circuit impedance as measuredfrom drain to drain, balanced configuration.InputMatchingNetwork DeviceUnderTest---ZsourceOutputMatchingNetwork50 ZloadFigure 15. Broadband Series Equivalent Source and Load Impedance – 87.5–108 MHzMRFX1K80HRF Device DataNXP Semiconductors15

HARMONIC MEASUREMENTS — 87.5–108 MHzBROADBAND REFERENCE CIRCUITF1H2H3H4Fundamental (F1)87.5 MHz175 MHz –33 dB262.5 MHz –28 dB350 MHz –51 dBH3H4H2(175 MHz) (262.5 MHz) (350 MHz)–33 dB–28 dB–51 dBH3H2H4Center: 228.5 MHz35 MHzSpan: 350 MHzFigure 16. 87.5 MHz Harmonics @ 1300 W CWMRFX1K80H16RF Device DataNXP Semiconductors

230 MHz PRODUCTION TEST FIXTURE – 6.0 4.0 (152 mm 102 C1R2Coax2C5L1C20*C21*C22*C15 C16C23*L4Coax4MRFX1K80HRev. 0C11C7C17*C18*C19*C13 C14CUT OUT AREAC2L3C25C29C30C31C8*C4, C17, C18, C19, C20, C21, C22 and C23 are mounted vertically.Figure 17. MRFX1K80H Test Fixture Component Layout – 230 MHzTable 11. MRFX1K80H Test Fixture Component Designations and Values – 230 MHzPartDescriptionPart NumberManufacturerC1, C2, C322 pF Chip CapacitorATC100B220JT500XTATCC427 pF Chip CapacitorATC100B270JT500XTATCC5, C622 F, 35 V Tantalum CapacitorT491X226K035ATKemetC7, C90.1 F Chip CapacitorCDR33BX104AKWSAVXC8, C10220 nF Chip CapacitorC1812C224K5RACTUKemetC11, C12, C24, C251000 pF Chip CapacitorATC100B102JT50XTATCC1324 pF Chip CapacitorATC800R240JT500XTATCC14, C15, C1620 pF Chip CapacitorATC800R200JT500XTATCC17, C18, C19, C20, C21, C22240 pF Chip CapacitorATC100B241JT200XTATCC237.5 pF Chip CapacitorATC100B7R5CT500XTATCC26, C27, C28, C29, C30, C31470 F, 100 V Electrolytic CapacitorMCGPR100V477M16X32-RHMulticompCoax1, 2, 3, 425 Semi Rigid Coax Cable, 2.2 Shield LengthUT-141C-25Micro--CoaxL1, L25 nH Inductor, 2 TurnsA02TJLCCoilcraftL3, L46.6 nH Inductor, 2 TurnsGA3093-ALCCoilcraftR1, R210 , 1/4 W Chip ResistorCRCW120610R0JNEAVishayPCBArlon AD255A 0.030 , r 2.55D93270MTLMRFX1K80HRF Device DataNXP Semiconductors17

TYPICAL CHARACTERISTICS — 230 MHz, TC 25 CPRODUCTION TEST FIXTUREPout, OUTPUT POWER (WATTS) PEAK2500VDD 65 Vdc, f 230 MHzPulse Width 100 sec, 20% Duty Cycle2000Pin 5.6 W15001000Pin 2.8 W50000.501.51.02.02.53.03.5VGS, GATE--SOURCE VOLTAGE (VOLTS)Figure 18. Output Power versus Gate--SourceVoltage at a Constant Input 2080230050 D2240Gps21 100 mAPin, INPUT POWER (dBm) PEAKf(MHz)70300 mA19504480600 mA900 mA30600 mA20442490VDD 65 Vdc, f 230 MHzPulse Width 100 sec20% Duty CycleIDQ(A B) 900 mA100 mA20300 mA1001030001000Pout, OUTPUT POWER (WATTS) PEAKFigure 20. Power Gain and Drain Efficiencyversus Output Power and Quiescent CurrentFigure 19. Output Power versus Input Power90–40 C25 C242220188085 C 7026GpsTC –40 C D25 C60504085 C301620143010010002610400024Gps, POWER GAIN (dB)Gps, POWER GAIN (dB)VDD 65 Vdc, IDQ(A B) 100 mA, f 230 MHz28 Pulse Width 100 sec, 20% Duty Cycle D, DRAIN EFFICIENCY (%)302265 V2050 V1855 V40 V161460 VVDD 30 V0500IDQ 100 mA, f 230 MHzPulse Width 100 sec, 20% Duty Cycle100015002000Pout, OUTPUT POWER (WATTS) PEAKPout, OUTPUT POWER (WATTS) PEAKFigure 21. Power Gain and Drain Efficiencyversus Output PowerFigure 22. Power Gain versus Output Powerand Drain--Source Voltage2500MRFX1K80H18RF Device DataNXP Semiconductors D, DRAIN EFFICIENCY (%)27VDD 65 Vdc, IDQ(A B) 100 mA, f 230 MHzPulse Width 100 sec, 20% Duty CycleGps, POWER GAIN (dB)Pout, OUTPUT POWER (dBm) PEAK68

230 MHZ PRODUCTION TEST FIXTUREfMHzZsource Zload 2301.1 j2.72.2 j2.9Zsource Test fixture impedance as measured fromgate to gate, balanced configuration.Zload50 InputMatchingNetwork Test fixture impedance as measured fromdrain to drain, balanced configuration. -ZsourceDeviceUnderTest--OutputMatchingNetwork50 ZloadFigure 23. Series Equivalent Source and Load Impedance – 230 MHzMRFX1K80HRF Device DataNXP Semiconductors19

PACKAGE DIMENSIONSMRFX1K80H20RF Device DataNXP Semiconductors

MRFX1K80HRF Device DataNXP Semiconductors21

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLSRefer to the following resources to aid your design process.Application Notes AN1908: Solder Reflow Attach Method for High Power RF Devices in Air Cavity Packages AN1955: Thermal Measurement Methodology of RF Power AmplifiersEngineering Bulletins EB212: Using Data Sheet Impedances for RF LDMOS DevicesSoftware Electromigration MTTF Calculator RF High Power Model .s2p FileDevelopment Tools Printed Circuit BoardsTo Download Resources Specific to a Given Part Number:1. Go to http://www.nxp.com/RF2. Search by part number3. Click part number link4. Choose the desired resource from the drop down menuREVISION HISTORYThe following table summarizes revisions to this document.RevisionDateDescription0Aug. 2017 Initial release of data sheet1Sept. 2018 Typical Performance table: updated values for 81.36 MHz reference circuit; added performance informationfor 175 MHz reference circuit and 174–230 MHz Doherty reference circuit, p. 1 Feature bullets: updated Aerospace feature bullets, p. 1 Fig. 3, Normalized VGS versus Quiescent Current and Case Temperature: corrected 50 Vdc to 65 Vdc toreflect actual performance in graph, p. 4 Fig. 5, Linear Model: added simple linear model for MRFX1K80H, p. 5 Fig. 10 (previously Fig. 9), 87.5–108 MHz Broadband Reference Circuit: added note regarding componentsnot used, p. 12 Fig. 20 (previously Fig. 19), Power Gain and Drain Efficiency versus Output Power and Quiescent Current:updated graph to reflect correct Drain Efficiency performance. Output Power axis value “3” changed to “50”to reflect actual output power performance, p. 18MRFX1K80H22RF Device DataNXP Semiconductors

How to Reach Us:Home Page:nxp.comWeb Support:nxp.com/supportInformation in this document is provided solely to enable system and softwareimplementers to use NXP products. There are no express or implied copyright licensesgranted hereunder to design or fabricate any integrated circuits based on the informationin this document. NXP reserves the right to make changes without further notice to anyproducts herein.NXP makes no warranty, representation, or guarantee regarding the suitability of itsproducts for any particular purpose, nor does NXP assume any liability arising out of theapplication or use of any product or circuit, and specifically disclaims any and all liability,including without limitation consequential or incidental damages. “Typical” parametersthat may be provided in NXP data sheets and/or specifications can and do vary indifferent applications, and actual performance may vary over time. All operatingparameters, including “typicals,” must be validated for each customer application bycustomer’s technical experts. NXP does not convey any license under its patent rightsnor the rights of others. NXP sells products pursuant to standard terms and conditions ofsale, which can be found at the following address: nxp.com/SalesTermsandConditions.NXP and the NXP logo are trademarks of NXP B.V. All other product or service namesare the property of their respective owners.E 2017–2018 NXP B.V.MRFX1K80HDocumentNumber:RFDeviceData MRFX1K80HRev. 1,Semiconductors09/2018NXP23

2 RF Device Data NXP Semiconductors MRFX1K80H Table 1. Maximum Ratings Rating Symbol Value Unit Drain--Source Voltage VDSS –0.5, 179 Vdc Gate--Source Voltage VGS –6.0, 10 Vdc Storage Temperature Range Tstg –65to 150 C Case Operating Temperature Range TC –40 to 150 C Operating Junction Temperature Range (1,2) TJ –40 to 225 C Total Device

Related Documents:

Q1 RF Power LDMOS Transistor A3T18H455W23S NXP R1 50 : , 10 W Termination Chip Resistor 060120A25X50--2 Anaren R2, R3 3.3 : , 1/8 W Chip Resistor CRCW08053R30FKEA Vishay Z1 1800--2200 MHz Band, 90 q, 2 dB Directional Coupler X3C20F1--02S Anaren PCB Rogers RO3035, 0.020 s, Hr 3.60 D95832 MTL Downloaded from Arrow.com.

packages assembled at NXP and NXP's assembly and test vendors. Refer to Section Downloading package information from NXP website of this application note for step by step instructions for retrieving package information. For more details about NXP products, visit www.nxp.com or contact the appropriate product application team.

The LA-1K RF Sensing Dual HF LDMOS ampli er is a complete stand-alone amateur RF LINEAR ampli er. It is completely independent of data from an external source to determine frequency for tracking from Band to Band. As a result of this feature, the LA-1K will function with any transmitting device without interconnecting data cable attachments.File Size: 2MB

Power Supply Design for NXP i.MX 6 Using the TPS65023 Application Report SLVA943-February 2018 Power Supply Design for NXP i.MX 6 Using the TPS65023 ABSTRACT This document details the design considerations of a power management unit solution for the NXP i.MX 6Solo and 6DualLite processors using the TPS65023 power management IC (PMIC).

Bit comparator system in which 1-Bit full adder and 1-Transistor AND gate are present. The 1-Bit full adder is constructed using 8-Transistor with capacitor to decrease the delay, power dissipation, no of transistor's, circuit complexity and average power consumption. Keywords— comparator ,no of transistor

PUBLIC 2 NXP's SOLUTIONS ORGANIZATION Cross Business Line organization within NXP Application specific expertise and focus Work at system level, bringing together cross-NXP hardware and software to develop and support complete solutions For wireless power, this is Qi certified transmitters and receivers, that contain NXP application software, libraries, controllers, NFC .

Aug 01, 2018 · Basically there are two types of transistor: PNP and NPN. We have labelled the NPN transistor as BC547. This means you can use ANY NPN transistor, such as 2N2222, BC108, 2N3704, BC337 and hundreds of others. Some circuits use TUN for Transistor Universal NPN and this is the same as ou

Neurodidaktische Ansätze in Beste Freunde Folie Nr. 31 12.01.2017 Exkurs: Interhemisphärisches Lernen und Gehirnaktivierung 1. Das Gehirn wird immer nur dann „trainiert“, wenn es neue oder ungewohnte Tätigkeiten ausübt, d.h. Gehirn trainieren ist nicht automatisch lernen 2. Das beste Gehirntraining ist das Erlernen einer Sprache, da Sprache im gesamten Cortex verarbeitet wird 3 .