Lecture 4 Honeycombs Notes, 3

2y ago
5 Views
3 Downloads
3.35 MB
27 Pages
Last View : 27d ago
Last Download : 3m ago
Upload by : Nadine Tse
Transcription

Lecture 4 Honeycombs Notes, 3.054Honeycombs-In-plane behavior Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts Some natural materials (e.g. wood, cork) can be idealized as honeycombs Mechanisms of deformation and failure in hexagonal honeycombs parallel those in foams simpler geometry — unit cell — easier to analyze Mechanisms of deformation in triangular honeycombs parallel those in 3D trusses (lattice materials)Stress-strain curves and Deformation behavior: In-PlaneCompression 3 regimes– linear elastic bending– stress plateau buckling yielding brittle crushing– densification Increasing t/l E σ cell walls touchED 1

Honeycomb GeometryGibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.2

Gibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.3

DeformationmechanismsBendingX1 LoadingBendingX2 LoadingBendingShearBucklingGibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.4

Plastic collapse in analuminum honeycombGibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.5

Stress-Strain CurveGibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.6

Tension Linear elastic bending Stress plateau exists only if cell walls yield no buckling in tension brittle honeycombs fracture in tensionVariables affecting honeycomb properties Relative densitythl ( l 2)2 tρ ρs2 cos θ ( hl sin θ)3 l Solid cell wall properties: ρs , Es , σys , σf s Cell geometry: h/l, θregular hexagons

In-plane propertiesAssumptions: t/l small ((ρ c /ρs ) small) — neglect axial and shear contribution to deformation Deformations small — neglect changes in geometry Cell wall — linear elastic, isotropicSymmetry Honeycombs are orthotropic — rotate 180 about each of three mutually perpendicular axes andstructure is the sameLinear elastic deformation 1/E1 ν21 /E2 ν31 /E2000σ1E1 E2 ν12 /E1 1/E2 ν32 /E3 000 σ2 σ3 E3 ν13 /E1 ν23 /E2 1/E3000 σ4 E4 0001/G0023 E5 0 σ5 00001/G13E6000001/G12σ68

Matrix notation:E1 E11 E4 γ23 σ1 σ11 σ4 σ23E2 E22 E5 γ13 σ2 σ22 σ5 σ13E3 E33 E6 γ12 σ3 σ33 σ6 σ12 In plane (x1 x2 ): 4 independent elastic constants:E1 E2 ν12 G12and compliance matrix symmetric ν12 ν21 E2E1(reciprocal relation)h Ej inotation for Poisson’s ratio: νij EiYoung’s modulus in x1 directionσ1 Unit cell in x1 direction: 2l cos θUnit cell in x2 direction: h 2l sin θP(n l sin θ) bE1 9δ sin θl cos θ

In-Plane Deformation:Linear ElasticityFigure removed due to copyright restrictions. See Figure 5: L. J. Gibson,M. F. Ashby, et al. "The Mechanics of Two-Dimensional Cellular Materials."10

M diagram: 2 cantilevers of length l/2P sin θ(l/2)3δ 2·3Es I32 P l sin θ 24 Es Ib t3P l3 sin θδ I 1212 Es ICombining:σ1Pl cos θ E1(h l sin θ) b δ sin θb t3Pl cos θ 12 Es12(h l sin θ) b P l3 sin2 θ t 3cos θ sin θ) bMmax.applied σf s modulus of rupture of cell wallP l sin θσ1 (h l sin θ) b l sin θ 22Moment at fracture, Mft 2 σf s b t2Mf t σf s b22 36 1(σc r )1 σf s t 2lregular hexagons:13 (h/l sin θ) sin θ(σc r )120 t 24 σf s9l

Brittle CrushingGibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.21

Tension No elastic buckling Plastic plateau stress approx. same in tension and compression(small geometric difference due to deformation) Brittle honeycombs: fast fractureFracture toughnessAssume: crack length large relative to cell size (continuum assumption) axial forces can be neglected cell wall material has constant modulus of rapture, σf sContinuum: crack of length 2c in a linear elastic solid material normal to a remote tension stressσ1 creates a local stress field at the crack tipσlocal σ1 π c σl 2π r22

Fracture ToughnessGibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.23

Honeycomb: cell walls bent — fail when applied moment fracture momentMapp P lon wall A 2σ1 cl b Mapp P l σl l2 b σ f s b t2l t 2 l (σf )1 σf slc t 2 depends on cell size, l!KI C σf πc c σf sllc constantSummary: hexagonal honeycombs, in-plane properties Linear elastic moduli: Plateau stresses(compression) Fracture toughness(tension)E1 (σel )2 σpl σcr KICE2 ν12 G12elastic bucklingplastic yieldbrittle crushingbrittle fracture24

Honeycombs: In-plane behavior — triangular cells Triangulated structures trusses Can analyze as pin jointed (no moment at joints) Forces in members all axial (no bending) If joints fixed and include bending, difference 2% Force in each member proportional to Pdepth b into pagePδPl δ axial shortening: Hooke’s lawlblA Es t σP lP b t Es E Es lb δb Pllσ E c Es (t/l)exact calculation: E 1.15 Es (t/l) for equilateral triangles25

Square and TriangularHoneycombsGibson, L. J., and M. F. Ashby. Cellular Solids: Structure and Properties. 2nd ed. CambridgeUniversity Press, 1997. Figure courtesy of Lorna Gibson and Cambridge University Press.26

MIT OpenCourseWarehttp://ocw.mit.edu3.054 / 3.36 Cellular Solids: Structure, Properties and ApplicationsSpring 2015For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

2 θ ν 12 h l sin θδ sin θ l (h/l sin θ) sin θ ν 12 depends ONLY on cell geometry (h/l, θ), not on E s, t/l Regular hexagonal cells: ν 12 1 ν can be negative for θ 0 h/l 2 θ 30 e.g. ν 3/4 12 (3/2)( 1/2) 1 νE 2

Related Documents:

Introduction of Chemical Reaction Engineering Introduction about Chemical Engineering 0:31:15 0:31:09. Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20 Lecture 21 Lecture 22 Lecture 23 Lecture 24 Lecture 25 Lecture 26 Lecture 27 Lecture 28 Lecture

GEOMETRY NOTES Lecture 1 Notes GEO001-01 GEO001-02 . 2 Lecture 2 Notes GEO002-01 GEO002-02 GEO002-03 GEO002-04 . 3 Lecture 3 Notes GEO003-01 GEO003-02 GEO003-03 GEO003-04 . 4 Lecture 4 Notes GEO004-01 GEO004-02 GEO004-03 GEO004-04 . 5 Lecture 4 Notes, Continued GEO004-05 . 6

Lecture 1: A Beginner's Guide Lecture 2: Introduction to Programming Lecture 3: Introduction to C, structure of C programming Lecture 4: Elements of C Lecture 5: Variables, Statements, Expressions Lecture 6: Input-Output in C Lecture 7: Formatted Input-Output Lecture 8: Operators Lecture 9: Operators continued

honeycombs. A comparable product is the CFRP honeycomb that has recently been used in antenna reflectors for high frequencies [5,6]. Other composites such as Kevlar honeycombs are also manufactured and used in floor panels of the latest airplane model. Quartz fiber, which has superior electrical properties has found the application in radome.

Non-Destructive Testing Problems Measuring the thickness and geometry Tendon ducts Position Concrete cover Grouting Honeycombs (around them) Corrosion of strands Cracks and fissures in strands Concerte Reinforcement (position, cover, diameter) Localisation of honeycombs Delaminations Cracks .

2 Lecture 1 Notes, Continued ALG2001-05 ALG2001-06 ALG2001-07 ALG2001-08 . 3 Lecture 1 Notes, Continued ALG2001-09 . 4 Lecture 2 Notes ALG2002-01 ALG2002-02 ALG2002-03 . 5 Lecture 3 Notes ALG2003-01 ALG2003-02 ALG

Lecture 1: Introduction and Orientation. Lecture 2: Overview of Electronic Materials . Lecture 3: Free electron Fermi gas . Lecture 4: Energy bands . Lecture 5: Carrier Concentration in Semiconductors . Lecture 6: Shallow dopants and Deep -level traps . Lecture 7: Silicon Materials . Lecture 8: Oxidation. Lecture

TOEFL Listening Lecture 35 184 TOEFL Listening Lecture 36 189 TOEFL Listening Lecture 37 194 TOEFL Listening Lecture 38 199 TOEFL Listening Lecture 39 204 TOEFL Listening Lecture 40 209 TOEFL Listening Lecture 41 214 TOEFL Listening Lecture 42 219 TOEFL Listening Lecture 43 225 COPYRIGHT 2016