Charge Symmetry Breaking In The Dd 4Heπ Reaction With WASA-at-COSY

1y ago
5 Views
1 Downloads
2.13 MB
35 Pages
Last View : 2m ago
Last Download : 3m ago
Upload by : Samir Mcswain
Transcription

Charge symmetry breaking in the dd 4Heπ0reaction with WASA-at-COSYMitglied der Helmholtz-GemeinschaftMaria Ż urek for the WASA-at-COSY CollaborationInstitute for Nuclear PhysicsForschungszentrum Jülich, GermanyInternational School of Nuclear Physics, 37th Course, Erice-Sicily

2Isospin SymmetryIsospin symmetry - Two sources of violation: Electromagnetic interactionLightest quark mass difference Window for probing quark mass ratiosNucleon mass difference: mn mp, static isospin symmetry breakingΔMpn ΔMem ΔMstr-0.7 0.3 MeV (from QED calculations)2.05 0.3 MeV (ΔMpn - ΔMem )Acces to ΔMstrEffective field theory: dynamic ISBπN scattering lengthe.g. a(π0p) - a(π0n) f(ΔMstr) (Weinberg 1977)Mitglied der Helmholtz-Gemeinschaft However: No direct measurement of π0N Large e.m. corrections in π N Latice (17)(24)–1.00(07)(14)Sz. Borsanyi at al., Science 27 March 2015Ab initio calculation of the neutron-proton mass differenceπNN production vertex20.09.2015M. Żurek - CSB with WASA2

3Charge Symmetry BreakingIsospin Symmetry BreakingDominated by pion mass difference Δmπ - e.m. effect Charge Symmetry BreakingSymmetry under the operation of PCS e iτ 2 π /2- Δmπ does not contributenp dπ0 forward-backward asymmetry Afb [1]ΔMstr (1.5 0.8 (exp.) 0.5 (th.)) MeV (LO) [2] dd 4He π0CSC σ 0CSB σ 0, σ MCSB 2σtotal measured at treshold [3]40p-wavecontributionindd HeπΧPTResult consistentat higher excess energies neededwith s-wave productionMitglied der Helmholtz-Gemeinschaft [1] Opper et al. PRL 91 (2003) 212302[3] Stephenson et al. PRL 91 (2003) 14230220.09.2015[2] Filin et al. Phys. Lett. B681 (2009) 423M. Żurek - CSB with WASA3

4WASA-at-COSY experimentHe4He3dd π0 (γγ)4HeBackground: dd (pnd,pnpn,tp) π0 dd 3Henπ0 (3·105 higher) dd 4Heγγ (physics background)Mitglied der Helmholtz-GemeinschaftFirst beam time in 2008 (2 weeks) Goal: σtotal @ Q 60 MeVAnalysis4He-3He separation: overall kinematic fit 2 hypotheses fitted: dd 4Heγγ and dd 3Henγγ (no constrain on π0) Optimized cuts on cumulated probability distribution20.09.2015M. Żurek - CSB with WASA4

5dd 3Henπ0 reaction measurementTwo-fold model ansatz:30 Quasi-free contribution: dd Heπ nspec Partial waves decomposition of the 3-body final state (limited to L 1)σtot (2.89 0.01stat 0.06sys 0.29norm) µbModel used for simulatingthe dd 3Henπ0 backgroundand for normalizationHefull modelincoherent sum3M3Henθpθqbeam πdirection0nφ3Heπ04 independent variables M3Hen, θp, θq, φquasi-freeMitglied der Helmholtz-Gemeinschaft3-bodyPhys. Rev. C 88 (2013) 01400420.09.2015M. Żurek - CSB with WASA5

6dd 4Heπ0 reaction measurementResults:Heπ04σtot/4π3Mitglied der Helmholtz-Gemeinschaft4LegendrePolynomialsP0 P2no acceptanceno acceptancePhys. Lett. B 739 (2014) 44–49Henπ0HeγγTotal cross section:Fit including p-wave:Heπ0: σ (118 18stat 13sys 8ext) pb4Heγγ: σ (920 70stat 100sys 70ext) pbdσ/dΩ (9.8 2.6) pb/sr · P0(cosθ*) (9.5 7.4) pb/sr · P2(cosθ*)4consistent with s-wave onlyHowever: not decisive due to limited statistics20.09.2015M. Żurek - CSB with WASA6

7dd 4Heπ0 reaction measurementChallenges: Better 4He-3He separation needed Better energy resolutionSolution:Time-of-Flight (ToF)Remove most of Forward Detectorup to Forward Veto Hodoscope Mitglied der Helmholtz-Gemeinschaft Particle identification methodbased on ToF-ΔEEkin reconstruction using ToF8 week long experimental run with an optimized detector setupGoal: σtotal and angular distribution at Q 60 MeV20.09.2015M. Żurek - CSB with WASA7

8Detector CalibrationToF Calibration dd 3Hen time peak position used Calibrate the data to the MC values for everydetector element as a function of θdd 3HenMitglied der Helmholtz-GemeinschaftdE Calibration Based on ToF MC: dE [GeV] vs ToF [ns] dEGeV(ToF) Data: dE [channels] vs ToF [ns] dEch(ToF) Run-wise correction, θ-dependency correctionKinetic Energy Reconstruction Based on Ekin(ToF1), Ekin(ToF2),Ekin(dEFWC1), Ekin(dEFWC2) χ 2 fit used to obtainthe best matching Ekin20.09.2015M. Żurek - CSB with WASAdEGeV(ToF)8

9Kinematic distributionpreliminaryMitglied der Helmholtz-Gemeinschaftdd 3Henπ0dd 3Henγdd 3Hen2 body reaction dd 3Hen dependency20.09.2015M. Żurek - CSB with WASA9

10Kinematic fit 2 hypotheses fitted: dd 4Heγγ and dd 3Henγγ (no constrain on π0)data data χ2 fit with energymomentum conservationconstrain on the plots: cumulatedprobability distribution for2 fitted hypotheses2D cut on cumulated probability distributionMitglied der Helmholtz-Gemeinschaftdata20.09.2015M. Żurek - CSB with WASA10

11Invariant mass distributionPhys. Lett. B 739 (2014) 44–49preliminaryHeπ04Henπ03HeγγMitglied der Helmholtz-Gemeinschaft4 Further optimization of 2D cut on cumulated probability distribution needed Introduction of ToF based particle identification method planned20.09.2015M. Żurek - CSB with WASA11

12Invariant mass distributionMitglied der Helmholtz-Gemeinschaftpreliminary20.09.2015M. Żurek - CSB with WASA12

13Summary Mitglied der Helmholtz-Gemeinschaft Charge Symmetry Breaking used to access quark mass effectsTheoretical tool: Chiral Perturbation TheoryResults of the dd 3Henπ0 reaction measurement publishedFirst results of the dd 4Heπ0 reaction measurement published Total cross section obtained Angular distribution not decisive to identify p-wave contribution8 weeks production run with an optimized detector setup performed.Data analysis in progress20.09.2015M. Żurek - CSB with WASA13

14Mitglied der Helmholtz-GemeinschaftBackup20.09.2015M. Żurek - CSB with WASA14

15Isospin Symmetry BreakingStatic ISBpion mass difference: m(π ) m(π0) - e.m. effectnucleon mass difference: mn mp – e.m. and strong effectΔMem (-0.7 0.3) MeVΔMstr (2.05 0.3) MeVMitglied der Helmholtz-GemeinschaftDynamic ISBπN scattering length, e.g. a(π0p) - a(π0n) f(ΔMstr)However:no direct measurement of π0Nlarge e.m. corrections in π NπNN production vertex20.09.2015M. Żurek - CSB with WASA15

16Charge Symmetry BreakingMeasurements of CSB observablesnp dπ0 forward-backward asymmetry Afbleading CSB term: πN rescatteringOpper et al., Afb (17.2 8.0 5.5) · 10-3(PRL 91 (2003) 212302)Mitglied der Helmholtz-GemeinschaftPion production in dd 4He π0CSC σ 0CSB σ 0, σ MCSB 2Complementary to np dπ0:different strength of CSB termsdd initial state more demanding20.09.2015Result: Stephenson et al.(PRL 91 (142302) 2003)σtot(Q 1.4 MeV) 12.7 2.2 pbσtot(Q 3.0 MeV) 15.1 3.1 pbResult consistent with s-wave productionM. Żurek - CSB with WASA16

17Next StepsTheory effortTheory collaboration working on a consistent analysis offorward-backward asymmetry in np dπ0 ΔMstr (1.5 0.8 (exp.) 0.5 (th.)) MeVcross section at threshold of dd 4Heπ0Mitglied der Helmholtz-GemeinschaftExperimental inputreaction dynamics of dd 3Henπ0 (CSC)In dd 4Heπ0: A. Nogga et al., Phys. Lett. B 639 (2006) 465Wienberg term is suppressed (NNLO & NNNLO calculations needed)Once the parameters are fixed the p-waves can be predictedparameter free to LO and NLO p-wave contribution in dd 4Heπ0 at higher excess energies NLO calculation expected uncertainty 20% - 30%20.09.2015M. Żurek - CSB with WASA17

18Mitglied der Helmholtz-GemeinschaftThe reaction dd 3Henπ0at pd 1.2 GeV/c20.09.2015M. Żurek - CSB with WASA18

19Data AnalysisBenchmark for 4Heπ0 : clean selection of 3He - π0 coincidences final step: kinematic fit to ensure overall energy and momentum conservation 3.4 x 106 fully reconstructed events, nearly full coverage of Dalitz plotsπHe4Mitglied der Helmholtz-Gemeinschaft020.09.2015 2 coincident photonsin calorimeter 3He in Forward DetectorM. Żurek - CSB with WASA19

20Data AnalysisFurther analysis 3-body final state, unpolarized:9 – 4 – 1 4 independent variablesM3Hen, θp, θq, φdN/dcosθCM / a.u.Luminosity:dd 3He nbased on G.Bizard et al.,Phys. Rev. C22 (1980) 1632 two-fold model ansatz: quasi-free contributiondd 3Heπ0 nspecLint (350 25) nb-1partial waves decomposition of the3-body final state (limited to L 1)full model incoherent sum cos θCMLuminosity determination: two-body reaction dd 3Heninterpolated data fromMitglied der Helmholtz-GemeinschaftHe3M3HenBizard et al., PRC22 (1980) 1632:perfect match of expected angular distributionθpθq0nPhys. Rev. C 88 (2013) 01400420.09.2015beam πdirectionφ3Heπ0M. Żurek - CSB with WASA20

21Resultsqf3-bodyMitglied der Helmholtz-Gemeinschaftσtot (2.89 0.01stat 0.06sys 0.29norm) µbModel used for simulatingthe dd 3Henπ0 backgroundin the dd 4Heπ0 measurementPhys. Rev. C 88 (2013) 01400420.09.2015M. Żurek - CSB with WASA21

22Mitglied der Helmholtz-GemeinschaftThe reaction dd 4Heπ0at pd 1.2 GeV/c20.09.2015M. Żurek - CSB with WASA22

23Experiment and data analysisBeam time in summer 2008Dedicated two-weeks run on dd 4Heπ0Goal: σtotal @ Q 60 MeVIntegrated luminosity L (4909 348sys ) nb-1Mitglied der Helmholtz-Gemeinschaft Conditions tuned to maximum achievable luminosityQuite stable experimental conditions Lavg 4*1030 cm-2s-1 can serve as a realistic basis for future runsExperimental setup: standard WASA setupTrigger: high threshold in FD, 1 neutral in CD – thresholdoptimized to beam intensity of 2-3·1010 deuterons in flat top20.09.2015M. Żurek - CSB with WASA23

24Experiment and data analysisMitglied der Helmholtz-Gemeinschaftdd π0 (γγ)4He20.09.2015Background:dd (pnd,pnpn,tp) π0dd 3Henπ0dd 4Heγγ (physics background)M. Żurek - CSB with WASA24

25Experiment and data analysisIdentification of 4He: weak cut on ΔE–ΔE in FWC and FTHOverall kinematic fit used:2 hypotheses fitted:Mitglied der Helmholtz-Gemeinschaftdd 4Heγγ and dd 3Henγγ (no constraint on 2γ invariant mass)optimized cuts on cumulated probability distributions20.09.2015M. Żurek - CSB with WASA25

26ResultsFitted with MC filtered distibution dd 4Heγγ: homogeneous 3-bodyphase space distributionpreliminaryHeπ04dd 3Henπ0: model from theprevious analysis 34Henπ0Energy dependence:HeγγMitglied der Helmholtz-GemeinschaftpreliminaryPreliminary total cross sections:4Heπ0:σ (118 18stat 13sys 8ext) pb4Heγγ:σ (920 70stat 100sys 70ext) pbMomentum dependence of the formationof the 4He state – not included!20.09.2015M. Żurek - CSB with WASA26

27Results – angular ied der Helmholtz-Gemeinschaftpreliminary20.09.2015M. Żurek - CSB with WASA27

28Resultsσtot/4πLegendrePolynomialsP0 P 2Fit including p-wave:no acceptanceno acceptancepreliminarydσ/dΩ (9.8 2.6) pb/sr · P0(cosθ*) (9.5 7.4) pb/sr · P2(cosθ*) consistent with s-wave onlyMitglied der Helmholtz-GemeinschaftHowever:not decisive due to limited statistics20.09.2015M. Żurek - CSB with WASA28

29Experiment and data analysisMitglied der Helmholtz-GemeinschaftBeam time in spring 2014Dedicated eight week run on dd 4Heπ0Goal: σtotal and angular distribution @ Q 60 MeV Conditions tuned to maximum achievable luminosityQuite stable experimental conditions Experimental setup: modified WASA setupTrigger: high threshold in FD, 1 neutral in CD – thresholdoptimized to beam intensity of 2-3·1010 deuterons in flat top20.09.2015M. Żurek - CSB with WASA29

30Time of Flight CalibrationFWC time readout alignment ToF(FWC1-FWC2) for 3He withθ 5o-6o for every FWC1 and FWC2element Alignament corrections obtained froma set of equations for ToF(FWC1FWC2) for every FWC elementMC: dd 3Hen time peak position for 6 θ-binsdd 3HenData: shitf to value from MC simulationMitglied der Helmholtz-Gemeinschaft1: calibration FVH element wise for 6 θ-bins FVH time readout alignment2: calibration FWC element wise for 18 θ-bins θ-dependency correction20.09.2015M. Żurek - CSB with WASA30

31Energy losses calibration in FWCBased on the ToFMC simulation: dE [GeV] vs ToF [ns] for 3Hein Forward Detector dEGeV(ToF)Data: dE [channels] vs ToF [ns] dEch(ToF)Mitglied der Helmholtz-GemeinschaftdEGeV(ToF)Linear dependency good quenchingsimulation in MC nonlinear responseof PM not visible20.09.2015 dEGeV(ToF(dEch)) dEGeV(dEch)M. Żurek - CSB with WASA31

32Energy losses calibration in FWCfrom MCfrom MCbeginning of the beamtime830 runs after beginning of the beamtime(about ¼ of all runs) Run correction to dE calibration for every FWC1 and FWC2 element need Separate calibration for 2nd part of the beamtimeMitglied der Helmholtz-Gemeinschaftel. 22 fwc2Before correction20.09.2015el. 22 fwc2After correctionM. Żurek - CSB with WASA32

33Kinetic energy calibration Minimization of χ2 : Ekin(ToF1), Ekin(ToF2), Ekin(dEFWC1), Ekin(dEFWC2) dependency from MC Data based uncertainties of ToF(dE) as a function of ToF(dE) (first ineration)6o θ 9oMitglied der Helmholtz-Gemeinschaft6o θ 9o20.09.2015M. Żurek - CSB with WASA33

34ToF vs Energy LossesMitglied der Helmholtz-Gemeinschaftdd 3Henπ0dd Hen320.09.2015dd 3HenγM. Żurek - CSB with WASA34

35Further data analysis Central Detector Calibration – run dependent (Michaela Schever) Kinematic Fit performed for 2 hypothesis:dd 3Henγγ and dd 4Heγγ Error parametrization (MC smearing to match data uncertainties in ToFand dE)Mitglied der Helmholtz-Gemeinschaft Cut on 2 dim spectra of p-value from fit20.09.2015M. Żurek - CSB with WASA35

r H e l m h o l t z-G e m e i n s c h a f t 3 Isospin Symmetry Breaking Dominated by pion mass difference Δm π - e.m. effect Charge Symmetry Breaking Symmetry under the operation of - Δm π does not contribute np dπ0 forward-backward asymmetry A fb [1] ΔM str (1.5 0.8 (exp.) 0.5 (th.)) MeV (LO) [2] dd 4He π0

Related Documents:

May 02, 2018 · D. Program Evaluation ͟The organization has provided a description of the framework for how each program will be evaluated. The framework should include all the elements below: ͟The evaluation methods are cost-effective for the organization ͟Quantitative and qualitative data is being collected (at Basics tier, data collection must have begun)

Silat is a combative art of self-defense and survival rooted from Matay archipelago. It was traced at thé early of Langkasuka Kingdom (2nd century CE) till thé reign of Melaka (Malaysia) Sultanate era (13th century). Silat has now evolved to become part of social culture and tradition with thé appearance of a fine physical and spiritual .

On an exceptional basis, Member States may request UNESCO to provide thé candidates with access to thé platform so they can complète thé form by themselves. Thèse requests must be addressed to esd rize unesco. or by 15 A ril 2021 UNESCO will provide thé nomineewith accessto thé platform via their émail address.

̶The leading indicator of employee engagement is based on the quality of the relationship between employee and supervisor Empower your managers! ̶Help them understand the impact on the organization ̶Share important changes, plan options, tasks, and deadlines ̶Provide key messages and talking points ̶Prepare them to answer employee questions

Dr. Sunita Bharatwal** Dr. Pawan Garga*** Abstract Customer satisfaction is derived from thè functionalities and values, a product or Service can provide. The current study aims to segregate thè dimensions of ordine Service quality and gather insights on its impact on web shopping. The trends of purchases have

Symmetry Point Groups Symmetry of a molecule located on symmetry axes, cut by planes of symmetry, or centered at an inversion center is known as point symmetry . Collections of symmetry operations constitute mathematical groups . Each symmetry point group has a particular designation. Cn, C nh, C nv Dn, D nh, D nd S2n C v ,D h

1/2 13: Symmetry 13.1 Line symmetry and rotational symmetry 4 To recognise shapes that have reflective symmetry To draw lines of symmetry on a shape To recognise shapes that have rotational symmetry To find the order of rotational symmetry for a shape 13.2 Reflections To

pile bending stiffness, the modulus of subgrade reaction (i.e. the py curve) assessed based on the SW model is a function of the pile bending - stiffness. In addition, the ultimate value of soil-pile reaction on the py curve is governed by either the flow around failure of soil or the plastic hinge - formation in the pile. The SW model analysis for a pile group has been modified in this study .