Practical Gas Chromatographic Analyses Using ICP-MS Detection

1y ago
6 Views
1 Downloads
1.70 MB
45 Pages
Last View : 10d ago
Last Download : 3m ago
Upload by : Helen France
Transcription

Practical Gas Chromatographic Analyses Using ICP-MS Detection William M. Geiger Consolidated Sciences www.conscicorp.com bill@conscicorp.com

Why GC-ICP-MS Chapter 3 “ (ICP-MS) is too costly to use as a GC detector except for the most demanding applications.” W.M. Geiger GC-ICP-MS Effort in 1995 7.4ppb Germane MDQ 1 ppb GC/MS MDQ 5 ppb GC-AED MDQ 5 ppb

Why GC-ICP-MS GC-ICP-MS Effort in 2014 4.1 ppb Germane MDQ 2 - 4 ppt Column: 100 m X 0.53 mm X 5.0 um DB-1 Detector Agilent 8800 QQQ using ORS with O2, m/z 74 - m/z 90

Why GC-ICP-MS Advantages Universal and Specific Extremely Sensitive Robust Plasma Single Tune for Most Elements Compound Independent Calibration (CIC) Isotope Measurement Disadvantages Insensitive to Carbon * Cannot measure, H2, N2, O2, F Very Expensive Detector Uses a Lot of Argon Very Expensive

Petroleum and Petrochemical Applications

Sulfur in n-Gas Column: 100 m X 0.53 mm X 5.0 um DB-1 Carrier: Helium @ 12 psig Initial Temperature: 30 deg C Initial Time: 5.4 minutes Ramp: 15 deg C/ minute Final Temperature: 220 deg C Full Time Range EIC(32) : 018SMPL.d x10 6 Methyl Mercaptan n-Butane Count 4 018SMPL.d 017SMPL.d 2 Ethyl Mercaptan Dimethyl sulfide n-Pentane 0 8.0 16.0 RT(min) 24.0

Sulfur in Naphtha Abundance TIC: NAPHTHA 7-23-2005 8-48-29 PM -RUN- 1-.D 5500000 H2S 5000000 Methyl Thiophenes 4500000 Thiophene 4000000 3500000 3000000 2500000 2000000 1500000 Dimethyl Thiophenes 1000000 500000 0.00 Time-- 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00

Sulfur in Jet Fuel Abundance TIC: 32JET 7-24-2005 12-23-44 AM -RUN- 1-.D 6500000 6000000 Methyl Thiophenes 5500000 5000000 4500000 4000000 3500000 3000000 2500000 Dimethyl Thiophenes 2000000 Benzothiophenes 1500000 1000000 500000 0.00 Time-- 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00

Thiophene in Benzene Abundance Ion 48.00 (47.70 to 48.70): WAX 100 PPBIN BENZENE 3 23500 23000 100 ppb Thiophene 22500 22000 21500 21000 20500 20000 19500 Column: Carbowax 20M 19000 18500 18000 17500 17000 16500 16000 15500 15000 14500 0.00 Time-- 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

Aviation Gasoline 100 LL Analysis 13C 35Cl chromatogram chromatogram (ISTD) 204Pb chromatogram

Siloxanes Compound MW BP C (F) vp mmHg Hexamethylcyclotrisiloxane 222 D3 135 (275) 10 Octamethylcyclotetrasiloxane 296 D4 175, (348) 1.3 Decamethylcyclopentasiloxane 370 D5 211, (412) 0.4 Dodecamethylcyclohexasiloxane 444 D6 245, (473) 0.02 Hexamethyldisiloxane 162 L2, MM 106, (224) 31 Octamethyltrisiloxane 236 L3, MDM ? 3.9 Decamethyltetrasiloxane 310 L4, MD2M ? 0.55 Dodecamethylpentasiloxane 384 L5, MD3M ? 0.07

Siloxanes in Gasoline, 5 ppm L3 L2 Column: 60 meter x 0.32 mm x 1.8 um VOCOL (Supelco) Carrier: He @ constant flow 2 mls/minute, Split 15:1 Initial Temperature: 40 oC for 5 minutes Ramp 1: 5 oC /minute to 70 oC Hold: 0 minutes Ramp 2: 10 oC /minute to 230 oC Hold: 20 minutes Top Chromatogram: ICP-MS, conventional hard extract (m/z 28) Bottom Chromatogram: ICP-MS, hard extract (m/z 13) L4

Siloxanes in Gasoline, 5 ppm L4 L3 L2 L4 L3 L2 Column: 60 meter x 0.32 mm x 1.8 um VOCOL (Supelco) Carrier: He @ constant flow 2 mls/minute, Split 15:1 Initial Temperature: 40 oC for 5 minutes Ramp 1: 5 oC /minute to 70 oC Hold: 0 minutes Ramp 2: 10 oC /minute to 230 oC Hold: 20 minutes Top Chromatogram: ICP-MS, hard extract (m/z 28), 3.5 mls/min H2 to ORS Bottom Chromatogram: ICP-MS, conventional hard extract (m/z 28), No H2 to ORS

Siloxanes in Coker Naphtha Si, 28 28 ion chromatogram D3, 3 ppm D4, 2.7 ppm D5, 1.7 ppm D6, 0.93 ppm C, 13 13 ion chromatogram Column: 30 meter x 0.32 mm x 0.25 um HP-5 Carrier: Helium @ 2.5 mls/min Initial Temp.: 50 oC Hold: 2 minutes Ramp: 15 oC/minute Final Temp.: 270 oC ICP-MS 8800 QQQ was used for detection. Spectrometer was run in MS/MS mode using hydrogen in the octapole reaction system (ORS) in order to minimize hydrocarbon interference.

Siloxanes in Town Gas D5 D3 TMS D4 L3 Compound ppmv as Si D3 L3 D4 D5 TMS 2.24 0.08 2.08 5.56 0.32

Propylene Propylene contaminants include phosphine (PH3), Arsine (AsH3), Hydrogen Sulfide (H2S), and Carbonyl Sulfide (COS). A desirable method for analyzing these contaminants would be use of a single column and a single detector. Megabore (0.53mm) boiling point have been useful for this analysis, but suffer from the fact that COS elutes with the propane/propylene matrix. The Agilent PLOT U column also works well, but presence of ethane can give a false peak. It has been found that the Agilent Select Low Sulfur column satisfies all separation problems. Carrier: Helium @ 20 psig Column: Select Low Sulfur 60 m x 0.32 mm Temperature: 35 degrees isothermal Sample Size: 400 ul Split: 4:1 Detection: 8800 QQQ MS MS Acquisition: m/z 31 - m/z 47 m/z 32 - m/z 48 m/z 74 - m/z 90 m/z 75 - m/z 91 0.4 seconds/mass 0.4 seconds/mass 0.1 seconds/mass 0.1 seconds/mass

Propylene Contaminants, Arsine AsH3, 11.4 ppb DL 30 ppt

Propylene Contaminants, PH3 PH3, 1.7 ppb spike Methane, 1.77 % Ethane, 1.04 % PH3 DL 0.15 ppb. This chromatogram illustrates positive interference for P.

Propylene Contaminants, H2S and COS COS Spike H2S Spike H2S Standard COS Standard Propylene The matrix effect is more pronounced as the analyte is closer to the matrix. This chromatogram also illustrates the negative interference hydrocarbons have on the sulfur response. DL for H2S and COS 3 ppb

10 port GSV for Standard Addition Inject Load Column Column Carrier Carrier Std Loop Std Loop Sx Loop Sx Loop

Health and Environmental

Single column analysis of PBDE mix containing 14 common congeners from tri to deca 50 pg on column, 250 pg Deca10.5 minutes Courtesy of Steve Wilbur and Emmett Soffey

Tin Species in Landfill Gas Courtesy of Eva Krupp 2008 Plasma Winter Conference 200000 180000 160000 12, 13 1 140000 2 120000 7, 7a 100000 3 4 5 80000 9 6 60000 10 11 14 16 8 40000 20000 0 150 200 250 300 350 400 450 1 Me4Sn; 2 Me3SnEt; 3 Me3Sni-Pr; 4 Me3SnPr; 5 Me2SnEt2; 6 Me2SnEtiPr; 7 Me3SnBu; 7a Me2SnEtPr; 8 MeSnEt3; 9 Me2SnPr2; 10 Et4Sn; 11 Et3SnPr; 12 Et2SnPr2; 13 BuSnEt3; 14 EtSnPr3; 15 Bu2SnEt2; 16 Bu2SnPr2

Specialty And General Applications

GC-ICP-MS Analysis of CF3I Matrix Vent Region 1 2 3 4 5 6 7 8 9 10 11 Trace Sulfur compound Octafluoropropane Trifluoromethane Carbon Dioxide Pentafluoroethane Hexafluoropropene Octafluorobutene Octafluorocyclobutane Octafluorobutene Br compound Pentafluoropropene Sulfur compound 12 13 14 15 16 17 18 19 20 21 22 Hexafluoropropane Chlorodifluoromethane Br compound Sulfur compound Cl compound trace Br compound trace Methyl Bromide ? Br compound trace Sulfur compound trace Cl compound trace Br compound trace

Fluorobutene Impurities Full Time Range EIC(13) : 104SMPL.d x10 7 13 28 32 35 8 8 2 0.5 2 3 9 3 9 1 2 3 4 5 6 7 8 9 Count 0 4 Ethene, 15.68 % COS, 27 ppm Difluorodimethylsilane, 80 ppm Butene, 0.21 % -0.5 Butene, 1.30 % Butene, 1.29 % 2-Fluorobutene, matrix Methylene Chloride, 0.23 % Carbon Disulfide, 9 ppm 1 1 4 7 7 6 5 5 6 -1 7.0 14.0 RT(min) 21.0

Electronic and Semi-Conductor

Single Tune Detection for Phosphine Impurities Detector: Agilent 7700 ICP-MS, Column: 200 m x 0.53 x 5.0 µm DB-1 @ 30oC Germane, GeH4, m/z 74 Arsine, AsH3, m/z 75 33 ppb, DL 5 ppt Silane, SiH4, m/z 28 33 ppb, DL 100 ppt Arsine, AsH3, m/z 75 33 ppb, DL 3 ppb 234 ppt

Single Tune Detection for Phosphine Impurities Detector: Agilent 7700 ICP-MS, Column: 30 m x 0.53 mm x 20 µm df HP-PLOT/U @ 50 C, Sample size: 75 µl H2S: 32 ppb standard COS: 32 ppb standard H2S: 13 ppb DL: 3 ppb based on 3 sigma

Full Time Range EIC(31) : 14357-003.d x10 5 24 ppm Diphosphine 24 ppm Diphosphine 3 Phosphine 'tail' Phosphine Tail Phosphine Homologs Dean's Switch Phosphine Vent Count 2 20 ppbTriphosphine Triphosphine 20 ppb 1 0 4.0 8.0 12.0 RT(min)

Germane (GeH4) Homologs Trigermane, 22 ppb n-Tetragermane, 7 ppb iso-Tetragermane, 5 ppb neo-Tetragermane, 1ppb

Isotopic Analysis 11B 14738129 Found 11B 80.82 % Theoretical 11B 80.1 % 10B Enriched 3495946 11B 99.99 % 11B 3431999 10B 458

Interfacing

Interfacing To Transfer Line/Torch Agilent 7700, 7900, 8800 Switching Valve Dilution Gas Needle Valve Vent Column

Interfacing Simultaneous GC and Wet Plasma Agilent 7700, 7900, 8800 Dilution Gas/GC Effluent Standard or Blank Carrier/Nebulizer Gas Make-up Gas

Interfacing Simultaneous GC and Wet Plasma Agilent 7700, 7900, 8800 To Torch Make-up Gas Dilution Gas/GC Effluent Carrier/Nebulizer Gas Spray Chamber End View Standard or Blank

Cross Calibration Using CIC

Carbon Monoxide Fe Ni Mo Ni Co Fe

Carbon Monoxide Theory % Found % 50Cr 4.35 3.91 52Cr 83.79 83.09 53Cr 9.50 10.23 54Cr 2.37 2.78 52Cr 54Fe 58Ni

Ni signal 99,440 (0.17 umoles/L) Counts/umole 228,328 Br signal 99,440 (12.8 umoles/L) Counts/umole 7801 X RRFNi 7801/228,328 0.0342

101 ppb Methyl Bromide Unknown Ni(CO)4 DL 80 ppt Nickel Carbonyl 16711 x 0.0342 x 101 ppb / 18874 3.1 ppb

Fe, He mode The obvious advantage to analyzing Fe in the H2 mode is illustrated by these two chromatograms. This is a sample of CO containing 0.72 ppb iron carbonyl. DL 140 ppt Nickel works better in the He mode. Fe, H2 mode DL 46 ppt

Carbon Monoxide Fe, H2 mode Ni, He mode CO matrix mode switch This chromatogram illustrates the switching time going from Helium in the ORS to Hydrogen. The acquisition time was also changed since the iron carbonyl was a broader peak.

Resources Journal of Analytical Atomic Spectrometry Handbook of Hyphenated ICP-MS Applications - Agilent Agilent 8800 ICP-QQQ Application Handbook - Agilent Practical Guide to ICP-MS – Robert Thomas, CRC Press ICP Mass Spectrometry Handbook, Simon M. Nelms, CRC Press Trace Analysis of Specialty and Electronic Gases, Geiger and Raynor, Wiley

Acknowledgments Emmett Soffey - Agilent Steve Wilbur- Agilent Jesus Anguiano – CONSCI, LTD Blake McElmurry – CONSCI, LTD

ICP-MS Detection William M. Geiger Consolidated Sciences www.conscicorp.com bill@conscicorp.com . Why GC-ICP-MS 7.4ppb Germane . applications." W.M. Geiger GC-ICP-MS Effort in 1995 . 4.1 ppb Germane MDQ 2 - 4 ppt GC-ICP-MS Effort in 2014 Why GC-ICP-MS Column: 100 m X 0.53 mm X 5.0 um DB-1 Detector Agilent 8800 QQQ using ORS with O 2, m/z .

Related Documents:

interferences in samples. Chromatographic methods can be divided into two major categories: gas chromatography (GC) and high performance liquid chromatography (HPLC). 1.2.1 Gas chromatography (more properly called gas-liquid chromatography) is the separation technique of choice for organic compounds which can be volatilized without being

Dynamic analyses can generate "dynamic program invariants", i.e., invariants of observed execution; static analyses can check them Dynamic analyses consider only feasible paths (but may not consider all paths); static analyses consider all paths (but may include infeasble paths) Scope Dynamic analyses examine one very long program path

ISO 6974-5:2000 Natural gas -- Determination of composition with defined uncertainty by gas chromatography -- Part 5: Determination of nitrogen, carbon dioxide and C1 to C5 and C6 hydrocarbons for a laboratory and on-line process application using three columns ISO 6975:1997 Natural gas -- Extended analysis -- Gas-chromatographic method

using in situ gas cap gas as free energy is called Natural, in situ or Auto Gas Lift(Ezzine, 2013). Auto Gas Lift (AGL) is a method which uses gas from a non-associated gas (NAG) reservoir or associated gas (AG) in coordination with the gas cap in a skillful manner to increase the production from an oil reservoir.

Affinity chromatography, (g) Gas chromatography, (h) Supercritical fluid chromatography, (i) High Performance Liquid Chromatography, (j) Capillary electrophoresis, 4. Classification of chromatographic methods - according to separation methods, according to development procedures. (i)Thin Layer Chromatography: Theory and principles, outline of the

Abstract: Natural gas compressibility factor (Z) is key factor in gas industry for natural gas production and transportation. This research presents a new natural gas compressibility factor correlation for Niger Delta gas fields. First, gas properties databank was developed from twenty-two (22) laboratory Gas PVT Reports from Niger Delta gas .

Gas Fired Chiller 2 Gas Fireplace (Commercial) 2 Must comply with MC-303 . Gas Oil Burner Pilot 2 Gas Outdoor Cooktop (Commercial) 2 Gas Pizza Oven (Commercial) 2 Gas Pool Heater 2 Gas Pool Heater (One Family Indoor) 2 Gas Pool Heater (One Family Outdoors) 2 LAA / REPLA

API CJ-4 developed as a result of changes in North American emissions regulation: – ten-fold reduction in NOx and particulate matter vs. October 2002 limits – exhaust after treatment (DPF, SCR) required for virtually all engines, and on-highway diesel sulfur reduced from 500 ppm to 15 ppm API CJ-4 specification highlights: