Wave Equation Applications - Pile Driving Contractors Association

1y ago
4 Views
1 Downloads
1.59 MB
21 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Carlos Cepeda
Transcription

Wave Equation Applications PDCA 2015 Professor Driven Pile Institute Patrick Hannigan GRL Engineers, Inc.

WAVE EQUATION APPLICATIONS Develop Driving Criterion Blow Count for a Required Ultimate Capacity Blow Count for Capacity as a Function of Energy / Stroke Check Driveability Blow Count vs. Penetration Depth Driving Stresses vs Penetration Depth Determine Optimal Driving Equipment Driving Time Refined Matching Analysis Adjust Input Parameters to Fit Dynamic Measurements

WHAT INFORMATION DO WE NEED FOR GRLWEAP ANALYSIS ?

REQUIRED INFORMATION Hammer – Model – Stroke and Stroke Control – Any Modifications Driving System – Helmet Weight (Base, Insert, Striker Plate & Cushions) – Hammer Cushion Material (E, A, t, er) – Pile Cushion Material (E, A, t, er)

REQUIRED INFORMATION Pile – Length, – Cross Sectional Area – Taper or Other Non-uniformities – Specific Weight – Splice Details – Design Load – Ultimate Capacity – Pile Toe Protection

REQUIRED INFORMATION Soil – Boring Locations with Elevations – Soil Descriptions – N-values or Other Strength Parameters vs Depth – Elevation of Excavation – Elevation of Pile Cut-off – Elevation of Water Table – Scour Depth or Other Later Excavations

Pile Driving and Equipment Data Form Co ntract No .: P ro ject: S tru cture Na me an d/o r No .: P ile Drivin g Co ntracto r o r Su bco n tracto r: Co un ty: (Piles d riv en b y) R a m Hammer Man ufa cturer: Mo d el No .: Ham mer Type : Se rial No .: Man ufa cturers Max imu m Ra te d E ne rg y: Stro ke a t Max imu m Ra te d E ne rg y: Ran ge in O p era tin g E ne rg y: to Ran ge in O p era tin g S tro ke: to Ram W eigh t: (kip s) Mod ific atio ns: (ft-lbs) (ft) (ft-lbs) (ft) Anvil Striker Plate Weigh t: Thickne ss: (kips) Diam ete r: (in) (in ) Mate rial # 1 Hammer Cushion Ma te rial # 2 (fo r Co mp osite Cu shion ) Nam e: Na me : Area : (in2 ) A re a: Thickne ss/Plate : (in) Th ickn ess /P la te: No. o f P la tes: No . of Plate s: Tota l Thickne ss of Ha mm er Cu sh ion : Helmet (Drive Head) Weigh t: Pile Cushion (kips) Mate rial: Area : (in2 ) No. o f S he ets: Tota l Thickne ss of P ile Cus hio n: Th ickn ess /S h ee t: (in ) Pile Typ e: Wall Th ickn ess: Cro ss Se ctio na l Area : (in ) Tap er: (in 2) We ig ht/Ft: Orde re d Le n gth : Design Lo ad : Ultim ate P ile Ca pa city: (ft) (kip s) (kip s) Pile Descrip tion of S plice: Driv ing Sh oe /Clo su re P la te De scriptio n: Su bm itted By: Telep ho ne No.: (in 2) (in) Date : Fax No .: (in)

Example Problems 2006 FHWA Pile Manual – Chapter 16 (ASD) #1 - General Bearing Graph #2 – Constant Capacity / Variable Stroke #3 – Tension and Compression Stress Control #4 – Use of Soil Setup #5 – Drivability Studies #6 – Driving System Characteristics #7 – Assessment of Pile Damage #8 – Selection of Wall Thickness #9 – Evaluation of Vibratory Driving 2015 FHWA Pile Manual – Chapter 12 (LRFD) 2010 GRLWEAP Program – 23 Examples

Example Problems 2015 FHWA Pile Manual – Chapter 12 (LRFD) #1 - General Bearing Graph #2 – Constant Capacity / Variable Stroke #3 – Drivability Studies #4 – Tension and Compression Stress Control #5 – Use of Soil Setup #6 – Driving System Characteristics #7 – Assessment of Pile Damage #8 – Selection of Wall Thickness #9 – Evaluation of Vibratory Driving 2010 GRLWEAP Program – 23 Examples 2010 GRLWEAP Program – 23 Examples

GRLWEAP Standard Examples Example 1: Generation of a Bearing Graph for an Open End Diesel Hammer Example 2: Closed End Hammer, Non Uniform Pile, Equipment Check Example 3: Concrete Pile, ECH, Tension Stress Check Example 4: Diesel Hammer Input Example 5: Pile Segment and Damping Input Example 6: Comparison of Damping Parameters Example 7: Reduced Diesel Fuel and Quake Variation Example 8: Effects of Splice/Slack on Pile Stress Example 9: Residual Stress Analysis (RSA) Example 10: Pile Damping, Long Piles, Diesel Hammer Performance Example 11: Drivability Analysis (Blow Count vs. Depth) Example 12: Inspector's Chart or Constant Capacity Option Example 13: Composite Pile, Second Toe and Critical Stresses Example 14: Two Pile Analysis Considering Follower with Long Skirt Example 15: Mandrel Driven Pile Example 16: Drilled Shaft Test with No Helmet Example 17: Vibratory Hammer Analysis Example 18: Pile and Hammer Gravity Changes Example 19: Static Soil Analysis Example 20: Steel Follower on Concrete Pile Example 21: Using ST and Variable Pile Cushion Stiffness Example 22: Drivability Analysis for a large, non-uniform pipe pile – Offshore Wave 2010 Example 23: CPT Based Static Analysis Input Example

GRLWEAP Example 1 & 2 Problem Hammer: Delmag D 12-42; 46 kJ (34 ft-kips) Depth Hammer Cushion: 50 mm (2 inch) Aluminum Conbest (m) (ft) 0 0 4 10 20 8 Helmet: 7.6 kN (1.7 kips) Medium Sand N’ 20 Pile: Closed End Pipe OD 356 mm (14 inch) Wall 8 mm (0.314 inch) 30 12 40 16 50 60 20 Shaft Resistance, 84%: Triangular Distribution 1240 kN (280 kips) Toe Resistance, 16%: 240 kN (54 kips)

GRLWEAP Example 1 Solution 50 T e n s i o n S tr e s s ( k s i ) 50 40 30 20 40 30 Helmet Weight Hamm er Cushion COR of H.C. 10 10 0 0 500 400 1.70 kips 60155 kips/in 0.800 0.100 0.234 0.050 0.150 Pile Length Pile Penetration Pile Top Area 66.00 ft 62.00 ft 13.41 in2 Pile Model in in sec/ft sec/ft Skin Friction Distribution 8 300 6 200 4 100 2 0 0 2.82 kips 0.800 1640 (100%)) psi Skin Quake Toe Quake Skin Damping Toe Damping 10 8.4 ft 2 GRLWEAP Ve DELMAG D 12-42 Ram Weight Efficiency Pressure 20 S tr o k e ( ft) 330 kips U l ti m a te C a p a c i ty ( k i p s ) 27.9 ksi C o m p r e s s i v e S tr e s s ( k s i ) GRL Engineers, Inc. FHWA #1: Delmag D12-42, 14" x 0.312" CEP 50 85 blows / ft 100 150 Blow Count (bl/ft) 200 250 0 300 Res. Shaft 84 % (Proportional)

GRLWEAP Example 2 Solution T e n s i o n S tr e s s ( k s i ) C o m p r e s s i v e S tr e s s ( k s i ) GRL Engineers, Inc. FHWA #2: Delmag D12-42, 14" x 0.312" CEP 50 40 30 20 50 40 10 0 20 GRLWEAP Ve DELMAG D 12-42 Capacity Ram Weight Efficiency Pressure 330.0 kips 2.82 kips 0.800 1640 (100%)) psi 30 Helm et Weight Ham m er Cushion COR of H.C. 20 10 Skin Quake Toe Quake Skin Dam ping Toe Dam ping 0.100 0.234 0.050 0.150 0 Pile Length Pile Penetration Pile Top Area 66.00 ft 62.00 ft 13.41 in2 11.00 Pile Model 1.70 kips 60155 kips/in 0.800 in in sec/ft sec/ft Skin Friction Distribution S tr o k e ( ft) 10.00 9.00 8.4 ft 8.00 7.00 85 blows / ft 6.00 40 60 80 100 Blow Count (bl/ft) 120 140 160 Res. Shaft 84 % (Proportional)

GRLWEAP Example 3 Problem Penetration Depth for Tension Evaluation Depth 4 Pile Cushion: 114 mm (4.5 inch) Plywood 0 10 Loose Silty Fine Sand N’ 8 20 30 16 40 20 Medium Dense Silty Fine Sand N’ 14 Shaft Resistance, 33%: 597 kN (134 kips) Shaft Resistance, 5%: 97 kN (22 kips) 50 60 Pile: Square Prestressed Concrete Pile Length 12 m (39 ft) 356 mm (14 inch) Ultimate Capacity: 1807 kN (406 kips) Shaft Resistance, 10%: 180 kN (40 kips) 8 12 Hammer Cushion: 200 mm (7.9 inch) Monocast MC 901 Helmet: 9.6 kN (2.16 kips) (m) (ft) 0 Hammer: JUNTTAN HHK 3 Dense Sand and Gravel N’ 34 Toe Resistance, 52%: 933 kN (210 kips)

Example 3 Solution – Shallow Depth GRL Engineers, Inc. FHWA - GRLWEAP EXAMPLE #3, 114mm @ 3.5m FHWA - GRLWEAP EXAMPLE #3, 209mm @ 3.5m GRLWEAP (TM) Version 2005 20 Tension Stress (MPa) Compressive Stress (MPa) 20 31-Jan-2005 16 12 8 16 12 8 4 4 0 0 JUNT T AN HHK 3 Stroke Effi ci ency Hel m et Ham m er Cushi on Pi l e Cushi on Ski n T oe Ski n T oe Quake Quake Dam ping Dam pi ng JUNT T AN HHK 3 1.00 0.800 1.00 m 0.800 9.60 1989 229 2.500 5.994 0.161 0.500 Pi l e Length 12.00 Pi l e Penetration 3.50 Pi l e T op Area 1267.35 9.60 kN 1989 kN/mm 125 kN/mm mm mm sec/m sec/m 2.500 5.994 0.161 0.500 mm mm sec/m sec/m 12.00 m 3.50 m 1267.35 cm 2 Ultimate Capacity (kN) 2500 Ski n Fri cti on Ski n Fri cti on Pi l e M odel Di stri buti on Pi l e M odel Di stri buti on 2000 1500 1000 500 0 0 40 80 120 160 200 Bl ow Count (bl ows/.25m ) 240 Res. Shaft 48 % (Proportional ) Res. Shaft 48 % (Proportional )

Example 3 Solution – Final Depth GRL Engineers, Inc. FHWA - GRLWEAP EXAMPLE #3, 209mm @ 11.5m 20 Tension Stress (MPa) Compressive Stress (MPa) 20 16 12 8 31-Jan-2005 GRLWEAP (TM) Version 2005 JUNT T AN HHK 3 16 Stroke Effi ci ency 12 Hel m et Ham m er Cushi on Pi l e Cushi on 8 4 4 0 0 Ski n T oe Ski n T oe Quake Quake Dam ping Dam pi ng Pi l e Length Pi l e Penetration Pi l e T op Area 1.00 m 0.800 9.60 kN 1989 kN/mm 376 kN/mm 2.500 6.000 0.160 0.500 mm mm sec/m sec/m 12.00 m 11.50 m 1267.35 cm 2 2500 Ultimate Capacity (kN) Pi l e M odel Ski n Fri cti on Di stri buti on 2000 1500 1000 500 0 0 25 50 75 100 125 Bl ow Count (bl ows/.25m ) 150 Res. Shaft 48 % (Proportional )

GRLWEAP Example 4 Problem Hammer: Vulcan 08: 35.3 kJ (26 ft-kips) Hammer Cushion: 216 mm (8.5 inch) Hamortex Helmet: 11.6 kN (2.6 kips) Depth (m) 0 Pile Cushion: 152 mm (6 inch) Plywood (ft) 0 10 4 Stiff Clay 20 8 30 12 16 40 50 60 20 cu 70 kPa (1.5 ksf) Setup Factor 1.33 Pile: Square Precast Concrete Pile Length 16 m (52.5 ft) Pile Penetration 15 m (49.2 ft) 305 mm (12 inch) Ultimate Capacity 1340 kN (300 kips) Shaft Resistance, 92% Uniform Distribution 1233 kN (276 kips) Toe Resistance, 8% 107 kN (24 kips)

Example 4 Solution T e n s i o n S tr e s s ( k s i ) C o m p r e s s i v e S tr e s s ( k s i ) GRL Engineers, Inc. FHWA - GRLWEAP EXAMPLE #4 5 4 3 2 5 3.25 ft 8.00 kips 0.670 Helm et Weight Ham m er Cushion Pile Cushion COR of P.C. 2.60 kips 2176 kips/in 1800 kips/in 0.500 1 Skin Quake Toe Quake Skin Dam ping Toe Dam ping 0.100 0.100 0.200 0.150 0 Pile Length Pile Penetration Pile Top Area 3 2 U l ti m a te C a p a c i ty ( k i p s ) 0 VULCAN VUL 08 Stroke Ram Weight Efficiency 4 1 21-Ju GRLWEAP Versio in in sec/ft sec/ft 52.50 ft 49.20 ft 144.00 in2 Skin Friction Distribution 500 Pile Model 400 300 200 100 0 0 50 100 150 Blow Count (bl/ft) 200 250 300 Res. Shaft 92 % (Proportional) 81 blows / ft without anticipated soil set-up (300 kips) 42 blows / ft with anticipated soil set-up (225 kips)

GRLWEAP Example 6 Problem Hammer: ICE 42-S: 56.9 kJ (42 ft-kips) or Vulcan 014: 56.9 kJ (42 ft-kips) Depth (m) 0 Hammer Cushion: Varies (ft) Helmet: Varies 0 10 4 20 8 Loose Silty Fine Sand 30 12 16 20 Shaft Resistance, 30% Triangular Distribution 540 kN (121 kips) 40 50 60 Pile: Closed End Pipe Pile Length 20 m (66 ft) Pile Penetration 16 m (52.5 ft) 355 mm (14 inch) x 9.5 mm (3/8 inch) Ultimate Capacity 1800 kN (405 kips) Very Dense Silty Fine Sand Toe Resistance, 70% 1260 kN (284 kips)

GRLWEAP Example 6 Solution U l ti m a te C a p a c i ty ( k i p s ) 20-Jun-2011 GRLWEAP Version 2010 T e n s i o n S tr e s s ( k s i ) C o m p r e s s i v e S tr e s s ( k s i ) GRL Engineers, Inc. GRLWEAP EXAMPLE #6 - ICE 42-S, 14"x.375" GRLWEAP EXAMPLE #6 - VUL 014, 14"x.375" 50 40 30 20 50 Ram Weight Efficiency Pressure 30 Helm et Weight Ham m er Cushion COR of H.C. 10 10 0 0 14.00 kips 0.670 Variable psi 2.05 34825 0.920 Pile Length Pile Penetration Pile Top Area 66.00 52.50 16.05 Skin Friction Distribution 1.67 kips 8112 kips/in 0.920 in in sec/ft sec/ft 0.100 0.400 0.050 0.150 Pile Model Skin Friction Distribution S tr o k e ( ft) 8.00 6.00 99 bl / ft 228 bl / ft 100 4.00 50 100 150 Blow Count (bl/ft) 200 250 2.00 300 Res. Shaft 30 % (Proportional) in in sec/ft sec/ft 66.00 ft 52.50 ft 16.05 in2 10.00 200 0 0 4.09 0.800 1081 (100%) 0.100 0.400 0.050 0.150 Pile Model 300 VULCAN VUL 014 Skin Quake Toe Quake Skin Dam ping Toe Dam ping 12.00 400 42-S 40 20 500 ICE Res. Shaft 30 % (Proportional)

Questions ? ? ?

Hammer Cushion 2176 kips/in Pile Cushion 1800 kips/in COR of P.C. 0.500 Skin Quake 0.100 in Toe Quake 0.100 in Skin Damping 0.200 sec/ft Toe Damping 0.150 sec/ft Pile Length Pile Penetration Pile Top Area 52.50 49.20 144.00 ft ft in2 Pile Model Skin Friction Distribution Res. Shaft 92 % (Proportional)

Related Documents:

The pile driving analyzer (PDA) was developed in the 1970's as a method to directly measure dynamic pile response during driving. As the name implies, it was developed to analyze pile driving and evaluate pile driveability, including the range of stresses imparted to the pile, hammer efficiency, etc.

Second, hard pile driving to a depth about 30 ft from the ground surface may increase ground vibrations, but hard pile driving at a greater penetration depth much less affects . Sheet Pile Driving . 1 . 4 . Palm Beach . N/A : 19.0 . Vibratory pile driving : 2 . 5 . SR A1A . N/A : 6.4 . Impact pile driving : 3 . 5 . SR A1A . N/A :

To observe the design capacity, a test pile is constructed and estimated load is given upon the designed pile. There are three kinds of static pile load testing. 1. Compression pile load test. 2. Tension pile load test. 3. Lateral pile load test. A lobal Journal of Researches in Engineering V olume XVI Issue IV Ve rsion I 41 Year 201 E

Ch. 9- Piles and Pile-Driving Equipment Layla Ali Ghalib-(2013-2014) CH.9-6 9.9. Pile Hammers: The function of a pile hammer is to furnish the energy required to drive a pile. Pile-driving hammers are designated by type and size. The types commonly used include the following: 1.

sheet pile and ground vibrations during sheet pile vibratory driving. And second, to analyze a selected portion of the collected data with focus on the sheet pile - soil vibration transfer. Both aspects of the thesis work aim, more generally, to contribute to the understanding of ground vibration generation under vibratory sheet pile driving.

2.2 High-Strain Dynamic Pile Testing. 2.2.1 The contractor shall perform dynamic pile testing at the locations and frequency required in accordance with section 4.0 of this special provision. 2.2.2 Dynamic pile testing involves monitoring the response of a pile subjected to heavy impact applied by the pile hammer at the pile head.

PHC pile, with a diameter of 1000mm and a wall thickness of 130mm , is adopted for the wall pile frame structure of this project. The pipe pile prefabrication is carried out by dalian prefabrication factory. The parameters of the PHC prestressed concrete pipe pile are as follows: Table 1 parameters of PHC pile of wall pile frame structure .

Artificial intelligence (AI) – a broad concept used in policy discussions to refer to many different types of technology – greatly influences and impacts the way people seek, receive, impart and access information and how they exercise their right to freedom of expression in the digital ecosystem. If implemented responsibly, AI can benefit societies, but there is a genuine risk that its .