# 1-6 Midpoint And Distance In The Coordinate Plane Midpoint And Distance .

8m ago
24 Views
596.00 KB
35 Pages
Last View : 1d ago
Transcription

Midpoint andand Distance Midpoint Distance 1-6 1-6 in the Coordinate Plane in the Coordinate Plane Warm Up Lesson Presentation Lesson Quiz Holt Holt McDougal Geometry Geometry

1-6 Midpoint and Distance in the Coordinate Plane Warm Up 1. Graph A (–2, 3) and B (1, 0). 2. Find CD. 8 3. Find the coordinate of the midpoint of CD. 4. Simplify. 4 Holt McDougal Geometry –2

1-6 Midpoint and Distance in the Coordinate Plane Objectives Develop and apply the formula for midpoint. Use the Distance Formula and the Pythagorean Theorem to find the distance between two points. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Vocabulary coordinate plane leg hypotenuse Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane A coordinate plane is a plane that is divided into four regions by a horizontal line (x-axis) and a vertical line (y-axis) . The location, or coordinates, of a point are given by an ordered pair (x, y). Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane You can find the midpoint of a segment by using the coordinates of its endpoints. Calculate the average of the x-coordinates and the average of the y-coordinates of the endpoints. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Helpful Hint To make it easier to picture the problem, plot the segment’s endpoints on a coordinate plane. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 1: Finding the Coordinates of a Midpoint Find the coordinates of the midpoint of PQ with endpoints P(–8, 3) and Q(–2, 7). (–5, 5) Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 1 Find the coordinates of the midpoint of EF with endpoints E(–2, 3) and F(5, –3). Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 2: Finding the Coordinates of an Endpoint M is the midpoint of XY. X has coordinates (2, 7) and M has coordinates (6, 1). Find the coordinates of Y. Step 1 Let the coordinates of Y equal (x, y). Step 2 Use the Midpoint Formula: Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 2 Continued Step 3 Find the x-coordinate. Set the coordinates equal. Multiply both sides by 2. 12 2 x – 2 –2 Simplify. Subtract. 10 x Simplify. The coordinates of Y are (10, –5). Holt McDougal Geometry 2 7 y – 7 –7 –5 y

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 2 S is the midpoint of RT. R has coordinates (–6, –1), and S has coordinates (–1, 1). Find the coordinates of T. Step 1 Let the coordinates of T equal (x, y). Step 2 Use the Midpoint Formula: Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 2 Continued Step 3 Find the x-coordinate. Set the coordinates equal. Multiply both sides by 2. –2 –6 x 6 6 4 x Simplify. Add. 2 –1 y 1 1 Simplify. 3 y The coordinates of T are (4, 3). Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane The Ruler Postulate can be used to find the distance between two points on a number line. The Distance Formula is used to calculate the distance between two points in a coordinate plane. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 3: Using the Distance Formula Find FG and JK. Then determine whether FG JK. Step 1 Find the coordinates of each point. F(1, 2), G(5, 5), J(–4, 0), K(–1, –3) Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 3 Continued Step 2 Use the Distance Formula. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 3 Find EF and GH. Then determine if EF GH. Step 1 Find the coordinates of each point. E(–2, 1), F(–5, 5), G(–1, –2), H(3, 1) Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 3 Continued Step 2 Use the Distance Formula. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane You can also use the Pythagorean Theorem to find the distance between two points in a coordinate plane. You will learn more about the Pythagorean Theorem in Chapter 5. In a right triangle, the two sides that form the right angle are the legs. The side across from the right angle that stretches from one leg to the other is the hypotenuse. In the diagram, a and b are the lengths of the shorter sides, or legs, of the right triangle. The longest side is called the hypotenuse and has length c. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 4: Finding Distances in the Coordinate Plane Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from D(3, 4) to E(–2, –5). Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 4 Continued Method 1 Use the Distance Formula. Substitute the values for the coordinates of D and E into the Distance Formula. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 4 Continued Method 2 Use the Pythagorean Theorem. Count the units for sides a and b. a 5 and b 9. c2 a2 b2 52 92 25 81 106 c 10.3 Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 4a Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(3, 2) and S(–3, –1) Method 1 Use the Distance Formula. Substitute the values for the coordinates of R and S into the Distance Formula. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 4a Continued Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(3, 2) and S(–3, –1) Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 4a Continued Method 2 Use the Pythagorean Theorem. Count the units for sides a and b. a 6 and b 3. c2 a2 b2 62 32 36 9 45 Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 4b Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(–4, 5) and S(2, –1) Method 1 Use the Distance Formula. Substitute the values for the coordinates of R and S into the Distance Formula. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 4b Continued Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(–4, 5) and S(2, –1) Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 4b Continued Method 2 Use the Pythagorean Theorem. Count the units for sides a and b. a 6 and b 6. c2 a2 b2 62 62 36 36 72 Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 5: Sports Application A player throws the ball from first base to a point located between third base and home plate and 10 feet from third base. What is the distance of the throw, to the nearest tenth? Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Example 5 Continued Set up the field on a coordinate plane so that home plate H is at the origin, first base F has coordinates (90, 0), second base S has coordinates (90, 90), and third base T has coordinates (0, 90). The target point P of the throw has coordinates (0, 80). The distance of the throw is FP. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 5 The center of the pitching mound has coordinates (42.8, 42.8). When a pitcher throws the ball from the center of the mound to home plate, what is the distance of the throw, to the nearest tenth? 60.5 ft Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Lesson Quiz: Part I 1. Find the coordinates of the midpoint of MN with endpoints M(-2, 6) and N(8, 0). (3, 3) 2. K is the midpoint of HL. H has coordinates (1, –7), and K has coordinates (9, 3). Find the coordinates of L. (17, 13) 3. Find the distance, to the nearest tenth, between S(6, 5) and T(–3, –4). 12.7 4. The coordinates of the vertices of ABC are A(2, 5), B(6, –1), and C(–4, –2). Find the perimeter of ABC, to the nearest tenth. 26.5 Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Lesson Quiz: Part II 5. Find the lengths of AB and CD and determine whether they are congruent. Holt McDougal Geometry

1-6 Midpoint and Distance in the Coordinate Plane Check It Out! Example 4a Use the Distance Formula and the Pythagorean Theorem to find the distance, to the nearest tenth, from R to S. R(3, 2) and S(-3, -1) Method 1 Use the Distance Formula. Substitute the values for the coordinates of R and S into the Distance Formula.

Related Documents:

c. Write a formula for the average of the y-coordinates of A and B. d. One way to think of the midpoint of is as follows: average of the x-coordinates, average of the y-coordinates. Use this to derive a formula for the midpoint of . e. The endpoints of a segment are E(8, 12) and F(2, 4). Use your formula to compute the midpoint of EF.

Lesson 1-5 Measuring Segments 33 Using the Midpoint Algebra C is the midpoint of . Find AC, CB, and AB. AC CB Deﬁnition of midpoint 2x 1 3x-4 Substitute. 2x 5 3x Add 4 to each side. 5 x Subtract 2x from each side. AC 2x 1 2(5) 1 11 Substitute 5 for x. CB 3x-4 3(5) -4 11 AC and CB are both 11, which is half of 22, the length of . Z is the midpoint of and XY 27.

EQUATIONS OF ALTITUDES, MEDIANS, and PERPENDICULAR BISECTORS Steps to Find the Median of a Triangle: -Find the midpoint of a segment using the midpoint formula. -Use the vertex and midpoint to find the slope of the median. -Use the vertex or midpoint to help find the y-intercept of the line. -Write the equation for the median.

Pre-Calc Conics 2 NJCTL.org Midpoint and Distance Formula - Homework M is the midpoint of A and B. Use the given information to find the missing point. 12. A(4, -2) and B(5, 6), find M 13.

Section 1.3 Using Midpoint and Distance Formulas 21 Using Algebra with Segment Lengths Point M is the midpoint of VW —Find the length of VM — VM W 4x 13 x 3 SOLUTION Step 1 Write and solve an equation. Use the fact that VM MW. Write the equation.VM MW 4x 1 3x Substitute. 3 x 1 3 Subtract 3x fr

By the \2-3-4" formula, the area of the equilateral triangle ABC(with side length 6) is (6)2 p 3 4 36 p 3 4 9 p 3: So the area of the reachable region is 56ˇ 9 p 3 . Problem 9 Let ABCbe a triangle. Let Dbe the midpoint of BC, let Ebe the midpoint of AD, and let Fbe the midpoint of BE. Let Gbe the point 7

Overall comparison of salaries compared to salary range Midpoint (Compa-ratio) 95.7% Percent of employees who fall at or above 105% of Midpoint 24.9% Of those who fall at or above 105% of Midpoint, the a

Scope and Sequence for Grade 2- English Language Arts 8/6/14 5 ELA Power Standards Reading Literature and Reading Informational Text: RL 2.1, 2.10 and RI 2.1, 2.10 apply to all Units RI 2.2: Identify the main topic of a multi-paragraph text as well as the focus of specific paragraphs within the text.