Technical Handbook For Pressure Piping Systems

2y ago
164 Views
38 Downloads
4.80 MB
51 Pages
Last View : 1m ago
Last Download : 2m ago
Upload by : Julius Prosser
Transcription

GF Piping SystemsTechnical Handbook forPressure Piping SystemsPROGEF Standard PolypropylenePROGEF Natural PolypropylenePROGEF Plus PolypropylenePPro-Seal Natural PolypropyleneSYGEF Standard Polyvinylidene FluorideSYGEF Plus Polyvinylidene Fluoride

2

Table of ContentsOverview Polypropylene Piping Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5PROGEF Standard Polypropylene (PP-H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5PROGEF Natural Polypropylene (PP-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5PPro-Seal Natural Polypropylene (PP-R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Chemical, Weathering, and Abrasion Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Combustion Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Electrical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6Complete System of Pipe, Valves and Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Reliable Fusion Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7General Properties Polypropylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Material Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Overview SYGEF Polyvinylidene Fluoride (PVDF) Piping Systems . . . . . . . . . . . . . . . . . . . . 8General Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Chemical, Weathering, and Abrasion Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Thermal Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Flammability and Fire Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Electrical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Physiological Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Extractables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Discoloration Phenomena . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Manufacturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Compliance with Life Science Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Raw Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Manufacturing (Pipe) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Manufacturing (Fabricated Products) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Traceability of Machined Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Delivery, Storage and Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12General Properties SYGEF Polyvinylidene Fluoride (PVDF) . . . . . . . . . . . . . . . . . . . . . . . 13Material Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Specifications PVDF and PP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Pressure/Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Dimensional Pipe Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Calculating Pipe Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Friction Loss Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Hazen and Williams Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17C Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Pressure Loss of Fittings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Flow Rate vs. Friction Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18PROGEF Standard Polypropylene (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18PROGEF Natural Polypropylene (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20PPro-Seal Natural Polypropylene (PP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22PPro-Seal Natural Polypropylene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22SYGEF Polyvinylidene Fluoride (PVDF), PN 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23SYGEF Polyvinylidene Fluoride (PVDF), PN 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Gravity Drain Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Flow Rate for Gravity Drain Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Approximate Discharge Rates and Velocities in Sloping Drains Flowing Half-Full . . . . . . . . . . . . . . . . . . . . . . 28Surge Pressure (Water Hammer) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Expansion/Contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Allowing for Length Changes in PP and PVDF Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Calculation and Positioning of Flexible Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Determining the Length Change (ΔL) (Example 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Length Change ( L) in Inches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Determining the Length of the Flexible Section (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36The Installation of Pipe Work under Plaster or Embedded in Concrete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Pipe Bracket Support Centers and Fixation of Plastic Pipelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Mechanical Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Threaded Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Flanged Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Creating Union Joints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Fusion Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Socket Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Contact (Conventional) Butt Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45IR Plus Infrared Butt Fusion Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46BCF Plus (Bead and Crevice Free) Fusion Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Electrofusion Joining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Pressure Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Sterilization and Sanitization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Autoclave Sterilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51In-Line Steam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Hot Water Sanitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Ozone Sanitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51Chemical Sanitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514

Overview PolypropylenePiping SystemsGeneral InformationPolypropylene is a thermoplastic belonging to the polyolefingroup. It is a semi-crystalline material. Its density is lowerthan that of other well-known thermoplastics. Its mechanical characteristics, its chemical resistance, and especially itsrelatively high heat deflection temperature have made polypropylene one of the most important materials used in pipinginstallations today.PP is formed by the polymerisation of propylene (C3H6) usingZiegler-Natta catalysts.There are three different types which are conventionallysupplied for piping installations: Isotactic PP Homopolymeride (PP-H) PP block co-polymeride (PP-B) PP random co-polymeride (PP-R)Because of its high internal pressure resistance, PP-H ispreferred for industrial applications. On the other hand, PP-Ris used predominantly in sanitary applications because of itslow e-modulus (flexible piping) and its high internal pressureresistance at high temperatures. PP-B is mainly used forsewage piping systems because of its high impact strength,especially at low temperatures and its low thermalendurance.PROGEF Standard/Plus Polypropylene(PP-H)Most of the grades are offered with nucleating agents(crystallization seeds), because PP crystallizes at least 10times slower than PE. This way, we achieve lower internalstress and a finer structure. We differentiate between α andβ nucleation.Nucleation is realized by merely adding ppm (parts permillion) of nucleating agents. PP is a non-polar materialwhose surface hardly swells or dissolves. Cementing is notpossible without special surface treatment. On the otherhand, PP welds very well. Pressure piping systems can useheating element socket welding, heating element buttwelding or the no-contact infrared (IR-Plus ) fusiontechnology developed by GF.Internal pressure resistance is ensured through long-termtesting in accordance with EN ISO 15494 and with the valueof MRS 10 MPa (minimum required strength). high thermal ageing and thermal forming resistancehigh stress fracture resistanceoutstanding weldabilityhomogeneous, fine structurePROGEF Natural Polypropylene (PP-R)Specially for applications related to the BCF Plus (bead andcrevice-free) welding technology, such as the life science/pharmaceutical industry, GF offers the PROGEF Natural PPsystem in addition to our PROGEF Standard PP system.For such requirements, the welding technology plays adecisive role. With BCF Plus welding technology, beads anddead zones are eliminated. This prevents micro-organismsfrom accumulating, thus improving water quality.For less demanding purity requirements and all otherindustrial applications, especially those involving aggressivemedia, high impact and temperature stress, GF recommendsPROGEF Standard PP, which has optimal characteristics.The material used for the PROGEF Natural system is anunpigmented random copolymer, particularly distinguishedby the following characteristics:Advantages excellent resistance against certain disinfectants andchemicals (mainly alkaline solutions) translucence very high surface finish quality good weldability (BCF Plus and IR Plus weldable) high temperature resistancePPro-Seal Natural Polypropylene (PP-R)Specifically for applications such as lab grade DI water,reverse osmosis and chemical distribution systems whereelectrofusion or threaded joining is appropriate.The material used for the PPro-Seal Natural system is anunpigmented random copolymer, particularly distinguishedby the following characteristics:Advantages excellent resistance against certain disinfectants andchemicals (mainly alkaline solutions) translucence very high surface finish quality electrofusion (same fusion machine that Fuseal PP &Fuseal 25/50 PVDF use) high temperature resistanceThe PP-H resin used by GF for PROGEF Standard/Plus PPindustrial piping systems is characterized byAdvantages good chemical resistance high internal pressure resistance high impact strength5

Mechanical PropertiesPP-H has the highest crystallinity and therefore the highesthardness, tensile strength and stiffness, so the pipes hardlysag and a greater distance between supports is possible.PP-R has a very good long-term creep strength at highertemperatures, such as, for example, 80 C at continuousstress.Unlike PE, PP is not as impact-resistant below 0 C. Becauseof this, GF recommends ABS or PE for low temperatureapplications.The long-term behavior for internal pressure resistance isprovided by the hydrostatic strength curve based on the ENISO 15494 standard. The application limits for pipes andfittings, as shown in the pressure-temperature diagram, canbe derived from these curves.Chemical, Weathering, and AbrasionResistanceDue to its non-polar nature, polypropylene shows a highresistance against chemical attack.The resistance of PP is nevertheless lower than that of PEbecause of its tertiary C atoms.PP is resistant against many acids, alkaline solutions,solvents, alcohol and water. Fats and oils swell PP slightly.PP is not resistant to oxidizing acids, ketones, petrol,benzene, halogens, aromatic hydrocarbons, chlorinatedhydrocarbons and contact with copper.For detailed information, please refer to the detailed list ofchemical resistance from GF or contact your local GFsubsidiary.If polypropylene is exposed to direct sunlight over a longperiod of time, it will, like most natural and plastic materials,be damaged by the short-wave UV portion of sunlighttogether with oxygen in the air, causing photo-oxidation.PP fittings and valves are highly heat stabilized. As perapprovals, polypropylene has no special additive against theeffects of UV radiation. The same applies to PP piping. Pipingwhich is exposed to UV light should therefore be protected.This is achieved by covering the pipes, e.g. with insulation oralso by painting the piping system with a UV absorbing paint.Thermal PropertiesIn general polypropylene can be used at temperatures from0 C to 80 C (32 F to 176 F). Below 10 C, the outstandingimpact strength of the material is reduced. On the otherhand, the stiffness is even higher at low temperatures.Please consult the pressure-temperature diagram for yourmaximum working temperature. For temperatures below0 C it must be ensured, as for every other material, that themedium does not freeze, consequently damaging the pipingsystem.6As with all thermoplastics, PP shows a higher thermalexpansion than metal. As long as this is taken into accountduring the planning of the installation, there should be noproblems in this regard.The thermal conductivity is lower than metal. Because of theresulting insulation properties, a PP piping system is notablymore economical in comparison to a system made of a metallike copper.Combustion BehaviorPolypropylene is a flammable plastic. The oxygen indexamounts to 19%. (Materials that burn with less than 21% ofoxygen in the air are considered to be flammable).PP drips and continues to burn without soot after removingthe flame. Basically, toxic substances are released by allburning processes. Carbon monoxide is generally thecombustion product most dangerous to humans. When PPburns, primarily carbon dioxide, carbon monoxide and waterare by-products of combustion.The following classifications in accordance with differingcombustion standards are used: According to UL94, PP is classified as HB (HorizontalBurning) and according to DIN 53438-1 as K2. Accordingto DIN 4102-1 and EN 13501-1, PP is listed as B2 (normally flammable). According to ASTM D 1929, the self-ignition temperatureis 360 C. Suitable fire-fighting agents are water, foam or carbondioxide.Electrical PropertiesSince PP is a non-polar hydrocarbon polymer, it is anoutstanding insulator. These properties, however, can beworsened considerably as a result of pollution, effects ofoxidizing media or weathering.The dielectric characteristics are essentially independent oftemperature and frequency.The specific volume resistance is 1016 Ωcm; the dielectricstrength is 75 kV/mm.Because of the possible development of electrostaticcharges, caution is recommended when using PP in applications where the danger of fires or explosion is given.

Complete System of Pipe, Valves andFittingsGF’s Polypropylene piping system easily transitions betweenPE, PVC, and PVDF, and is available with pipes, fittings andvalves in sizes from 20 mm to 500 mm (metric), ½” to 2”(ASTM).This system includes all commonly required pressure pipefittings, including threaded adaptors and flanges for ease ofmating to equipment or other piping materials. A large portfolio of ball, check, diaphragm, butterfly, pressure reduction,and pressure relief valves are also available from GF. Pleaserefer to the GF Valve Technical Handbook for more details.Reliable Fusion JoiningAssembly and joining of this system is performed by heatfusion. Fusion joints are made by heating and melting thepipe and fitting together. This type of joint gives a homogeneous transition between the two components without thelowering of chemical resistance associated with solventcement joining and without the loss of integrity and loss ofpressure handling ability of a threaded joint.Five different fusion methods for GF’s Polypropylene PipingSystems are available and commonly used in today‘sdemanding applications. These include conventional socketfusion, electrofusion, conventional contact butt fusion, IRPlus butt fusion and BCF (Bead and Crevice Free) fusion.General Properties PolypropyleneMaterial DataThe following table lists typical physical properties of Polypropylene thermoplastic materials. Variations may exist depending onspecific compounds and sPP-HPROGEFNatural PP-RPPro-SealNatural PP-RASTM TestDensitylb/in30.03250.03250.0327ASTM D792Tensile Strength @ 73 F (Yield)PSI4,5003,6254,350ASTM D638Tensile Strength @ 73 F (Break)PSI5,6004,5005,000ASTM D638Modules of Elasticity Tensile @ 73 FPSI188,500130,500150,000ASTM D638Compressive Strength @ 73 FPSI6,5005,5005,500ASTM D695Flexural Modulus @ 73 FPSI181,250130,500130,000ASTM D790Izod Impact @ 73 FFt-Lbs/In of Notch 11.38.08.0ASTM D256Relative Hardness @ 73 FShore707070ASTM D2240PropertiesUnitgm/10min FPPro-SealNatural0.40-0.80316ASTM TestMelt IndexMelting PointCoefficient of Thermal Linear Expansion per Fin/in/ F0.61 10-4ASTM D696Thermal ConductivityMaximum Operating TemperatureHeat Distortion Temperature @ 264 PSIBTU-in/ft2/hr/ FPROGEFPROGEFStandard/Plus Natural0.250.30-0.403203160.89 10-4 for T 121 F1.0 10-4 for T 121 F1.61.61761761251251.2176130ASTM D177Thermodynamics F FASTM D1238ASTM D789ASTM D648OtherPropertiesUnitWater AbsorptionPoisson’s Ratio @ 73 FIndustry Standard ColorFood and Drug Association (FDA)%United States Pharmacopeia (USP)PROGEFStandard/Plus 0.1%0.387032YESPROGEFNatural 0.1%0.38NeutralYESPPro-SealNatural 0.03%0.38NeutralYESASTM TestYESYESYESUSP 25 Class VIASTM D570RAL 9005CFR 21.177.1520Note: This data is based on information compiled from multiple sources.7

Overview SYGEF Polyvinylidene Fluoride(PVDF) Piping SystemsGeneral InformationPolyvinylidene Fluoride (PVDF) is a semi-crystalline thermoplastic having outstanding mechanical, physical and chemical properties. These result from the chemical structure ofPVDF. Polyvinylidene Fluoride belongs to the class of fluorinated polymers whose best-known representative ispolytetrafluoroethylene (PTFE). PTFE is characterized by asuperb heat resistance and the best chemical resistance ofall polymers; a big disadvantage is that it is not melt processable, e.g., into fittings. PVDF, on the other hand, combinesvarious advantages of PTFE with good workability into structural parts. The fluorine content in PVDF amounts to 59% byweight.PVDF from GF is characterized by a very good mechanicalbehavior and high temperature resistance. Because of theexceptionally wide pressure/temperature range in whichPVDF can be used, it has opened, in connection with thespecific characteristics of this material, completely newareas of application in plastic piping fabrication. Theseinclude applications in the semi-conductor, chemical andpharmaceutical industry, electroplating, paper and celluloseprocessing, the automotive industry and water treatment.Pipes, fittings and valves of PVDF are uncolored and opaque(milky, translucent).By avoiding the addition of any additives, the outstandingcharacteristics of the material remain to the fullest extent,especially concerning the chemical resistance and physiological harmlessness.Advantages outstanding mechanical properties, even at hightemperatures excellent chemical resistance no electrochemical corrosion long service life, even under intensely corrosiveconditions outstanding resistance against Sunlight and Y-radiation very pure material without additives, stabilizers orplasticizers inhospitable to microbial growth physiologically harmless secure jointing by high-quality welding technology produced with smooth inner surfaces very low heat conductivity excellent flame retardant propertiesMechanical PropertiesPVDF has a high tensile strength and stiffness. The impactstrength is still good at temperatures around 32 F (0 C).PVDF’s advantages are particularly prevalent at higher8temperatures. This is due to the high fluorine content whichcauses strong interactions between the PVDF chains. This, inturn, displaces the softening and the loss of properties tohigher temperatures. This also has an effect on the longterm creep strength.PVDF has the highest long-term creep strength of all thepolymers used for GF piping systems. The long-term behavior for internal pressure resistance is provided by the hydrostatic strength curve based on the DVS 2205-1 Guidelines,Supplement 4 (see also the Pressure/Temperature section).The application limits for pipes and fittings, as shown in thepressure and temperature diagram, can be determined fromthese curves.Chemical, Weathering, and AbrasionResistancePVDF is resistant to most inorganic solvents and additionallyto aliphatic and aromatic hydrocarbons, organic acids,alcohol and halogenated solvents. PVDF is also not attackedby dry and moist halogens with the exception of fluorine.PVDF is not resistant against strong basic amines, alkalis,and alkaline metals. Strong polar solvents, such as ketonesand esters and organic acids can cause PVDF to swellsomewhat.For detailed information, please refer to the detailed list ofchemical resistance from GF or contact your GF subsidiary.Outstanding resistance against UV light as well as gammaradiation permits, among other applications, the use of PVDFpiping outdoors. No loss of properties occurs. Abrasionresistance is considerable and approximately comparable tothat of polyamide.Thermal PropertiesPVDF shows its outstanding properties in a temperaturerange from -4 F (-20 C) to 284 F (140 C). This allows usingthe material in a wide range of applications. Especially athigh temperatures, PVDF provides maximum security. Itshigh crystalline melting point at around 343 F (173 C)speaks for itself.Please consult the pressure-temperature diagrams for youroperational temperature. For temperatures below 32 F(0 C), the media must be prevented from freezing to avoiddamaging the piping (as for other piping materials).With a thermal coefficient of linear expansion of0.67 1.00 10-4 in/in F (coefficient depends on temperature),PVDF lies clearly above that of metals. Because of this, itsthermal expansion must be taken into account during theplanning of the piping system. As for all polymers, PVDF is agood thermal insulat

Density lb/in3 0 .0325 0 .0325 0 .0327 ASTM D792 Tensile Strength @ 73 F (Yield) PSI 4,500 3,625 4,350 ASTM D638 Tensile Strength @ 73 F

Related Documents:

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

piping classes and the numerous piping specifications necessary to fabricate, test, insulate, and paint the piping systems, is titled either the piping material engineer or the piping spec(ification) writer. 1.2. Job Scope Whatever the title, the piping material engineer (PME) is a very important person within the Piping Design Group and .

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill använda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-märkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

liquid process piping systems, engineering calculations and requirements for all piping systems, basics of metal piping systems and thermoplastic piping systems. In Part 2 - the course will continue from Part 1 and review the basics of Rubber and Elastomer Piping Systems, Thermoset Piping Systems, Double Containment

www.DaikinApplied.com 9 AG 31-011 REFRIGERANT PIPING DESIGN. Piping Design Basics. Good piping design results in a balance between the initial cost, pressure drop, and system reliability. The initial cost is impacted by the diameter and layout of the piping.The pressure drop in the piping must be minimized to avoid