Lecture 8 - Model Identification

3y ago
24 Views
2 Downloads
346.86 KB
21 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Karl Gosselin
Transcription

Lecture 8 - Model Identification What is system identification?Direct pulse response identificationLinear regressionRegularizationParametric model ID, nonlinear LSEE392m - Winter 2003Control Engineering8-1

What is System del White-box identification– estimate parameters of a physical model from data– Example: aircraft flight model Gray-box identificationRarely used inreal-life control– given generic model structure estimate parameters from data– Example: neural network model of an engine Black-box identification– determine model structure and estimate parameters from data– Example: security pricing models for stock marketEE392m - Winter 2003Control Engineering8-2

Industrial Use of System ID Process control - most developed ID approaches– all plants and processes are different– need to do identification, cannot spend too much time on each– industrial identification tools Aerospace– white-box identification, specially designed programs of tests Automotive– white-box, significant effort on model development and calibration Disk drives– used to do thorough identification, shorter cycle time Embedded systems– simplified models, short cycle timeEE392m - Winter 2003Control Engineering8-3

Impulse response identification Simplest approach: apply control impulse and collect thedataIMP ULS E RES P ONS E10.80.60.40.2001234567TIME Difficult to apply a short impulse big enough such that theresponse is much larger than the noiseNOIS Y IMP ULS E RES P ONS E10.50-0.501 Can be used for building simplifiedcontrol design models from complex simsEE392m - Winter 2003Control Engineering23456TIME8-47

Step response identification Step (bump) control input and collect the data– used in process controlS TEP RES P ONS E OF P AP ER WEIGHT1.51Actuator bumped0.500200400600TIME (S EC)8001000 Impulse estimate still noisy: impulse(t) step(t)-step(t-1)IMP ULS E RES P ONS E OF P AP ER WEIGHT0.30.20.100EE392m - Winter 2003100Control Engineering200300400TIME (S EC)5006008-5

Noise reductionNoise can be reduced by statistical averaging: Collect data for mutiple steps and do more averaging toestimate the step/pulse response Use a parametric model of the system and estimate a fewmodel parameters describing the response: dead time, risetime, gain Do both in a sequence– done in real process control ID packages Pre-filter dataEE392m - Winter 2003Control Engineering8-6

Linear regression Mathematical aside– linear regression is one of the main System ID toolsDataRegression weightsRegressorNy (t ) θ jϕ j (t ) e(t )Errory Φθ ej 1 y (1) ϕ1 (1) K ϕ K (1) θ1 e(1) OM , θ M , e M y M , Φ M y ( N ) ϕ1 ( N ) K ϕ K ( N ) θ K e( N ) EE392m - Winter 2003Control Engineering8-7

Linear regression Makes sense only when matrix Φ istall, N K, more data available thanthe number of unknown parameters.– Statistical averaging Least square solution: e 2 miny Φθ eθˆ (Φ T Φ ) Φ T y 1– Matlab pinv or left matrix division \ Correlation interpretation:N N 2 K ϕ K (t )ϕ1 (t ) ϕ 1 (t )t 11 t 1 ,MOMR NN N2 ϕ1 (t )ϕ K (t ) K ϕ K (t ) t 1 t 1EE392m - Winter 2003Control Engineeringθˆ R 1c N ϕ1 ( t ) y ( t ) 1 t 1 Mc N N ϕ K (t ) y (t ) t 1 8-8

Example: linear first-order modely (t ) ay (t 1) gu (t 1) e(t ) Linear regression representationϕ1 (t ) y (t 1) a θ ϕ 2 (t ) u(t 1) g 1 TTˆθ (Φ Φ ) Φ y This approach is considered in most of the technicalliterature on identificationLennart Ljung, System Identification: Theory for the User, 2nd Ed, 1999 Matlab Identification Toolbox– Industrial use in aerospace mostly– Not really used much in industrial process control Main issue:– small error in a might mean large change in responseEE392m - Winter 2003Control Engineering8-9

Regularization Linear regression, where Φ T Φ is ill-conditioned Instead of e 2 min solve a regularized problem22e r θ miny Φθ er is a small regularization parameter Regularized solution 1 TTˆθ (Φ Φ rI ) Φ y Cut off the singular values of Φ that are smaller than rEE392m - Winter 2003Control Engineering8-10

Regularization Analysis through SVD (singular value decomposition)Φ USV T ;V R n ,n ;U R m ,m ; S diag{s j }nj 1 Regularized solutionn s 1 θˆ (Φ T Φ rI ) Φ T y V diag 2 j U T y s j r j 1 Cut off the singular values of Φ that are smaller than rREGULARIZED INVERS E21.5ss 2 0.110.50EE392m - Winter 2003012Control Engineering3s458-11

Linear regression for FIR modelP RBS EXCITATION S IGNAL Identifying impulse response by 10.5applying multiple steps0-0.5 PRBS excitation signal-1 FIR (impulse response) model 0Ky ( t ) h ( k )u ( t k ) e( t )k 110203040PRBS Pseudo-Random Binary Sequence,see IDINPUT in Matlab Linear regression representationϕ1 (t ) u(t 1)Mϕ K (t ) u (t K )EE392m - Winter 2003 h (1) θ M h ( K ) Control Engineering 1 TTˆθ (Φ Φ rI ) Φ y8-1250

Example: FIR model IDP RBS e xcita tion PRBS S YS TEM RES P ONS E Simulated system 1output: 40000.5samples, random 0-0.5noise of the-1amplitude 0.50200400600TIMEEE392m - Winter 2003Control Engineering8-13

Example: FIR model IDFIR es tima te Linear regression 0.2estimate of the FIR0.150.1model0.050-0.0501234567567Impuls e Re s pons e Impulse responsefor the simulatedsystem:0.20.150.10.050-0.05T tf([1 .5],[1 1.1 1]);0P c2d(T,0.25);EE392m - Winter 20031234Time (s ec)Control Engineering8-14

Nonlinear parametric model ID Prediction model depending onthe unknown parameter vector θu (t ) MODEL(θ ) yˆ (t θ )Loss Index VV y (t ) yˆ (t θ ) Loss indexJ y (t ) yˆ (t θ )θOptimizer22 Iterative numerical optimization.Computation of V as a subroutiney (t )u (t )Model including theparameters θsimLennart Ljung, “Identification for Control: Simple Process Models,”IEEE Conf. on Decision and Control, Las Vegas, NV, 2002EE392m - Winter 2003Control Engineering8-15

Parametric ID of step responseτ First order process with deadtime Most common industrial process model Response to a control step applied at tB g (1 e( t tB TD ) /τ ), for t tB TDy (t θ ) γ 0,for t tB TD γ g θ τ TD gTDExample:PapermachineprocessEE392m - Winter 2003Control Engineering8-16

Gain estimation For given τ , TD , the modeled step response can bepresented in the formy (t θ ) γ g y1 (t τ , TD ) This is a linear regression2w1 gk 1w2 γy (t θ ) wkϕ k (t )ϕ1 (t ) y1 (t τ , TD )ϕ 2 (t ) 1 Parameter estimate and prediction for given τ , TDwˆ (τ , TD ) (Φ Φ ) Φ T yTEE392m - Winter 2003 1yˆ (t τ , TD ) γˆ gˆ y1 (t τ , TD )Control Engineering8-17

Rise time/dead time estimation For given τ , TD , the loss index isNV y (t ) yˆ (t τ , TD )2t 1 Grid τ , TD and find the minimum of V V (τ , TD )EE392m - Winter 2003Control Engineering8-18

Examples: Step response ID Identification results for real industrial process data This algorithm works in an industrial tool used in 500 industrial plants, many processes eachP roce s s pa ra me te rs : Ga in 0.134; Tde l 0.00; Tris e 119.896911.61.4NonlinearRegression ID0.80.61.210.40.8LinearRegression IDof the first-ordermodel0.20-0.2-0.4010203040EE392m - Winter 20035060700.6NonlinearRegression ID0.40.2080-0.20100200300400500600700time in s e c.; MD re s pons e - s olid; e s tima te d re s pons e - da s he dControl Engineering8-19800

Linear filtering A trick that helps: pre-filter data Consider data modely h *u e L is a linear filtering operator, usually LPFLy L( h * u ) {Le{eyffL( h * u ) ( Lh ) * u h * ( Lu ) Can estimate h from filtered y and filtered u Or can estimate filtered h from filtered y and ‘raw’ u Pre-filter bandwidth will limit the estimation bandwidthEE392m - Winter 2003Control Engineering8-20

Multivariable ID Apply SISO ID to various input/output pairs Need n tests - excite each input in turn Step/pulse response identification is a key part of theindustrial Multivariable Predictive Control packages.EE392m - Winter 2003Control Engineering8-21

Industrial Use of System ID Process control - most developed ID approaches – all plants and processes are different – need to do identification, cannot spend too much time on each – industrial identification tools Aerospace – white-box identification, specially designed programs of tests Automotive

Related Documents:

Introduction of Chemical Reaction Engineering Introduction about Chemical Engineering 0:31:15 0:31:09. Lecture 14 Lecture 15 Lecture 16 Lecture 17 Lecture 18 Lecture 19 Lecture 20 Lecture 21 Lecture 22 Lecture 23 Lecture 24 Lecture 25 Lecture 26 Lecture 27 Lecture 28 Lecture

Lecture 1: A Beginner's Guide Lecture 2: Introduction to Programming Lecture 3: Introduction to C, structure of C programming Lecture 4: Elements of C Lecture 5: Variables, Statements, Expressions Lecture 6: Input-Output in C Lecture 7: Formatted Input-Output Lecture 8: Operators Lecture 9: Operators continued

Lecture 1: Introduction and Orientation. Lecture 2: Overview of Electronic Materials . Lecture 3: Free electron Fermi gas . Lecture 4: Energy bands . Lecture 5: Carrier Concentration in Semiconductors . Lecture 6: Shallow dopants and Deep -level traps . Lecture 7: Silicon Materials . Lecture 8: Oxidation. Lecture

TOEFL Listening Lecture 35 184 TOEFL Listening Lecture 36 189 TOEFL Listening Lecture 37 194 TOEFL Listening Lecture 38 199 TOEFL Listening Lecture 39 204 TOEFL Listening Lecture 40 209 TOEFL Listening Lecture 41 214 TOEFL Listening Lecture 42 219 TOEFL Listening Lecture 43 225 COPYRIGHT 2016

Partial Di erential Equations MSO-203-B T. Muthukumar tmk@iitk.ac.in November 14, 2019 T. Muthukumar tmk@iitk.ac.in Partial Di erential EquationsMSO-203-B November 14, 2019 1/193 1 First Week Lecture One Lecture Two Lecture Three Lecture Four 2 Second Week Lecture Five Lecture Six 3 Third Week Lecture Seven Lecture Eight 4 Fourth Week Lecture .

Grade (9-1) _ 58 (Total for question 1 is 4 marks) 2. Write ̇8̇ as a fraction in its simplest form. . 90. 15 blank Find the fraction, in its

Introduction to Quantum Field Theory for Mathematicians Lecture notes for Math 273, Stanford, Fall 2018 Sourav Chatterjee (Based on a forthcoming textbook by Michel Talagrand) Contents Lecture 1. Introduction 1 Lecture 2. The postulates of quantum mechanics 5 Lecture 3. Position and momentum operators 9 Lecture 4. Time evolution 13 Lecture 5. Many particle states 19 Lecture 6. Bosonic Fock .

Lecture 11 – Eigenvectors and diagonalization Lecture 12 – Jordan canonical form Lecture 13 – Linear dynamical systems with inputs and outputs Lecture 14 – Example: Aircraft dynamics Lecture 15 – Symmetric matrices, quadratic forms, matrix norm, and SVD Lecture 16 – SVD applications