Optical Radiometry For Ocean Climate Measurements

3y ago
12 Views
2 Downloads
514.27 KB
19 Pages
Last View : 18d ago
Last Download : 3m ago
Upload by : Farrah Jaffe
Transcription

Experimental Methods in the Physical SciencesVolume 47Optical Radiometryfor Ocean ClimateMeasurementsEdited byGiuseppe ZibordiInstitute for Environment and SustainabilityJoint Research CentreIspra, ItalyCraig J. DonlonEuropean Space Agency/ESTECNoordwijkThe NetherlandsAlbert C. ParrSpace Dynamics Laboratory, Utah StateUniversity, Logan, UT, USAAMSTERDAM l BOSTON l HEIDELBERG l LONDONNEW YORK l OXFORD l PARIS l SAN DIEGOSAN FRANCISCO l SINGAPORE l SYDNEY l TOKYOAcademic Press is an imprint of Elsevier

Academic Press is an imprint of Elsevier225 Wyman Street, Waltham, MA 02451, USA525 B Street, Suite 1800, San Diego, CA 92101-4495, USA32 Jamestown Road, London NW1 7BY, UKThe Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UKCopyright Ó 2014 Elsevier Inc. All rights reserved.Except as follows:The European Union retains the copyright to the chapters e 3, 3.1, 4, 4.1, 5, 5.1, 6 and 6.1The following chapters are in public domain e 2, 2.1 and 4.2James A. Yoder retains the copyright for his contributionNo part of this publication may be reproduced or transmitted in any form or by anymeans, electronic or mechanical, including photocopying, recording, or anyinformation storage and retrieval system, without permission in writing from thepublisher. Details on how to seek permission, further information about the Publisher’spermissions policies and our arrangements with organizations such as the CopyrightClearance Center and the Copyright Licensing Agency, can be found at our website:www.elsevier.com/permissions.This book and the individual contributions contained in it are protected undercopyright by the Publisher (other than as may be noted herein).NoticesKnowledge and best practice in this field are constantly changing. As new researchand experience broaden our understanding, changes in research methods, professionalpractices, or medical treatment may become necessary.Practitioners and researchers must always rely on their own experience and knowledgein evaluating and using any information, methods, compounds, or experimentsdescribed herein. In using such information or methods they should be mindful of theirown safety and the safety of others, including parties for whom they have a professionalresponsibility.To the fullest extent of the law, neither the Publisher nor the authors, contributors,or editors, assume any liability for any injury and/or damage to persons or property asa matter of products liability, negligence or otherwise, or from any use or operationof any methods, products, instructions, or ideas contained in the material herein.ISBN: 978-0-12-417011-7ISSN: 1079-4042For information on all Academic press publications visitour web site at http://store.elsevier.com/

ContentsList of ContributorsVolumes in SeriesForewordPreface1.xvxviixxixxiiiIntroduction to Optical Radiometry and OceanClimate Measurements from SpaceJames A. Yoder and B. Carol Johnson1.1.Ocean Climate and Satellite Optical RadiometryJames A. Yoder, Kenneth S. Casey and Mark D. Dowell1.2.3.4.1.2.Introduction1.1 Characteristics of a Climate-Observing SystemGlobal Climate Observing System Requirements for ECVsand CDRs2.1 Ocean Color Radiometery2.2 Sea Surface TemperatureFrom Essential Climate Variables to Climate Data RecordsConclusionReferences34678101112Principles of Optical Radiometry and MeasurementUncertaintyB. Carol Johnson, Howard Yoon, Joseph P. Rice and Albert C. Parr1.2.Basics of Radiometry1.1 Introduction1.2 Radiance1.3 Irradiance1.4 Reflectance1.5 Distance and Aperture Areas in RadiometryRadiometric Standards and Scale Realizations2.1 Sources2.2 Radiometers141417212328303038v

vi Contents3.4.2.The Measurement Equation3.1 Background and a Review of the Concepts3.2 Measurement Equation Examples3.3 Uncertainty in Ocean Color 57616262Satellite RadiometryCharles R. McClain and Peter J. Minnett2.1.Satellite Ocean Color Sensor Design Conceptsand Performance RequirementsCharles R. McClain, Gerhard Meister and Bryan Monosmith1.2.3.4.5.6.7.IntroductionOcean Color Measurement Fundamentals and RelatedScience ObjectivesEvolution of Science Objectives and Sensor RequirementsPerformance Parameters and Specifications4.1 Spectral Coverage and Dynamic Range4.2 Coverage and Spatial Resolution4.3 Radiometric Uncertainty4.4 SNR and Quantization4.5 Polarization4.6 Additional Characterization Requirements4.7 On-Board Calibration SystemsSensor Engineering5.1 Basic Sensor Designs: Whiskbroom and Pushbroom5.2 Design Fundamentals and Radiometric Equations5.3 Performance Considerations5.4 Sensor ImplementationSummaryAcronymsSymbols and DimensionsAppendix. Historical Sensors7.1 CZCS and OCTS7.2 SeaWiFS7.3 MODIS7.4 7108109109110111113115116

Contents vii2.2.On Orbit Calibration of Ocean Color ReflectiveSolar BandsRobert E. Eplee, Jr and Sean W. Bailey1.2.3.4.5.6.7.8.2.3.IntroductionSolar Calibration2.1 SD Degradation2.2 SD Radiometric Response Trends2.3 SNR on Orbit2.4 Uncertainties in the Solar Calibration DataLunar Calibrations3.1 ROLO Photometric Model of the Moon3.2 Lunar Radiometric Response Trending3.3 Uncertainties in Lunar Calibration3.4 Lunar Calibration IntercomparisonsSpectral Calibration of Grating InstrumentsVicarious Calibration5.1 NIR/SWIR Band Calibration5.2 Visible Band Calibration5.3 Alternative ApproachesOn-orbit Calibration Uncertainties6.1 Accuracy6.2 Long-term Stability of the TOA Radiances6.3 Precision of the TOA Radiances6.4 Combined Uncertainty AssessmentComparison of Uncertainties Across InstrumentsSummary of On-orbit 1133135137139140142142143143144144145149150Thermal Infrared Satellite Radiometers: Designand Prelaunch CharacterizationDavid L. Smith1.2.3.IntroductionRadiometer Design Principles2.1 Performance Model2.2 Signal to NoiseRemote Sensing Systems3.1 Along Track Scanning Radiometers (ATSR)3.2 Sea and Land Surface Temperature Radiometer (SLSTR)3.3 Advanced Very High Resolution Radiometer (AVHRR)3.4 MOderate Resolution Imaging Spectroradiometer(MODIS)3.5 Visible Infrared Imaging Suite (VIIRS)3.6 Spinning Enhanced Visible and Infrared Imager (SEVIRI)154155159160161161164165166167171

viii Contents4.5.6.7.2.4.Calibration Model4.1 Radiometric Noise4.2 Nonlinearity4.3 Offset VariationsOn-Board Calibration5.1 Calibration SourcesPre-launch Characterization and Calibration6.1 Blackbody Calibration6.2 Instrument Radiometric 182182184197198Postlaunch Calibration and Stability: ThermalInfrared Satellite RadiometersPeter J. Minnett and David L. Smith1.2.3.4.5.6.3.IntroductionOn-Board Calibration2.1 (A)ATSR Radiometric Calibration2.2 AVHRR Calibration2.3 MODIS and VIIRS Radiometric Calibration2.4 MODIS Spectroradiometric Calibration Assembly forOn-Orbit Stability2.5 MODIS Mirror Response versus Scan AngleComparisons with Reference Satellite Sensors3.1 Spatial Comparisons3.2 Temporal Comparisons3.3 Simultaneous Nadir Overpasses3.4 Instruments on the Same SatelliteValidating Geophysical Retrievals4.1 Cloud Screening4.2 Atmospheric Correction Algorithm4.3 Geophysical Validation4.4 Ship-Board 39In Situ Optical RadiometryCraig J. Donlon and Giuseppe Zibordi3.1.In situ Optical Radiometry in the Visible and NearInfraredGiuseppe Zibordi and Kenneth J. Voss1.2.Introduction and HistoryField Radiometer Systems248249

Contents3.4.5.6.7.3.2.2.1 General Classification: Multispectral and Hyperspectral2.2 Irradiance Sensors2.3 Basic Radiance SensorsSystem Calibration3.1 Linearity Response3.2 Temperature Response3.3 Polarization Sensitivity3.4 Stray Light Perturbations3.5 Spectral Response3.6 Angular Response of Irradiance Sensors3.7 Rolloff of Imaging Systems3.8 Immersion Effects3.9 Absolute ResponseMeasurement Methods4.1 In Water Systems4.2 Above Water Systems4.3 Radiometric Data ProductsErrors and Uncertainty Estimates5.1 Calibration Specific Sources of Uncertainties5.2 Instrument Specific Sources of Uncertainties5.3 Methods and Field Specific Sources of Uncertainties5.4 Examples of Uncertainty Budget for RadiometricProductsApplications6.1 Sky and Sea Radiance Distribution6.2 In-water Light Field Polarization6.3 Bio-Optical Models6.4 Validation of Satellite Radiometric Products6.5 In situ Data and System Vicarious CalibrationSummary and 293294295Ship-Borne Thermal Infrared Radiometer SystemsCraig J. Donlon, Peter J. Minnett, Andrew Jessup, Ian Barton,William Emery, Simon Hook, Werenfrid Wimmer,Timothy J. Nightingale, and Christopher Zappa1.2.3.Introduction and BackgroundTIR Measurement Theory2.1 General Considerations2.2 SSTskin Ship-Borne Radiometer Measurement Challenges2.3 Practical Measurement of SSTskin from a Ship-BorneRadiometerTIR Field Radiometer Design3.1 TIR Detectors3.2 TIR Radiometer Spectral Definition3.3 Beam Shaping and Steering3.4 Thermal Control System306311311317320321328336341350

x Contents4.5.6.4.3.5 An Environmental System to Protect and ThermallyStabilize the Radiometer3.6 Instrument Control and Data Acquisition3.7 A Calibration System3.8 Summary3.9 Additional CommentsExamples of FRM Ship-Borne TIR Radiometer Designand Deployments4.1 The DAR-011 Filter Radiometer4.2 The SISTeR Filter Radiometer4.3 NASA JPL NNR4.4 The Calibrated Infrared In situ Measurement System4.5 ISARdQuasi Operational Ocean Field Radiometers4.6 Use of Unmanned Airborne Vehicles BESST Radiometer4.7 Spectroradiometers4.8 Derivation of Air Temperature Using a Spectroradiometer4.9 TIR CamerasFuture 395Theoretical InvestigationsBarbara Bulgarelli, Menghua Wang and Christopher J. Merchant4.1.Simulation of In Situ Visible RadiometricMeasurementsBarbara Bulgarelli and Davide D’Alimonte1.2.3.4.4.2.OverviewThe RTE and Its Solution Methods2.1 The Radiative Transfer Equation2.2 Deterministic Solutions of the RTE2.3 Monte Carlo Solutions of the RTESimulations of In Situ Radiometric MeasurementPerturbations3.1 Overstructure Perturbations3.2 Perturbations Induced by Sea-Surface WavesSummary and ulation of Satellite Visible, Near-Infrared,and Shortwave-Infrared MeasurementsMenghua Wang1.2.3.IntroductionOceaneAtmospheric SystemSimulations452455457

Contents4.4.3.3.1 Ocean Radiance Contributions3.2 The TOA Atmospheric Path Radiance Contributions3.3 Atmospheric Diffuse Transmittance3.4 Simulated and Satellite-Measured TOA 478479479Simulation and Inversion of Satellite ThermalMeasurementsChristopher J. Merchant and Owen Embury1.2.3.4.5.6.7.8.9.5.IntroductionRadiative Transfer Simulation for Thermal Remote SensingPropagation of Thermal Radiation through Clear SkySimulation of Interaction with Aerosol and CloudSimulation of Surface Emission and ReflectionUse of Simulations in Thermal Image Classification(Cloud Detection)Use of Simulations in Geophysical Inversion (Retrieval)Use of Simulations in Uncertainty 9516521523In Situ Measurement StrategiesGiuseppe Zibordi and Craig J. Donlon5.1.Requirements and Strategies for In situ Radiometry inSupport of Satellite Ocean ColorGiuseppe Zibordi and Kenneth J. Voss1.2.3.IntroductionOverview of Past and Current Field-Related RadiometricActivities2.1 Field Measurements2.2 Intercomparisons2.3 Data RepositoriesRequirements and Strategies for Future Satellite Ocean-ColorMissions3.1 Field Measurements for System Vicarious Calibration3.2 Field Measurements for the Validation of Satellite DataProducts3.3 Field Measurements for Bio-Optical Modeling3.4 Protocols Revision and Consolidation3.5 Calibration and Characterization of Field Radiometers3.6 Data Reduction, Quality Control, and (re)Processing532533533538542543544546547547547548

xii Contents4.5.2.3.7 Accuracy Tailored to Applications3.8 Archival and Access3.9 Intercomparisons to Secure Accuracy and BestPractice3.10 Standardization and Networking3.11 Development and ImplementationSummary and Way ForwardReferences549549549550551551552Strategies for the Laboratory and Field Deploymentof Ship-Borne Fiducial Reference Thermal InfraredRadiometers in Support of Satellite-Derived SeaSurface Temperature Climate Data RecordsCraig J. Donlon, Peter J. Minnett, Nigel Fox, and Werenfrid Wimmer1.2.3.4.5.6.6.Introduction558Fiducial Reference Measurements for SST CDRsand Uncertainty Budgets5592.1 FRM TIR Ship-Borne Radiometer Network5622.2 The Importance of Uncertainty Budgets563Laboratory Intercalibration Experiments for FRMShip-Borne Radiometers585Ship-Borne Radiometer Field Intercomparison Exercises590Protocols to Maintain the SI Traceability of FRM Ship-BorneTIR Radiometers for Satellite SST Validation5955.1 Definition of Measurement Methodology5955.2 Definition of Laboratory Calibration and VerificationMethodology and Procedures5955.3 Predeployment Calibration Verification5965.4 Postdeployment Calibration Verification5965.5 Uncertainty Budgets5965.6 Improving Traceability of Calibration and VerificationMeasurements5965.7 Accessibility to Documentation5975.8 Archiving of Data5975.9 Periodic Consolidation and Update of Calibrationand Verification Procedures598Summary and Future ssment of Satellite Products for ClimateApplicationsFrédéric Mélin and Gary K. Corlett

Contents6.1.xiiiAssessment of Satellite Ocean Colour Radiometryand Derived Geophysical ProductsFrédéric Mélin and Bryan A. Franz1.2.3.4.6.2.IntroductionValidation of Satellite Products2.1 Validation Protocol2.2 Validation Metrics2.3 Analysis of Validation Results2.4 Model-Based Approaches to Uncertainty Analysisand Error PropagationComparison of Cross-Mission Data Products3.1 Band Shift Correction3.2 Point-by-Point Comparison3.3 Analysis of Time Series3.4 Climate Signal 610612614618621622624626628631632632Assessment of Long-Term Satellite Derived SeaSurface Temperature RecordsGary K. Corlett, Christopher J. Merchant, Peter J. Minnettand Craig J. Donlon1.2.3.4.IndexIntroductionBackground2.1 Assessment of Top of Atmosphere BrightnessTemperatures2.2 Validation Uncertainty Budget2.3 Reference Data SourcesAssessment of Long-Term SST Datasets3.1 Example 1: Long-Term SST Data Record Assessment3.2 Example 2: Long-Term Component Assessment3.3 Quantitative Metrics3.4 Demonstrating Traceability to SI3.5 Stability3.6 Validation of UncertaintiesSummary and 57659663669673674679

This page intentionally left blank

List of ContributorsSean W. Bailey, Ocean Biology Processing Group, NASA Goddard Space FlightCenter, Greenbelt, MD, USA; FutureTech Corporation, Greenbelt, MD, USAIan Barton, CSIRO Marine and Atmospheric Research, Hobart, Tasmania, AustraliaBarbara Bulgarelli, European Commission, Joint Research Centre, Ispra, ItalyKenneth S. Casey, NOAA Oceanographic Data Center, Silver Spring, MD, USAGary K. Corlett, Department of Physics and Astronomy, University of Leicester,Leicester, UKDavide D’Alimonte, Centre for Marine and Environmental Research, University ofAlgarve, Faro, PortugalCraig J. Donlon, European Space Agency/ESTEC, Noordwijk, The NetherlandsMark D. Dowell, European Commission, Joint Research Centre, Ispra, Varese, ItalyOwen Embury, Department of Meteorology, University of Reading, Reading, UKWilliam Emery, Aerospace Engineering Sciences Department, University of Colorado,Boulder, CO, USARobert E. Eplee, Jr, Ocean Biology Processing Group, NASA Goddard Space FlightCenter, Greenbelt, MD, USA; Science Applications International Corporation,Beltsville, MD, USANigel Fox, National Physical Laboratory (NPL), Teddington, Middlesex, UKBryan A. Franz, NASA, Goddard Space Flight Center, Greenbelt, MD, USASimon Hook, NASA Jet Propulsion Laboratory, California Institute of Technology,Pasadena, CA, USAAndrew Jessup, Applied Physics Laboratory, University of Washington, Seattle, WA,USAB. Carol Johnson, Sensor Science Division, National Institute of Standards andTechnology, Gaithersburg, MD, USACharles R. McClain, NASA Goddard Space Flight Center, Greenbelt, MD, USAGerhard Meister, NASA Goddard Space Flight Center, Greenbelt, MD, USAFrédéric Mélin, European Commission, Joint Research Centre, Ispra, ItalyChristopher J. Merchant, Department of Meteorology, University of Reading,Reading, UKPeter J. Minnett, Meteorology & Physical Oceanography, Rosenstiel School of Marineand Atmospheric Science, University of Miami, Miami, FL, USAxv

xvi List of ContributorsBryan Monosmith, NASA Goddard Space Flight Center, Greenbelt, MD, USATimothy J. Nightingale, RAL Space STFC Rutherford Appleton Laboratory, Harwell,Oxford, Didcot, UKAlbert C. Parr, Sensor Science Division, National Institute of Standards andTechnology, Gaithersburg, MD, USA; Space Dynamics Laboratory, Utah StateUniversity, Logan, UT, USAJoseph P. Rice, Sensor Science Division, National Institute of Standards andTechnology, Gaithersburg, MD, USADavid L. Smith, RAL Space, Science and Technologies Facilities Council, HarwellOxford, Oxford, UKKenneth J. Voss, Physics Department, University of Miami, Coral Gables, FL, USAMenghua Wang, NOAA Center for Satellite Applications and Research, College Park,Maryland, USAWerenfrid Wimmer, Ocean and Earth Science, University of Southampton, EuropeanWay, Southampton, UKJames A. Yoder, Woods Hole Oceanographic Institution, Woods Hole, MA, USAHoward Yoon, Sensor Science Division, National Institute of Standards andTechnology, Gaithersburg, MD, USAChristopher Zappa, Ocean and Climate Physics Division, Lamont-Doherty EarthObservatory of Columbia University, Palisades, NY, USAGiuseppe Zibordi, European Commission, Joint Research Centre, Ispra, Italy

ForewordThe view of the Earth from space has become an icon of our time. First seenthrough the spectacular photographs taken by the Apollo astronauts, it showedus the Earth, which had seemed limitless to our ancestors, to be small andfragile, a vulnerable oasis for life in the vast vacuum of space. If no otherbenefit had ever come from the space age, those pictures alone would havejustified the effort to leave the Earth, for they changed our view of the planetforever.But those photographs, it turned out, were just the beginning of what canbe learned by looking down on the Earth from space. Only from the vantagepoint in orbit above the planet can we really get the whole picturedseeing far enough to give a truly global view, but also with sufficient detail toget down to the local scale. Since the time of the early satellites, the numberand sophistication of remote sensing measurements has grown hugely, so thatwe now have a nearly continuous view of the Earth from space that is highlyresolved in area, time, and wavelength. Terabytes of data now flood down fromour satellites, documenting the view of Earth from space in unprecedenteddetail. If only we can make sense of it all, it offers the chance to understandour home planet as never before, allowing us to see how every locality fits intothe whole picture. For the oceans in particular, this is a transformative view,because over large areas they are only rarely visited by people or instrumentsto make in situ observations. Much of our uncertainty over prediction ofseasonal and longer term changes originates in this ignorance of the oceans,which are the main storage for heat in the climate system and the site of halfthe world’s biological productivity.This book describes the latest knowledge and techniques in visible andinfrared radiometry from satellites. These regions of the electromagneticspectrum can be used to give important information

2. TIR Measurement Theory 311 2.1 General Considerations 311 2.2 SSTskin Ship-Borne Radiometer Measurement Challenges 317 2.3 Practical Measurement of SSTskin from a Ship-Borne Radiometer 320 3. TIR Field Radiometer Design 321 3.1 TIR Detectors 328 3.2 TIR Radiometer Spectral Definition 336 3.3 Beam Shaping and Steering 341 3.4 Thermal Control .

Related Documents:

FLIR LEPTON with Radiometry Datasheet Information on this page is subject to change without notice. 500-0771-01-09, Lepton with Radiometry Datasheet, Rev: 110 Document Number: 500-0763-01-09 Rev 110 General Description Lepton with Radiometry is a complete long-wave infrared (LWIR) camera module designed

II. BASIC CONCEPTS OF OPTICAL RADIOMETRY The radiometric development of the Friis transmission equation relies on the concepts of radiance and throughput, both central to radiometry.2,3 As indicated in Table I, radi-ance is the power incident on (emitted from) a surface per unit area, from (into) a given solid angle, with units of W/(m2 sr .

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill använda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-märkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

2. The ocean and life in the ocean shape the features of Earth. 3. The ocean is a major influence on weather and climate. 4. The ocean makes Earth habitable. 5. The ocean supports a great diversity of life and ecosystems. 6. The ocean and humans are inextricably interconnected. 7. The