The Impact Of Automated Transport On The Role, Operations .

3y ago
48 Views
2 Downloads
3.10 MB
143 Pages
Last View : 24d ago
Last Download : 3m ago
Upload by : Pierre Damon
Transcription

The impact of automated transporton the role, operations and costs ofroad operators and authorities inFinlandEU-EIP Activity 4.2Facilitating automated drivingRisto Kulmala, Juhani Jääskeläinen, Seppo PakarinenTraficomin tutkimuksiaja selvityksiäTraficomsforskningsrapporteroch utredningarTraficom Research Reports6/2019

Traficom Research Reports 6/2019Julkaisun päivämäärä12.3.2019Julkaisun nimiThe impact of automated transport on the role, operations and costs of road operators andauthorities in Finland (Automaattiajoneuvojen vaikutukset tienpitäjien ja viranomaisten rooliin,toimintaan ja kustannuksiin Suomessa)TekijätRisto Kulmala, Juhani Jääskeläinen, Seppo PakarinenToimeksiantaja ja asettamispäivämääräLiikennevirasto ja Trafi 22.3.2018Julkaisusarjan nimi ja numeroISSN verkkojulkaisu) 2342-0294Traficomin tutkimuksia ja selvityksiä ISBN (verkkojulkaisu) , tieliikenne, automaattiauto, vaikutus, tienpitäjä. viranomainen, rooli,kustannukset, toiminta, SuomiTiivistelmäTämä kansallinen tutkimus tehtiin osana työpakettia ”Facilitating automated driving” EU:n CEFohjelman hankkeessa EU EIP keskittyen viiteen korkean tason automaattiajamisensovellukseen: moottoritieautopilotti, automaattikuorma-autot niille osoitetuilla väylillä,automaattibussit sekaliikenteessä, robottitaksit sekä automaattiset kunnossapito- jatietyöajoneuvot.Raportti kuvaa automaattiajamiseen liittyvät säädöspuitteet ja viranomaisstrategiat eri puolillamaailmaa ja etenkin Euroopassa. Tutkimus arvioi tarkasteltujen sovellusten osuudet uusistaautoista, koko autokannasta sekä ajetuista liikennesuoritteista Suomessa vuoteen 2040.Tutkimus tuotti ehdotuksen automaattiajamisen suunniteltujen toimintaympäristöjen(Operational Design Domain, ODD) ominaisuuksien luokitukseksi ja sovelsi sitä valittuihinsovelluksiin. Tutkimus arvioi myös toimintaympäristöjen toteutuksen, ylläpidon ja käytönaiheuttamat kustannukset vuoteen 2040 mennessä. Lisäksi tarkasteltiin korkean tasonautomaattiajamisen vaikutuksia autonomistukseen, liikkumiseen, tieverkkoon, tienominaisuuksiin ja tiensuunnitteluun, liikenteenhallintaan, liikenteen turvallisuuteen,sujuvuuteen ja ympäristövaikutuksiin sekä talouteen ja työllisyyteen. Lopuksi raportti käsitteleevaikutuksia tienpitäjien ja viranomaisten rooliin ja vastuisiin.Tutkimus perustui kirjallisuuteen, kirjoituspöytäanalyyseihin, asiantuntijahaastatteluihin jakahteen asiantuntijatyöpajaan, vuoden 2018 aikana pidettyjen alan kongressien ja tapahtumiensekä käynnissä olevien tutkimusten tuloksiin.YhteyshenkilöRaportin kieliLuottamuksellisuusKokonaissivumääräAlina Koskela/Eetu ikenne- ja viestintävirasto Traficom, EU EIP Liikenne- ja viestintävirasto Traficom

Traficom Research Reports 6/2019Date of publication12.3.2019Title of publicationThe impact of automated transport on the role, operations and costs of road operators andauthorities in FinlandAuthor(s)Risto Kulmala, Juhani Jääskeläinen, Seppo PakarinenCommissioned by, dateFinnish Transport Agency and Finnish Transport Safety Agency 22 March 2018Publication series and numberTraficom Research Reports 6/2019ISSN (online) 2342-0294ISBN (online) 978-952-311-306-0KeywordsAutomated driving, road vehicle, automation, impact, road operator, authority, role, cost,operation, FinlandAbstractThis national study was a part of the subactivity ”Facilitating automated driving” of the EU EIPproject funded by the CEF programme of the EU, and focused on five use cases of highlyautomated driving: Highway autopilot, highly automated freight vehicles on dedicated roads,automated public rapid transit/shuttles in mixed traffic, robot taxis, and driverless maintenanceand road works vehicles.The report describes the automated driving related legal frameworks and the strategies ofregulatory authorities globally, and especially in Europe. The study provides a forecast for thepenetration of the chosen functionalities and use cases of automated driving in new vehicles,vehicle fleets, and vehicle kilometres driven in Finland up to 2040. A systematic classificationfor the features of operational design domains (ODDs) is proposed, and then used for thechosen functionalities of automated driving. The report also estimates the costs associated withthe implementation, maintenance and operation of the chosen ODDs up to 2040. In addition, itdiscusses the impacts of highly automated driving on vehicle ownership, mobility, road network,road properties and planning, traffic management, road safety, efficiency, environment,economy and employment. Finally the report addresses the impacts on the role andresponsibilities of the road operators and authorities.The study was carried out using literature and desktop analysis, expert interviews and twoexpert workshops, building on the results of various 2018 congresses and events in automateddriving as well as ongoing research projects.Confidence statusPages, totalContact personLanguageDistributed byPublished byFinnish Transport and CommunicationsAgency Traficom, EU EIPFinnish Transport and Communications AgencyTraficomAlina Koskela/Eetu Pilli-SihvolaEnglishPublic137

Traficom Research Reports 6/2019PREFACEThis is a pathfinder study for the Finnish Transport Agency and Finnish TransportSafety Agency. The study will provide background national information from Finlandfor the use of the Sub-Activity 4.2 ”Facilitating automated driving” of the EU-EIPproject funded by the CEF-programme of the EU, in particular its Task 2 ”Impacts andeconomic feasibility of automated driving” and Task 3 ”Roadmap and action plan”.The study was carried out using desktop analysis, expert interviews and twoworkshops (the first with the launch of the study focusing on regulatory framework,fleet penetration and operational design domain of automated vehicles, and thesecond for the validation of the results), and building on the results of various 2018congresses and events in automated driving (such as the CAD Symposium in April2018, AVS 2018 in July 2018 ITS World Congress in September 2018 and the SIPADUS in November 2018).The study was supervised by a national steering group including Asta Tuominen andPetri Antola from Finnish Transport agency, Alina Koskela, Anna Schirokoff, Eetu PilliSihvola and Aki Tilli from Finnish Transport Safety Agency, Maria Rautavirta from theMinistry of Transport and Communications, Johanna Nyberg from the City of Espoo,Mika Kulmala from the Ciity of Tampere, Harri Santamala from Sensible4, and TimoSaarenketo from Roadscanners.The study was carried out by Risto Kulmala from Traficon, Juhani Jääskeläinen fromMHR Consulting, and Seppo Pakarinen from Ramboll.Helsinki, 25 January 2019Alina KoskelaSpecial AdviserFinnish Transport and Communications Agency Traficom

Traficom Research Reports 6/2019Table of contentsAbbreviations . 11Introduction . 42Legal frameworks and strategies of regulatory authorities . 62.1General . 62.1.1Automation – the future of transport . 62.1.2The need for coherent legal framework . 72.1.3Connected automated driving (CAD) . 72.1.4Regulatory aspects . 82.1.5Focus of this study . 82.2The EU legal frameworks and regulations . 82.2.1General . 82.2.2Vehicle approval regulation, vehicle certification andmaintenance . 92.2.3Vienna convention and its impact on the introduction ofautomated vehicles. 122.2.4Road safety, driver behavior and driving license. 132.2.5Traffic rules and large-scale testing on open roads . 152.2.6Liability, insurance and defects . 162.2.7Infrastructure and requirements to road operators . 172.2.8Connected vehicles, communication and data security . 202.2.9Data ownership and privacy . 222.3The global legal frameworks and regulations . 252.3.1United States automated driving regulation . 252.3.2Japan . 292.3.3China. 292.3.4South Korea . 302.3.5Singapore . 312.4The legal frameworks and strategies of the Member States . 312.4.1The EU and national regulatory frameworks . 312.4.2Driver in the vehicle – the key issue . 322.4.3EU member states approach to testing of automated vehicles . 322.5The strategies and plans of the cities and regions . 392.5.1Tampere . 392.5.2Berlin . 392.5.3Stockholm . 402.5.4MRDH . 402.5.5Saclay . 403Fleet3.13.23.33.44penetration of automated vehicles . 42Timetable for the commercial introductions by manufacturers . 42Estimation of percentage of new vehicles 2019-2040 . 46Estimation of split between privately or collectively owned or usedvehicle . 46Estimated percentage of the total vehicle fleet and driven kilometers . 47Operational design domains . 514.1General on operational design domain. 514.2Possible ODD for each chosen functionality . 544.2.1Highway autopilot including highway convoy (L4) . 554.2.2Highly automated (freight) vehicles on dedicated roads (l4) . 574.2.3Automated prt/shuttles in mixed traffic (L4) . 594.2.4Commercial driverless vehicles (L4) as taxi services . 604.2.5Driverless maintenance and road works vehicles (L4) . 624.3The need and potential implementation of remote monitoring and controlcentres . 634.4ODDs provided by the current infrastructure for each functionality . 654.5Estimate of the ODD coverage in 2040 . 66

Traficom Research Reports 6/20195Costs. 685.1Preliminary plan for the implementation of the ODDs . 685.2Estimated costs for each ODD . 715.3Estimate of the total ODD cost 2019-2040 . 726Other impacts of automated driving . 756.1Impacts on vehicle ownership and mobility . 756.2Impacts on the road network and road properties, and possibleimpacts on road planning . 796.2.1Pedestrian and bicyclist crossings and facilities . 796.2.2Junctions. 806.2.3Signing and markings . 816.2.4Lane widths and pavement . 826.2.5Road and bridge structures . 846.2.6Barriers . 856.2.7Shoulders . 856.2.8Increasing public transport mode share . 866.2.9Lane allocation . 866.2.10 Kerbside Management . 876.2.11 Parking . 876.3Impact on traffic management . 926.3.1Cooperative and interactive traffic management . 926.3.2Road works management . 946.3.3ODD management . 956.4Impact on the transport policy goals safety, efficiency and theenvironment. 966.4.1Safety . 966.4.2Efficiency . 996.4.3Environment . 1026.5Impact on economy and employment . 1046.5.1Economy . 1046.5.2Employment and skills . 1077Impacts on the role and responsibilities of the road operators andauthorities . 1097.1Road Operators – national road network. 1097.1.1The traditional role and responsibilities . 1097.1.2Impact of the introduction of connected automated driving. 1117.2Road Operators – street network of cities . 1157.3Bodies of Traffic Management . 1187.4Regulatory Authorities . 1208Conclusions . 1249References . 127

Traficom Research Reports ional3GPP3G (3rd Generation) Partnership Project5GAA5G Automotive AssociationACCAdaptive Cruise ControlACSFAutomatically Commanded Steering FunctionsADASAdvanced Driver Assistance SystemADSAutomated Driving SystemAIArtificial IntelligenceARTAutomated Road TransportAVAutomated VehicleCACCCooperative Adaptive Cruise ControlCADConnected (and) Automated DrivingCEDRConference of European Directors of RoadCEFConnecting Europe FacilityC-ITSCooperative ITSCMVSSCanada Motor Vehicle Safety StandardsDDTDynamic Driving TaskDGNSSDifferential GNSS (Global Navigation Satellite System)DOTDepartment of TransportationeCallAutomatic emergency call (for vehicles)EEAEuropean Economic AreaERTRACEuropean Road Transport Research Advisory CouncilESCElectronic Stability ControlETSI-ITS G5Standardised short-range communications on the 5.9 GHz bandEU EIPEuropean ITS Platform (CEF-supported project 2015-2020)FMVSSFederal Motor Vehicle Safety Standards (USA)FOTField Operational TestFTAFinnish Transport AgencyFTIAFinnish Transport Infrastructure AgencyGDPRGeneral Data Protection RegulationGEAR 2030High Level Group on the Competitiveness and Sustainable Growth of theAutomotive Industry in the European UnionGISGeographical Information System1

Traficom Research Reports 6/2019GNSSGlobal Navigation Satellite SystemGPSGlobal Positioning SystemHAHSHighly Automated Hybrid SystemHDHigh-DefinitionHMIHuman Machine Interface / InteractionHOVHigh Occupancy VehicleHTCHuman Type CommunicationsICTInformation and Communication TechnologiesIoTInternet of ThingsITInformation TechnologiesISAIntelligent Speed AdaptationL4Level 4 (in the SAE road vehicle automation levels)LiDARLight Detection And RangingLoSLevel of ServiceLTELong-Term Evolution (4G standard)MaaSMobility as a ServiceMLITMinistry of Land, Infrastructure, Transport and Tourism (Japan)MSDMinimum Set of DataMTCMachine Type CommunicationsNGONon-Governmental OrganisationNHTSANational Highway Traffic Safety Administration (USA)NRANational Road AuthorityODDOperational Design DomainOEDRObject and Event Detection and ResponseOEMOriginal Equipment Manufacturer (Vehicle manufacturer)PLDProduct Liability DirectivePOLISA network of European cities and regions for transport innovationPRTPublic Rapid TransitPU/DOPick-Up/Drop-Off (of passengers)SAESociety of Automotive EngineersTEN-TTrans-European Network - TransportTMTraffic ManagementToRTerms of ReferenceTSRTraffic Sign Recognition2

Traficom Research Reports 6/2019UITPUnion Internationale des Transports Publics (International Association of PublicTransport)UNECEUnited Nations Economic Commission for EuropeV2IVehicle to Infrastructure communicationV2VVehicle to Vehicle communicationV2XVehicle to anything communicationVKTVehicle Kilometres TravelledWEFWorld Economic ForumWGWorking GroupWPWorking PartyWVTAWhole Vehicle Type-Approval system3

Traficom Research Reports 6/20191IntroductionThe sub-activity 4.2 ‘Facilitating automated driving’ of EU ITS Platform has a scopeto prepare road authorities and operators to make decisions on facilitatingautomated driving and automating their own core business.The objective of this pathfinder study is to assess the following questions from theperspective of road operators and road authorities: What will be the extent of penetration and use of the Level 3 and Level 4automated functionalities (platooning, motorway driving, inter-urban driving,urban driving, automated public transport, robot taxis) in the vehicle fleets inFinland and Europe up the year 2040?What will be the requirements for the operational design domain (ODD)stipulated by these functionalities (physical infrastructure, digital infrastructure)taking into account also the possible discontinuities in ODD, for example transferof control to remote operations centre?What are going to be the investment, maintenance and operational costs forexample per road/street km to the road operators, and what will be the mostprobable implementation roadmap (when, where, what) up to the year 2040?What are the other possible operational and cost impacts of the implementationof this functionality, and when they will be realised up to the year 2040?What will be the impact of the implementation, maintenance and use of thisfunctionality on the roles and tasks of road operators and road authorities up tothe year 2040?Due to restrictions in time and budget, the study focuses on five automation usecases only. The selection was made from a tentative list of automation use caseswith a potential of being commercially available in Finland in 2030. See ERTRAC(2017) for most use case definitions. This tentative

automated driving: Highway autopilot, highly automated freight vehicles on dedicated roads, automated public rapid transit/shuttles in mixed traffic, robot taxis, and driverless maintenance and road works vehicles. The report describes the automated driving

Related Documents:

May 02, 2018 · D. Program Evaluation ͟The organization has provided a description of the framework for how each program will be evaluated. The framework should include all the elements below: ͟The evaluation methods are cost-effective for the organization ͟Quantitative and qualitative data is being collected (at Basics tier, data collection must have begun)

Silat is a combative art of self-defense and survival rooted from Matay archipelago. It was traced at thé early of Langkasuka Kingdom (2nd century CE) till thé reign of Melaka (Malaysia) Sultanate era (13th century). Silat has now evolved to become part of social culture and tradition with thé appearance of a fine physical and spiritual .

̶The leading indicator of employee engagement is based on the quality of the relationship between employee and supervisor Empower your managers! ̶Help them understand the impact on the organization ̶Share important changes, plan options, tasks, and deadlines ̶Provide key messages and talking points ̶Prepare them to answer employee questions

Dr. Sunita Bharatwal** Dr. Pawan Garga*** Abstract Customer satisfaction is derived from thè functionalities and values, a product or Service can provide. The current study aims to segregate thè dimensions of ordine Service quality and gather insights on its impact on web shopping. The trends of purchases have

On an exceptional basis, Member States may request UNESCO to provide thé candidates with access to thé platform so they can complète thé form by themselves. Thèse requests must be addressed to esd rize unesco. or by 15 A ril 2021 UNESCO will provide thé nomineewith accessto thé platform via their émail address.

Chính Văn.- Còn đức Thế tôn thì tuệ giác cực kỳ trong sạch 8: hiện hành bất nhị 9, đạt đến vô tướng 10, đứng vào chỗ đứng của các đức Thế tôn 11, thể hiện tính bình đẳng của các Ngài, đến chỗ không còn chướng ngại 12, giáo pháp không thể khuynh đảo, tâm thức không bị cản trở, cái được

Food outlets which focused on food quality, Service quality, environment and price factors, are thè valuable factors for food outlets to increase thè satisfaction level of customers and it will create a positive impact through word ofmouth. Keyword : Customer satisfaction, food quality, Service quality, physical environment off ood outlets .

Le genou de Lucy. Odile Jacob. 1999. Coppens Y. Pré-textes. L’homme préhistorique en morceaux. Eds Odile Jacob. 2011. Costentin J., Delaveau P. Café, thé, chocolat, les bons effets sur le cerveau et pour le corps. Editions Odile Jacob. 2010. Crawford M., Marsh D. The driving force : food in human evolution and the future.