PHASE II REPORT (FINAL): PROJECT DEFINITION OPTIONS

3y ago
27 Views
2 Downloads
7.32 MB
108 Pages
Last View : 15d ago
Last Download : 3m ago
Upload by : Maxton Kershaw
Transcription

OSHPC BARKI TOJIKTECHNO-ECONOMIC ASSESSMENT STUDYFOR ROGUN HYDROELECTRIC CONSTRUCTION PROJECTPHASE II REPORT (FINAL):PROJECT DEFINITION OPTIONSVOLUME 3: ENGINEERING AND DESIGNChapter 5: Reservoir Operation Study

TEAS for Rogun HPP Construction ProjectPhase II - Vol. 3 – Chap.5 – Reservoir operation studyTECHNO-ECONOMIC ASSESSMENT STUDYFOR ROGUN HYDROELECTRIC CONSTRUCTION PROJECTPHASE II: PROJECT DEFINITION OPTIONSVolume 3: Engineering and designChapter 5: Reservoir operation studyAugust 2014Report No. P.002378 R P40 rev. EFinal after 5th 4FinalO.ClaveA.LaraN.Sans06/11/2013Comments from WB, constructionschedule updatedO.ClaveA.LaraN.SansB16/07/2013Comments from WB and GoTincludedO.ClaveA.LaraN.SansA29/03/2013First EmissionO.ClaveA.LaraN.SansRevisionDateSubject of 8 RP 40page 1 /107

TEAS for Rogun HPP Construction ProjectPhase II - Vol. 3 – Chap.5 – Reservoir operation studyCONTENTSACRONYMS . 91OBJECTIVES AND CONTEXT . 102DATA AND ASSUMPTIONS . 103452.1Sources . 102.2Vakhsh Cascade model . 112.3Interstate water allocation legal framework . 122.4Inflows . 142.5Water withdrawals from Vakhsh River in Tajikistan . 162.6Reservoirs characteristics . 172.7Sedimentation . 202.8Hydropower plants characteristics . 232.9Rogun installed capacity . 252.10Rogun Early impounding. 252.10.1Schedule . 252.10.2Temporary units characteristics . 26METHODOLOGY . 293.1General . 293.2Calculation algorithm for reservoir simulation . 313.3Energy variable . 323.4Nurek operation understanding . 333.5Model calibration. 353.6Nurek operation improvement . 413.7Rogun and Nurek coupled operation. 423.8Rogun and Nurek coupled operation during Rogun filling . 43SCENARIOS STUDIED . 434.1Simulation scenario cases for normal operation . 434.2Simulation scenario for Rogun reservoir filling . 444.3Recapitulative chart . 44SIMULATION RESULTS FOR NORMAL OPERATION . 455.1Without Rogun . 455.1.1Reservoir rule curve . 455.1.2Results scenario (a) . 475.1.3Results scenario (b) . 515.2With Rogun Base line scenarios (b) . 545.2.1Optimized coupled operation of Rogun and Nurek. 54P.002378 RP 40page 2 /107

TEAS for Rogun HPP Construction ProjectPhase II - Vol. 3 – Chap.5 – Reservoir operation study5.2.2FSL 1290 masl. 555.2.3FSL 1255 masl. 605.2.4FSL 1220 masl. 655.35.3.1FSL 1290 masl. 705.3.2FSL 1255 masl. 755.3.3FSL 1220 masl. 795.4Base line scenario with sedimentation . 835.4.1General . 835.4.2Without Rogun . 845.4.3With Rogun FSL 1290 masl . 855.4.4With Rogun FSL 1255 masl . 875.4.5With Rogun FSL 1220 masl . 895.56Current status extrapolated with Rogun (a) . 70Synthesis and comparison of results. 905.5.1Energy production . 905.5.2Discharge at the downstream point of the Vakhsh cascade . 925.5.3Other comments . 94SIMULATION RESULTS – FILLING PERIOD . 946.1Hydrological situation . 946.2FSL 1290 masl . 946.3FSL 1255 masl . 976.4FSL 1220 masl . 1006.5Comments on triggered seismicity . 1037CONCLUSIONS . 1048APPENDICES . 107P.002378 RP 40page 3 /107

TEAS for Rogun HPP Construction ProjectPhase II - Vol. 3 – Chap.5 – Reservoir operation studyFIGURESFigure 2.1 : Vakhsh cascade scheme . 12Figure 2.2 : HPI inflows and Nurek outflows . 15Figure 2.3 : Simulation period yearly inflows . 16Figure 2.4 : Computed reservoir level versus historical Nurek reservoir level . 19Figure 2.5 : Rogun and Nurek reservoir capacity vs elevation . 20Figure 2.6 : Rogun reservoir storage capacity FSL 1290 masl- Impact of sedimentation . 21Figure 2.7 : Rogun reservoir storage capacity FSL 1255 masl- Impact of sedimentation . 21Figure 2.8 : Rogun reservoir storage capacity FSL 1220 masl- Impact of sedimentation . 22Figure 2.9 : Nurek reservoir storage capacity.- Impact of sedimentation without Rogun . 23Figure 2.10 : Dam rise schedule - FSL 1290, 1255 and 1220 masl . 26Figure 2.11 : Rogun units - FSL 1290 masl . 27Figure 2.12 : Rogun units - FSL 1255 masl . 28Figure 2.13 : Rogun units - FSL 1220 masl . 28Figure 3.1 : Calculation algorithm . 32Figure 3.2 : Firm and secondary energy definition. 32Figure 3.3 : Historical Nurek outfllow and reservoir level (1991-2008) . 34Figure 3.4 : Historical Nurek energy production (1991-2008) . 34Figure 3.5 : Nurek outflows versus Nurek inflows . 35Figure 3.6 : Nurek Reservoir level - Comparison between historical data and simulation results. 36Figure 3.7 : Comparison of historical and simulated Nurek outflows . 37Figure 3.8 : Nurek Outflows - Comparison between historical data and simulation results . 37Figure 3.9 : Cross plot of simulated and historical discharge downstream of Nurek . 38Figure 3.10 : Comparison of historical and simulated Nurek monthly energy . 38Figure 3.11 : Nurek Outflows duration curve - Comparison between historical data and simulationresults . 39Figure 3.12 : Illustrative explanation of the "regulation ratio" . 43Figure 5.1 : Nurek reservoir level rule curve - Calibrated and improved . 46Figure 5.2 : Nurek E95% versus Minimum Operating level . 46Figure 5.3 : Without Rogun (a) - Comparison of historical and simulated discharge downstream ofNurek (1991-2008) . 47Figure 5.4 : Cross plot of simulated (Without Rogun-Scenario a) and historical dischargedownstream of Nurek . 48Figure 5.5 : Without Rogun (a)- Comparison of historical and simulated energy produced. 48Figure 5.6 : Average monthly energy produced by the cascade along the year . 49Figure 5.7 : Without Rogun (a) - Nurek monthly energy distribution . 50Figure 5.8 : Without Rogun (a) - Vakhsh cascade monthly energy distribution . 50P.002378 RP 40page 4 /107

TEAS for Rogun HPP Construction ProjectPhase II - Vol. 3 – Chap.5 – Reservoir operation studyFigure 5.9 : Without Rogun scenario (a)- Discharge at the downstream of the cascade . 51Figure 5.10 : Without Rogun scenario (a) – Distribution of the discharge at the downstream of thecascade . 51Figure 5.11 : Without Rogun (b) - Average monthly energy produced by the cascade . 52Figure 5.12 : Without Rogun (b) - Nurek monthly energy distribution . 53Figure 5.13 : Without Rogun (b) - Vakhsh cascade monthly energy distribution . 53Figure 5.14 : Without Rogun scenario (b)- Discharge at the downstream of the cascade . 54Figure 5.15 : Without Rogun scenario (b) – Distribution of the discharge at the downstream of thecascade . 54Figure 5.16 : Optimization of Rogun and Nurek coupled operation . 55Figure 5.17 : Scenario (b-1290) - Average Rogun and Nurek reservoir level. 55Figure 5.18 : Average monthly energy produced by the cascade along the year Scenario (b-1290)Pinst 3600 MW . 57Figure 5.19 : Rogun monthly energy distribution - Scenario (b-1290) Pinst 3600 MW . 58Figure 5.20 : Nurek monthly energy distribution - Scenario (b-1290) Pinst 3600 MW . 58Figure 5.21 : Vakhsh cascade monthly energy distribution - Scenario (b-1290) Pinst 3600 MW59Figure 5.22 : Scenario (b-1290) - Discharge at the downstream of the cascade . 60Figure 5.23 : Scenario (b-1290) – Distribution of the discharge at the downstream of the cascade. 60Figure 5.24 : Scenario (b-1255) - Average Rogun and Nurek reservoir level. 61Figure 5.25 : Average monthly energy produced by the cascade along the year Scenario (b-1255)Pinst 3200 MW . 62Figure 5.26 : Rogun monthly energy distribution - Scenario (b-1255) Pinst 3200 MW . 63Figure 5.27 : Nurek monthly energy distribution - Scenario (b-1255) Pinst 3200 MW . 63Figure 5.28 : Vakhsh cascade monthly energy distribution - Scenario (b-1255) Pinst 3200 MW64Figure 5.29 : Scenario (b-1255) - Discharge at the downstream of the cascade . 65Figure 5.30 : Scenario (b-1255) – Distribution of the discharge at the downstream of the cascade. 65Figure 5.31 : Scenario (b-1220) - Average Rogun and Nurek reservoir level. 66Figure 5.32 : Average monthly energy produced by the cascade along the year Scenario (b-1220)Pinst 2800 MW . 67Figure 5.33 : Rogun monthly energy distribution - Scenario (b-1220) Pinst 2800 MW . 68Figure 5.34 : Nurek monthly energy distribution - Scenario (b-1220) Pinst 2800 MW . 68Figure 5.35 : Vakhsh cascade monthly energy distribution - Scenario (b-1220) Pinst 2800 MW69Figure 5.36 : Scenario (b-1220) - Discharge at the downstream of the cascade . 70Figure 5.37 : Scenario (b-1220) – Distribution of the discharge at the downstream of the cascade. 70Figure 5.38 : Scenario (a-1290) - Average Rogun and Nurek reservoir level. 71P.002378 RP 40page 5 /107

TEAS for Rogun HPP Construction ProjectPhase II - Vol. 3 – Chap.5 – Reservoir operation studyFigure 5.39 : Average monthly energy produced by the cascade along the year Scenario (a-1290)Pinst 3600 MW . 72Figure 5.40 : Rogun monthly energy distribution - Scenario (a-1290) Pinst 3600 MW . 73Figure 5.41 : Nurek monthly energy distribution - Scenario (a-1290) Pinst 3600 MW . 73Figure 5.42 : Vakhsh cascade monthly energy distribution - Scenario (a-1290) Pinst 3600 MW74Figure 5.43 : Scenario (a-1290) - Discharge at the downstream of the cascade . 74Figure 5.44 : Scenario (a-1290) – Distribution of the discharge at the downstream of the cascade. 75Figure 5.45 : Scenario (a-1255) - Average Rogun and Nurek reservoir level. 75Figure 5.46 : Average monthly energy produced by the cascade along the year Scenario (a-1255)Pinst 3200 MW . 76Figure 5.47 : Rogun monthly energy distribution - Scenario (a-1255) Pinst 3200 MW . 77Figure 5.48 : Nurek monthly energy distribution - Scenario (a-1255) Pinst 3200 MW . 77Figure 5.49 : Vakhsh cascade monthly energy distribution - Scenario (a-1255) Pinst 3200 MW78Figure 5.50 : Scenario (a-1255) - Discharge at the downstream of the cascade . 78Figure 5.51 : Scenario (a-1255) – Distribution of the discharge at the downstream of the cascade. 79Figure 5.52 : Scenario (a-1220) - Average Rogun and Nurek reservoir level. 79Figure 5.53 : Average monthly energy produced by the cascade along the year Scenario (a-1220)Pinst 2800 MW . 80Figure 5.54 : Rogun monthly energy distribution - Scenario (a-1220) Pinst 2800 MW . 81Figure 5.55 : Nurek monthly energy distribution - Scenario (a-1220) Pinst 2800 MW . 81Figure 5.56 : Vakhsh cascade monthl

Phase II - Vol. 3 – Chap.5 – Reservoir operation study P.002378 RP 40 page 2 /107 . Figure 2.6 : Rogun reservoir storage capacity FSL 1290 masl- Impact of sedimentation . 21 Figure 2.7 : Rogun reservoir storage capacity FSL 1255 masl- Impact of sedimentation . 21 Figure 2.8 : Rogun reser

Related Documents:

IV. PMO Project Management Lifecycle (Refer to attachment 2 - OIT PMO Project Management Lifecycle) The Project Management Process governs the project life-cycle which is comprised of the following five phases: 1. Project Initiating phase 2. Project Planning phase 3. Project Funding phase 4. Project Executing phase 5. Project Closing phase

Grade 8 MFL MYP Phase 1/2 MSL MYP Phase 2/3 (G9 - G10 Elective) Grade 9 MFL 3 MYP Phase 2/3 MSL MYP Phase 3/4 G10 Elective MA MYP4 Grade 10 MSL MYP Phase 4 MA MYP5 Grade 11 MSL DP1 IB Language B Mandarin Standard Level MA DP1 Grade 12 Grade 7 MFL MYP Phase 1 MHL MYP Phase 4 MA MYP1/2 MHL MYP Phase 4 MA MYP3 MHL MYP Phase 5 MHL MYP Phase 5 MHL DP1

wound 3 phase motors. Rotary Phase Converter A rotary phase converter, abbreviated RPC, is an electrical machine that produces three-phase electric power from single-phase electric power. This allows three phase loads to run using generator or utility-supplied single-phase electric power. A rotary phase converter may be built as a motor .

The Precede-Proceed model for health promotion planning and evaluation Phase 1 Social diagnosis Phase 2 Epidemiological diagnosis Phase 3 Behavioral and Environmental diagnosis Phase 4 Educational and Organizational diagnosis Phase 5 Administrative and Policy diagnosis Phase 6 Implementation Phase 7 Process Phase 8 Impact Phase 9 Outcome Health .

CISA SDLC Phases and Relationship 4 Phase 1 - Feasibility Phase 2- Requirements Phase 3 A-Design Phase 3B- Selection Phase 4A - Development Phase 4B- Configuration Phase 6 -Post Implementation Phase 5 - Implementation Build Buy Reviews at the end of each phase acts as "stage gate"

P90X CLASSIC Phase 1 23 Phase 2 24 Phase 3 25 P90X DOUBLES Phase 1 26 Phase 2 26 Phase 3 27 P90X LEAN Phase 1 28 Phase 2 29 Phase 3 30 TABLE OF CONTENTS Warning: Due to the physical nature of this program, Beachbody recommends that you get a complete physical examination from your physician before getting started. .

A static phase converter is one that externally changes a three phase motor to a capacitor-start, capacitor-run single phase motor; running at approximately the same amperage as a single phase motor of the same horse-power. The single phase amp draw of a three phase motor on our Phase Splitter is 1 1/2 times the three phase name-plate amps.

Final Exam Answers just a click away ECO 372 Final Exam ECO 561 Final Exam FIN 571 Final Exam FIN 571 Connect Problems FIN 575 Final Exam LAW 421 Final Exam ACC 291 Final Exam . LDR 531 Final Exam MKT 571 Final Exam QNT 561 Final Exam OPS 571