Recent Developments In Aerobic Oxidation

1y ago
35 Views
2 Downloads
1.36 MB
27 Pages
Last View : 3d ago
Last Download : 3m ago
Upload by : Cade Thielen
Transcription

Recent Developments in AerobicOxidationStoltz Group Literature TalkMonday, August 21, 2006Brinton Seashore-Ludlow

Stoltz Group MethodologiesEnantioselective Wacker CyclizationOHOTrend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem., Int. Ed. 2003, 42, 2892.Aerobic Oxidative Annulation of IndolesNRNRFerriera, E. M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578.Aerobic Oxidative Kinetic Resolution of Secondary AlcoholsOHRR'OHRR'ORR'Ferreira, E. M.; Stoltz, B. M.; J. Am Chem. Soc. 2001, 123, 7725.Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Org. Lett. 2003, 5, 835.Bagdanoff, J. T.; Stoltz, B. M. Angew. Chem., Int. Ed. 2004, 43, 353.Caspi, D. D.; Ebner, D. C.; Bagdanoff, J. T.; Stoltz, B. M. Adv. Syn. Catal. 2004, 346, 185.Trend, R. M.; Stoltz, B. M. J. Am. Chem. Soc. 2004, 126, 4482.Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Am. Chem. Soc. 2001, 123, 7475.Mandal, S. K.; Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. J. Org. Chem. 2003, 68, 4600.Mueller, J. A.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 7005.

Aerobic Oxidation of Alcohols: Some MethodsAdditivesCatalystTypes of Alcohols OxidizedConverts toOtherTEMPORu(PPh3)3Clprimary, secondaryaldehydesubstrates cannot contain: S, N, Ohydroquinone, K2CO3Ru(PPh3)3Clquinuclidine, Cu(II)OsO4allylic, benzylicaldehydebathophenanthroline disulfonatePd(OAc)2aldehyde (TEMPO)substrates cannot contain: S, N, O,C C, H2O solventsparteinePd(nbd)Cl2 or Pd(OAc)2secondary aliphatic, cyclicallylic and benzylic slowOKRNMOpolymer supported TPAPunactivated primary, secondaryaldehydecyclohexanol and cyclohexenol werenot oxidizedmolecular sieve supported TPAPbenzylicaldehydepolymer supported PIPObenzylic, allylicaldehydeprimary, secondary, benzylicaldehydecan be recycledactivated and unactivatedaldehydecan be recycledunactivatedaldehydeshape selectivity, no solventamine/ CuClSilica supported TEMPORuHAP (hydroxapatite)functionalized zeolitesPEG supported PdAu/CeO2aldehydebroad rangebroad rangesupercritial CO2; can be recycledbenzylic aldehydesaliphatic estersRecent Developments in the Aerobic Oxidation of Alcohols: Zhan, B.-Z.; Thompson, A. Tet. 2004, 60, 2917-2935.Palladium-catalyzed Oxidation of Primary and Secondary Alcohols: Muzart, J. Tet. 2003, 59, 5789-5816.Palladium Oxidase Catalysis: Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400-3420.Zeolites: Zhan, B.-Z.; White, M. A.; Sham, T. K.; Pincock, J. A.; Doucet, R. J.; Rao, K. V. R.; Robertson, K. N.; Cameron, T. S. J. Am. Chem. Soc. 2003, 125, 2195-2199.PEG Supported Pd: Hou, Z.; Theyssen, N.; Brinkmann, A.; Leitner, W. Angew. Chem., Int. Ed. 2005, 44, 1346-1349.Gold: Abad, A.; Almela, C.; Corma, A.; García, H. Tet. 2006, 62, 6666-6672.

Oxidative Kinetic ResolutionOHRPOOOcatalyst (5 mol%)PhOROHPO2, toluene, rtOPhOPhROPOOPhR% conversion% ee (% CHCHPhCC1-Np5149505051505050495049505099 (47)96 (46)99 (49)99 (49)95 (47)99 (46)99 (49)33 (47)90 (47)99 (49)95 (47)68 (49)99 (46)N O OV OCH3O O HBrBrcatalystOOHcatalyst (5 mol%)RO2, toluene, rtOPhOOHRPhOORconversion% ee(% 449505350505193 (40)88 (49)98 (46)79 (45)7 (44)99 (43)70 (46)ROPawar, V. D.; Bettingeri, S.; Weng, S.-S.; Kao, J.-Q.; Chen, C.-T. J. Am. Chem. Soc. 2006,128, 6308 -6309.Weng, S.-S.; Shen, M.-W.; Kao, J.-Q.; Munot, Y.; Chen, C.-T. Proc. Nat. Acad. Sci. 2006,103, 3522-3527.OKR of hydroxyesters using similar tetradentate salen ligands on vanadium see:Radosevich, A. T.; Musich, C.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 1090-1091.

Flavin-Catalyzed Oxiation of Amines and SulfidesoxidizedsubstratesubstrateNNONNNNO 2O, N2NNNOOH H2ONsubstrateOO97SNHImada, Y.; Iida, H.; Murahashi, S.-I. J. Am. Chem. Soc. 2003,125, 2868-2869.For autorecycling aerobic oxidation of some amines see:Igarashi, K.; Yamaguchi, Y.; Mitsumoto, Y.; Naya, S.-I.; Nitta, M. J. Org.Chem. 2006, 71, 2690-2698.NO85

Aerobic Baeyer-Villiger Oxidation of KetonesproductsubstrateyieldOOO94OOHOOOOX HFClOHO788084ClO4-OHONHONNNONNXNHXNOVitamin B2OOOHOOHexpected83 (57:43)unexpectedImada, Y.; Iida, Hiroki, Murahashi, S.-I.; Noata, T. Angew. Chem. Int. Ed. 2005, 44, leneriobflaviniumperchlorate

Biomimetic Aerobic Oxidation of Amines to Imines

Interception of IminesONHOO902 mol% Ru catalyst20 mol% quinone2 mol% Co-salen complexNPhPhOPhNHtoluene, 110 CAirPhCOPhO Ru COPhPhPhPhOOCCORuPhNPh99PhcatalystTandem aerobic oxidation and Mannich reactionPMPNHR2 mol% Ru catalyst20 mol% quinone2 mol% Co-salen complextoluene, 110 CAirNRPMPproprionaldehyde30 mol%L-prolineNMP, -20 CPMPNHR ORIbrahem, I.; Samec, J. S. M.; Bäckvall, J.-E.; Córdova, A. Tet. Lett. 2005, 46, 3965-3968.HPhCO2Et2-furyl3-pyridylDr 19:119:16:119:1yield % ee 9599 95 95 99 99 99 99

Interception of IminesTrapping iminium ion intermediates with carbon nucleophiles: Oxidative cyanationRuCl3. nH2O 5 mol%O2 1 atmR1N CH2RNaCNR2R1N CHRR2CH3OH/ CH3CO2HR1N CHRR2R1N CHRR2Run OHCNR1N CH2RCNR2HCNR1RunR2N CH2RRunN CH2RRun 2OR1N CHRR2R1N CHRR2RunHR1N CHRR2Run OOHHCNO2CNMurahashi, S.-I.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem. Soc. 2003, 125, 15312.

Aerobic Oxidation of Amines to NitrilesNH2N2.8 mol % Ru / Al2O35 mL PhCF3N100 CO2 1 atmminor side product93 %HN2.8 mol % Ru / Al2O35 mL PhCF3HN99 % new catalyst, 2h99 % recycled catalyst, 2h100 CO2 1 atmNNH2RuHAP, O2NH2CNN 99 %RuHAP, O2100 CTolueneNH2OHOHNH2RuHAPH2O, N2, 150 C 99 %RuHAP, O2100 CTolueneO96 %100 CTolueneNYamaguchi, K.; Mizuno, N. Angew. Chem. Int. Ed. 2003, 42, 1480.Mori, K.; Yamaguchi, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Chem. Comm. 2001, 461-462.Yamaguchi, K.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2000, 122, 7144.ClOHO Ru OPPOOOHOORuHAP(calcium hydroxyapatiteCa10(PO4)6(OH)2 was stirredwith RuCl3)

Alkenylation of PyrrolesR1R1NRR1Pd(OAc)2 (10 mol%)O2NAcOH:Dioxane:DMSO, 35 CRNRR1 CO2BnCO2Bn (Air)CO2n-BuSO2Me4-(CO2Me)PhR BocR TIPSYield of C 273 (73)7273 (75)38 (69)53 (60)Yield of C 375 (78)7573 (81)45 (71)58 (63)* yields listed in parentheses are from using tBuOOBz as a stoichiometric oxidantusing tBuOOBz as an oxidant trisubstituted alkenes could be generated in moderate yields ( 60%)EtONOTselectronic controlR NCO2Rsteric controlONn-C3H760%TIPS66%Beck, E.; Grimster, N.; Hatley, R.; Gaunt, M. J. J. Am. Chem. Soc. 2006, 128, 2528 - 2529.

Pd-Catalyzed Carbonylative ROCO: air (24 bar, 3:1)MeOH/MeCN, 65 CR1RCO2MePd/C (10 mol%)KF (1.5 equiv)Bu4NI (1.0 equiv)NR1OONR1NHR1desilylation4235412Costa, M.; Della Cà, N.; Gabriele, B.; Massera, C.;Salerno, G.; Soliani, M. J. Org. Chem. 2004, 69, 2469 2477.Bacchi, A.; Costa, M.; Della Cà, N.; Fabbricatore, M.;Fazio, A.; Gabriele, B.; Nasi, C.; Salerno,G. Eur. J. Org.Chem. 2004, 574-585.MeO2CRRPdI2 (1 mol%)KI (10 mol%)OCO: air 25

Heck Coupling .ArB(OH)2CO2BuPd(OAc)2 (2 mol%), NMM (2 equiv)ligand (2.4 mol%)ArCO2Buair, MeCNarylboronic acidB(OH)2% yieldtemp. ( rt648067rt61805080NligandAcSB(OH)2Enquist, P. E.; Lindh, J.; Nilsson, P.; Larhed, M. Green Chem., 2006, 8, 338 343.

Oxidative Heck Reaction: Alkenyl BoronicCompoundsn-BuBOPd(OAc)2Na2CO3, DMAOn-BuRO2, 23 CproductolefinCO2Etn-Bu% yield79CO2Et81CO2tBun-BuPhn-BuCO2tBuPhPh88 (8.8:1)n-BuPhn-BuOn-Bu84 (1:3.7)n-BuPhPhO76Pd(OAc)2 (2 mol%)slow addition of boronic %86%87%Yoon, C. H.; Yoo, K. S.; Yi, S. W.; Mishra, R. K.; Jung, K. W. Org. Lett., 2004, 6,4037 -4039.

Aerobic Enantioselective Heck-Type ReactionB(OH)2CO2RR% yield% eeMeMeaEtI-PrPhBn732572493158465946352249run in MeOHCO2R DMF, O2, 50 CF3CaF3CPd(OAc)2 (5 mol%)(S,S)-chiraphos (5.5 mol%)PPPdPPdPPPCO2MePdPPPdCO2MeAkiyama, K.; Wakabayashi, K.; Mikami, K. Adv. Synth. Catal., 2005, 347, 1569 -1575.

Cross-Coupling: StannanesPhSnBu3, Pd(OAc)2ROxidant, NaOAc, rtalkeneCuCl2THFPhPhRArSnBu3, Pd(OAc)2O2DMF0826272tBuO2COxidant, NaOAc, 76088OOHCNParrish, J. P.; Jung, Y. C.; Shin, S. I.; Jung, K. W. J. Org. Chem. 2002, 67, 7127 -7130.

Generation of HeterocyclesOOOONMe2OOOOOD DNMe2TsNNMe2TsON98D 95% DOOODNMe2OOOOONMe2TsN90% DONMe2Ts NO91OOONMe2OOONMe2TsD 95% D96 95% DONMe2NMe2ONMe2DOOOONMe2OTsNNMe2OOODD DNMe262DLAONOPd(0)PdCl2NMe2Yb(OTf)3 (1 equiv)PdCl2(MeCN)2 (10 mol%)D DPdCl2OTHF, O2 (1 atm), rtOOOHClOODODPdClONMe2NMe2Yip, K.-T.; Li, J.-H.; Lee, O.-Y.; Yang, D. Org. Lett. 2005, 7, 5717-5719.HCl2HCl O2H2O2OPd(H)Cl]DNMe2ODPd(H)ClDPdClD

Oxidative Cyclizationproductsubstrateyield10 mol% PdCl2, 1 atm O210 mol% CuCl, 10 mol% Na2HPO4DME, 50 CH3HHCH3PhOO1:4uncyclized:cyclizedOee 97%HCH3CH3HCH3CH360%O61%ee 97%OPd(TFA)2 (5 mol%)ligand (6 mol%)DMAP (20 mol%)Na2CO3 (2 equiv)O2 (1 atm)Toluene, 80 CR1OR2ligand:Yield919296898788MesNNMesReiter, M.; Ropp, S.; Gouverneur, V. Org. Lett. 2004, 6, 91-94.Muñiz, K. Adv. Syn. Catal. 2004, 346, 1425-1428.

Oxidative Amination

C-C bond formation: 103627OHOOTBDMSOHPd(OAc)2 (5 mol%)HDMSO, O2 (1 atm), 45 COMOMOMOM89%HOHHOAphidicolinToyota, M.; Rudyanto, M.; Ihara, M. J. Org. Chem. 2002, 67, 3374-3386.Toyota, M.; Sasaki, M.; Ihara, M. Org. Lett. 2003, 5, 1193 -1195.

Aerobic Oxidative Cleavage of Alkynes:Generation of EnynesOHPhPd(acac)2 (10 mol%)pyridine (2 equiv)alkene (10 equiv)PhRMS 3ÅO2, toluene, 80 h54cis/trans 1/ 4PhPh33PhPh40a/b 2/ 1baR''OHROPdXPdXRRR' R'R' R'ROR'R''HPdXR'Nishimura, T.; Araki, H.; Maeda, Y.; Uemura, S. Org. Lett. 2003, 5, 2997 - 2999.

Tandem Cylcization and Oxidative Cleavage %R5 PhOC3H750 C, O2OO(PPh3)AuOTf, THFP(p-CF3C6H5)3AuOTF, THFAuCl3, CH2Cl2(PPh3)AuOTf, THF, air2 mol% (PPh3)AuCl2 mol% AgOTfO2R4THF, 50 COPhPhPhPh74R4PhOPhPhPhPhcatalyst (2 mol%)AuCl3 (1 mol%)airPhPhPh90% (21 h)92% (14 h)6% (24 h)99% (36 h)R3OR2R1PhTMSPhPhSOp-FC6H480%R5 PhOO91%R5 BuOOPhO41%R5 Bu- reaction is suppressed by the addition of TEMPO or 2,6-di-tert-butyl-p-cresol, which indicates that a radical species is involved-AuCl(PPh3) is stable under O2 atm, but AuCl(PPh3) and AgOTf in O2 atm creates (PPh3)2Au Liu, Y.; Guo, S. J. Am. Chem. Soc. 2006, ASAPLiu, Y.; Song, F.; Song, Z.; Liu, M.; Yan, B. Org. Lett, 2005, 7,5409 -5412.O66%R5 BuPh

Oxidative Transformations of CyclobutanolsR2R3R1OOR2Pd(OAc)2 (10 mol%)pyridine (2 equiv)MS 3Atoluene, 80 C, O2R4 R3R2R1OHR4 R3R3aR4abR2R1OPdXL2R2R3R4b, cR1dOPdXL2R4 HR1 vinyl, arylR2 R3 -(CH2)nR4 HR3 H, R4 HcOR2dR3OR3R4R1R4Nishimura, T.; Ohe, K.; Uemura, S. J. Org. Chem. 2001, 66, 1455 - 1465.

Oxidative Carbonylation of AlkynesLnPdO2LnPdOOOOMeOHOPd(0)LnOMeRCOOLnPdLnPd 2HOPdLnOHOMeMeO-2RCONaOAc (30 mol%)PPh3 (20 mol%)PdCl2 (10 mol%)Nu (50 equivs)HRCO/ O2 (1:1, 1 atm)DMF, 23 C, 97542838660HIzawa, Y.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2004, 77, 2033 -2045.

Aerobic Electron-Transfer-Initiated CyclizationC6H13HOhν, NMQPF6, O2NaOAc, Na2S2O3NHO2C6H13DCE, PhMeONHNOO2 NOONHOC6H13OHNHC6H1375%OOOC6H13hν, NMQPF6, O2NaOAc, Na2S2O3NHOOONHDCE, PhMeOOCH C6H1379%NO2HNHNC6H13OSO2Ohν, NMQPF6, O2NaOAc, Na2S2O3DCE, PhMeC6H13NHNO2 S64%NO2Aubele, D. L.; Recht, J. C.; Floreancig, P. E. Adv. Syn. Catal. 2004, 346, 359 -366.For aerobic NMQPF6 variant with oxonium intermediates see:Kumar, V. S.; Aubele, D. L.; Floreancig, P. E. Org. Lett. 2001, 3, 4123.

Other Useful References .Aerobic Sulfoxidation:Polyoxometalate bridged by aquated Cu(II) unit:Okun, N. M.; Anderson, T. M.; Hardcastle, K. I.; Hill, C. L. Inorg. Chem. 2003, 42, 6610 -6612.Polyoxometalate Fe(II)/ hydrogen dinitrate:Okun, N. M.; Tarr, J. C.; Hilleshiem, D. A.; Hardcastle, K. I.; Hill, C. L. J. Mol. Catal. A. Chem. 2006, 246, 11-17.Aerobic Aryl Oxidation:Parrish, J. P.; Jung, Y. C.; Floyd, R. J.; Jung, K. W. Tet. Lett. 2002, 43, 7899 -7902.Yoshida, H.; Yamaryo, Y.; Oshita, J.; Kunai, A. Tet. Lett. 2003, 44, 1541 -1544.Hossain, K. M.; Kameyama, T.; Shibata, T.; Takagi, K. Bull. Chem. Soc. Jpn. 2001, 74, 2415 -2420.Aerobic Nazarov Reaction:Bee, C.; Leclerc, E.; Tius, M. Org. Lett. 2003, 5, 4927-4930.Epoxidation:Ho, K. P.; Wong, K. Y.; Chan, T. H. Tet. 2006, 62, 6650-6658.Lu, X.-H.; Xia, Q.-H.; Zhan, H.-J.; Yuan, H.-X.; Ye, C.-P. Su, K.-X.; Xu, G. J. Mol. Catal. A: Chem. 2006, 250, 62-69.Radical Chain Promoter:Baucherel, Y.; Gonsalvi, L.; Arends, I. W. C. E.; Ellwood, S.; Sheldon, R. A. Adv. Syn. Catal. 2004, 346, 286-296.

SummaryThere are a number of aerobic oxidation methods that have been developedheterogenoushomogenousbiomimeticradical chain transferBut there is still room for the development of enantioselective aerobic oxidations!!

Recent Developments in Aerobic Oxidation Stoltz Group Literature Talk Monday, August 21, 2006 Brinton Seashore-Ludlow. OH O Enantioselective Wacker Cyclization N R N R Aerobic Oxidative Annulation of Indoles Aerobic Oxidative Kinetic Resolution of Secondary Alcohols R OH R' R OH R' R O R'

Related Documents:

Aerobic Digestion is a biological process similar to Activated Sludge. Activated Sludge Growth Aerobic Digestion Decay. Aerobic Digestion Processes vs Activated sludge processes Practical Approach To Help Understand the Difference! Activated Sludge Aerobic Digestion . Aerobic Digestion Chemistry 1. Digestion: C 5H 7NO 2 5O

The 3M Petrifilm Aerobic Count Plate is a ready-made culture medium system that contains modified Standard Methods nutrients, a cold-water-soluble gelling agent and an indicator that facilitates colony enumeration. 3M Petrifilm Aerobic Count Plates are used for the enumeration of aerobic bacteria. AC Aerobic Count Plate .File Size: 2MB

and aerobic digester is optimized for effective nitrogen removal. 12minutes aerobic and 12 minutes anoxic phase gave better nitrogen removal compared to all the cycles. Over all the aerobic digester gave about 92% ammonia removal, 70% VS destruction and 70% COD removal. The oxygen uptake rates (OUR's) in the aerobic digester are measured

aerobic exercise and a control session, in random order and on separate days. After the short-term sessions, all the patients will be randomly allocated into four groups and followed up for 8 weeks (between design): mild aerobic ex-ercise group, moderate aerobic exercise group, high-intensity aerobic exercise group and the control group.

How Aerobic Treatment Works Aerobic systems treat wastewater using natural processes that require oxygen. Bacteria that thrive in oxy-gen-rich environments break down and digest the wastewater inside the aerobic treatment unit as they are suspended in the liquid. Like most onsite systems, aerobic sys-tems treat the wastewater in stages.

be generated; as the C C bond is oxidized, cyclohexene oxide, cyclohexanol, cyclohexanone, cyclohexanediol and dialdehyde will be produced (Scheme 1) [26]. Scheme 1. Reaction route for the aerobic oxidation of cyclohexene. Firstly, we examined several organic solvents for the oxidation of cyclohexene and the results are listed in Table 1.

oxidized to benzoic acid around 0.2V. Thus, for the CV curve of benzyl alcohol, the first peak (-0.10V) can be ascribed to the oxidation of benzyl alcohol to benzaldehyde, and the second peak (0.25V) is due to the oxidation of benzaldehyde to benzoic acid. The activity for the electro-oxidation of benzyl alcohol was determined form the CV

building an authentication system based on PHP and MySQL. I set up PHP environment (WINDOWS PHP Apache MySQL), and edited the user interface based on HTML. In the interface page, I added two functions, one to log in, another to create new users. All the data are stored in MySQL database. In order to preserve the information, I used MD5 to implement encryption. Thus, the personal data can be .