New Architecture For Autonomous Driving - Global Semiconductor Alliance

2y ago
934.94 KB
22 Pages
Last View : 26d ago
Last Download : 6m ago
Upload by : Wade Mabry

New Architecture for Autonomous DrivingJune 4-5, 2018 2018 IHS Markit. All Rights Reserved.

2TECHNOLOGYDefining the Futureof AutomotiveCOST MANAGEMENT& PRODUCT PLANNINGIn the FactoryIn the CarSupplier ManagementTechnology RoadmapsCONNECTED CARIoT & Cellular ConnectivityInfotainmentTelematicsMedia IntegrationSmartphone & AppsAdvertisingNavigationWearablesCyber SecurityAUTOMONOUS CARALTERNATIVEPROPULSIONHybrid & EVWireless ChargingCharging/Re-fueling Infrastructure 2018 IHS Markit. All Rights Reserved.ADASSensorsV2X CommunicationsAutonomous Driving

3Vehicle production rises steadily but slowly2.0% CAGR (2017 – 23) 2018 IHS Markit. All Rights Reserved.

4Average value of electronic systems per carto top 1650 by 20236% CAGR (2016 – 23) 2018 IHS Markit. All Rights Reserved.

5Electrification, automated driving and connectivityfuel for the automotive semiconductor growth7.7% CAGR (2017 – 23) 2018 IHS Markit. All Rights Reserved.

AI, Machine Learning, Neural Net, Deep LearningTraditionalAlgorithmsMajor differences in the same “intelligent” familyAICode 2018 IHS Markit. All Rights Reserved.NNMLDataDL

AI in AutomotiveHMIVoice/GestureDriver MonitoringPowertrainSecurityDiagnosticFrom ADASTo Autonomous 2018 IHS Markit. All Rights Reserved.

Implication of AI and Deep LearningMajor advantages in comparison with traditional machine vision Assumptions: New silicon solutions will be developed with focus on AI algorithm The functional safety aspect will be addressed by the entire supply chain Deep learning can: Allow detection and recognition of multiple object improve perception Perform semantic analysis of the area surrounding the vehicle Reduce development time of ADAS and IVI systems (once DL is in steady-state) Reduce the power required compared to the same operation w/ traditional algo Deep Learning needs help Recognition/Prediction of actions and Fusion - Bayesian Net and other stochastic algorithms maycomplement DL in the run to autonomous cars (L4-L5) Required precondition: Telematics will be broadly deployed to: 1) enable gathering of “real” patterns and data for training2) allow over the air system update and security 2018 IHS Markit. All Rights Reserved.8

Extra Requirements for Deep Learning in ADAS & AV DL in ADAS for Autonomous functions requires in-vehicle HW: Latency: for active function system needs to react in less than 70-80ms Deep Learning offer deterministic latency also for “noisy” input from sensors Performance: TFlop/TOP/TMAC is barely the minimum Power: Individual sensor subsystems need to stay in the power budget of 4W; Sensor Fusion ECUs might allow targets up to 15-20W or more. Some OEMs expect alreadythey need to find a trade off if no silicon is available and performance needed. Backhaul and data storage infrastructure: Connectivity (IoT) is a need to:– Store training data and vehicle parameters.– Update/Upgrade the system Data acquisition is a challenge for validation and test: mix Real & Synthetic dataStandardisation is a must have Safety is the biggest uncertainty to have autonomous car based on AI. 2018 IHS Markit. All Rights Reserved.9

10Dynamic of ECU and Features balanceCost will define the strategy and implementation timeframe Number of ECUs (Average): in Low and Mid vehicle segment continue increasing. Premium shows already consolidation because closeto the “limit”. Feature: growth in number expected in all segments, drivenby ADAS and IVI Costs OEMs tend to maintain the ECU cost at a constantlevel adding value and taking advantage ofintegration. 2018 IHS Markit. All Rights Reserved.

11Old generation: E-segment with 14 ADAS ECUsBMW 7-Series 2009CAMRADARRADARCANNV CUSV rage Semiconductor BOM: 618 2018 IHS Markit. All Rights Reserved.

12Advancement of features on new platformBMW 7-Series 2015CAMEthernetRADARRADARNV CUCAMSV Average Electronics Value: 1742 2018 IHS Markit. All Rights Reserved.Average Semiconductor BOM: 563 (-10%)

IHS Markit Technology - ADAS architecture strategies13System Architecture on Audi A8Audi A8 2018CAMRADARRADARDMCamADAS DCNV CUSmartCAMCAMFIRCAMLIDARRADARRADARRADARCAM 12 ultrasonicsensors 2018 IHS Markit. All Rights Reserved.


15Typical ADAS architecture requirementsADAS ModuleAvg. per L3Avg. per L4Avg. per L5Sensor Fusion122Exterior Camera588Interior Camera111Short/Mid-rangeRadar4Long-range *4132224 22006 63006*Architectures based on existing pilot car platforms from BMW, Volvo, Audi, Nissan. 2018 IHS Markit. All Rights Reserved. 9400

Impact of Autonomous Driving RoadmapADAS architecture for automated driving is on the roadmap of many OEMs by 2020About 45% the total ADAS cost on premium models is accounted for the softwareParticularly on A8 and Model S the average software value per ADAS module (excludingultrasonic sensors) is 90 and 77, above today s average.Functional safety standards:The control units (HW & SW) supporting AD functions should also comply ASIL-B to ASIL-D.Redundancy is a must.High-performance software blocks:Front smart cameras, Domain Controllers & LIDARsLIDARs and Domain controllers for instance comewith a cost that ranges from 500 for a LIDAR to850-1000 for the domain controller. 2018 IHS Markit. All Rights Reserved.* AD Autonomous Driving16

ADAS classification by passive warning and active control*The results of Tesla Model functions will be updated in the final deliverable 2018 IHS Markit. All Rights Reserved.17

Software value driven by performance and safety 2018 IHS Markit. All Rights Reserved.18

Battle in the SoC space: heterogeneous architecture GPU, TPU, CPU, IPU . Heterogeneous architecture! DLTOPS and DMIPS/MHz Cost of SoC over time Impact on scaling and tech-node Ensure 16nm and high-volumes SW vs HW Platform scalability Go to market strategy L2-L3 “now” or w/ L4-L5 “later” 2018 IHS Markit. All Rights Reserved.Major SoC suppliers in automotive supporting AI35302520151050Nvidia XavierMobileye EyeQ5[nm]Source: IHS MarkitDLTOPSRenesas R-CarOther[W] 2017 IHS Markit19

Performance and power: energy efficiency; and safety In datacenter the energy efficiency is directly correlates to the cost Power consumption is critical for auto too but compromise are acceptable Let s consider the overall system power consumption memory is about one order of magnitude more than SoC embedded volatile memory is preferable for performance and power If 100 TOPS is the target in L4-L5 type of vehicle, .by when? OEMs and suppliers strategy might differentiate Challenge for AI&DL: Deterministic behavior and ISO26262 2018 IHS Markit. All Rights Reserved.20

Something probably needs to change .TÜV SÜD and DFKI to develop “TÜV for Artificial Intelligence”The German Research Center for Artificial Intelligence (DFKI) and TÜV SÜD are launching a jointproject to certify systems based on artificial intelligence (AI) used in autonomous driving anddevelop a ‘roadworthiness test’ for algorithmsIntel MobilEye - Overview of the PlanWe believe that it is important for the automotive industry to collaboratively establish amethodology and standard for safety validation in partnership with global standards–bodies andregulators. The United States is among the countries leading the way with pending self-drivingvehicle legislation and new USDOT Automated Vehicle Guidelines, making this a perfect time toengage in these collaborative next-step discussions.Our proposed model provides a detailed, practical, and efficient solution for designing andvalidating an AV system that results in drastically improved safety. Here is an outline of the nextstep areas we believe merit attention and the solutions we propose: . 2018 IHS Markit. All Rights Reserved.21

Thanks for your attentionluca.deambroggi@ihsmarkit.comExecutive Director Transformative TechnologyAI and Automotive h-by-Market 2018 IHS Markit. All Rights Reserved.22

Impact of Autonomous Driving Roadmap ADAS architecture for automated driving is on the roadmap of many OEMs by 2020 About 45% the total ADAS cost on premium models is accounted for the software Particularly on A8 and Model S the average software value per ADAS module (excluding ultrasonic sensors) is 90 and 77, above today s average.

Related Documents:

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill använda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-märkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

Page 2 Autonomous Systems Working Group Charter n Autonomous systems are here today.How do we envision autonomous systems of the future? n Our purpose is to explore the 'what ifs' of future autonomous systems'. - 10 years from now what are the emerging applications / autonomous platform of interest? - What are common needs/requirements across different autonomous

autonomous driving solutions is a highly valuable skill in today's software engineering field. Robot Operating System (ROS) is a meta-operating system that simplifies the process of robotics programming. This master's thesis aims to demonstrate how ROS could be used to develop autonomous driving software by analysing autonomous driving

9th Vector Congress Simon Fürst Scalable Architecture for Autonomous Driving 21 -Nov-2018. PAST FUTURE. Within just a few years only two operating systems for smartphones got . established in the market: Android & iOS. All others died out! Just as in the smartphone operating system market , only a few Autonomous Driving Platforms will .