Singularity Analysis: A Perspective - Inria

2y ago
26 Views
3 Downloads
455.59 KB
34 Pages
Last View : 24d ago
Last Download : 3m ago
Upload by : Matteo Vollmer
Transcription

MSRI, Berkeley, June 2004Singularity Analysis: A PerspectivePhilippe Flajolet(Inria, France)

Analysis of Algorithms Average-Case, Probabilistic Properties of Random Structures?n n Counting and asymptotics n! n e2πnZ x1D t2 /2 Asymptotic laws Ωn edt. (e.g., Monkey and typewriter!)2π — Probabilistic, stochastic— Analytic Combinatorics: Generating Functions

1. Introduction“Symbolic” MethodsRota-Stanley; Foata-Schutzenberger; Joyal and uqam group; Jackson-Goulden,&c; F.; ca 1980 . F-Salvy-Zimmermann 1991 ; Computer Algebra.Basic combinatorial constructions admit of direct translations asoperators over generating functions (GF’s).

C : class of comb. structures;C n : # objects of size n(counting)(params) X C(z) : C nznnXz C(z)b: Cn X n! C(z, u) : C n,k z n uknXz C(z,b u) : C n,k ukn!Ordinary GF’s for unlabelled structures. Exponential GF’s for labelledstructures.

“Dictionaries” Constructions viewed as Operators over GF’s.Constr.OperationsUnion Product Sequence(1 f ) 1(1 f ) 1MultiSetPólya Exp.efCyclePólya Log.log(1 f ) 1(unlab.)(lab.) Exp(f ) : exp f (z) 12 f (z 2 ) · · ·Log(f ) : log11 f (z) ···Books: Goulden-Jackson, Bergeron-LL, Stanley, F-Sedgewick How to extract coeff., especially, asymptotically?

“Complex–analytic Structures”Interpret: Counting GF as analytic transformation of C; Comb. Construction as analytic functional.Singularities are crucial to asymptotic prop’s!(cf. analytic number theory, complex analysis, etc)Asymptotic counting via Singularity Analysis (S.A.)Asymptotic laws via Perturbation S.A.

12iπZ1dz1 z z 2 z n 1 f (z),f (z) (1 z z 2 ) 1 .Refs: F–Odlyzko, SIAM A&DM, 1990 FO82 on tree height; Odlyzko’s 1995survey in Handbook of Combinatorics Banderier, Fill, J. Gao, Gonnet, Gourdon, Kapur, G. Labelle, Laforest, T. Lafforgue, Noy,Odlyzko, Panario, Poblete, Pouyanne, Prodinger, Puech, Richmond, Robson, Salvy, Schaeffer,Sipala, Soria, Steyaert, Szpankowski, B. Vallée, Viola .

Location of singularity at z ρ: coeff. [z n ]f (z) ρ n · coeff. [z n ]f (ρz) Nature of singularity at z 1:1(1 z)211log1 z1 z11 z1 1 z n 1Hn 11 8 Location of sing’s : : Nature of sing’s : . 1122n2nn1n! n log n 1 1 πnExponential factor“Polynomial” factorρ nϑ(n)

Generating Function ; CoefficientsSolving a “Tauberian” problemReal–Tauberian0(large large)Darboux-PólyaSingularity An.(smooth small)(Full mappings)1Combinatorial constructions ; Analytic Functionals Analytic continuation prevails for comb. GF’s

2. Basic Singularity AnalysisTheorem 1. Basic scale translates:σα,β (z) : (1 z) α 1zlog11 z βnα 1(log n)β .[z ]σα,β n Γ(α)n Proof. Cauchy’s coefficient integral, f (z) (1 z) α1[z n ]f (z) 2iπ Zf (z)γtdzz n 1(z 1 ) n« αZ „t1dt e t2iπ Hnnnα 1 1.Γ(α)

“Camembert”Theorem 2. O–transfers: Under continuation in a -domain,f (z) O(σα,β (z))Proof: [z n ]f (z) O ([z n ]σα,β (z)) .

Usage: f (z) λσ(z) µτ (z) . O(ω(z)) fn λσn µτn . O(ωn ).Similarly: o-transfer. Dominant singularity at ρ gives factor ρ n . Finitely many singularities work fine

Example 1. 2-regular graphs [Comtet] (Originally by Darboux-Pólya.)„«1C 3 (Z)G M2«„21zz1blog G(z) exp21 z24 3/4ebG(z) z 11 z 3/4Gne .n! n πn equivalent(exp(-z/2-z 2/4)/sqrt(1-z),z,n,4); # By SALVY1/23/25/2exp(-3/4) (1/n)exp(-3/4) (1/n)exp(-3/4) (1/n)------------------ - 5/8 ------------------ 1/128 -----------------1/21/21/2PiPiPi2

Example 2. Richness index of trees [F-Sipala-Steyaert,90] Number of different terminal subtrees.Catalan case:!” 1 X 12k “pK(z) 1 4z 4z k 1 1 4z2zk 1 kk 01,Z : 1 4zK(z) z 1/4Z log Zrn8 log 2.,C Mean index C n πlog n Compact tree representations as dags Common Subexpression Pb.2

Extensions Slowly varying slowly varying: Log-log Log-Log, . . . Full asymptotic expansions Uniformity of coefficient extraction [z n ]{Fu (z)}u Ω ; later!. Some cases with natural boundary [Fl-Gourdon-Panario-Pouyanne]Example 3. Distinct Degree Factorization [DDF] in Polynomial Fact ;Greene–Knuth:« „kYz.1 [z n ]kHybrid w/ Darboux: e γk 1e γ( 1)nωn ··· ? ? 3 ···3nnnCf. Hardy-Ramanujan’s partition analysis “without contrast”.2

3. Closure PropertiesFunction of S.A.–type amenable to singularity analysis is continuable in a -domain, admits singular expansion in scale {σα,β }.Theorem 3. Generalized polylogarithmsX(log n)k n α z nLiα,k : are of S.A.-type.Proof. Cauchy-Lindelöf representationsZ 1/2 i X1πds.ϕ(s)z sϕ(n)( z)n 2iπ 1/2 i sin πs Mellin transform techniques (Ford, Wong, F.).

Example 4. Entropy of Bernoulli distributionX n kHn : πn,k log πn,k ,πn,k k p (1 p)n kkXinvolveslog(k!)z k (1 z) 1 Li0,1 (z)p11log n log 2πp(1 p) · · · .22Redundancy, coding, information th.; Jacquet-Szpankowski via Analytic2dePoissonization. Elements like log n, n in combinatorial sums

Theorem 4. Functions of S.A.-type are closed under integrationand differentiation.Proof. Adapt from Olver, Henrici, etc.Theorem 5. Functions of S.A.-type are closed under HadamardproductX(fn gn )z n .f (z) g(z) : nProof. Start from Hadamard’s formulaZ“ w ” dt1.f (t)gf (z) g(z) 2iπ γtt adapt Hankel contours [H., Jungen, R. Wilson ; Fill-F-Kapur]

Example 5. Divide-and -conquer recurrencesXf n tn πn,k (fk fn k )Sing(f (z)) Φ(Sing(t(z)))Asympt[fn ] Ψ(Sing(t)).P 2n nE.g., Catalan statistics: need.logn·znUseful in random tree applications [Fill-F-Kapur, 2004 , Fill-Kapur] //Neininger-Hwang et al. Knuth-Pittel. Moments contraction method2[Rösler-Rüschendorf-Neininger]Kn?*n K

4. Functional Equations Rational functions. Linear system Q 0 [z] implies polar singularities:X n kn[z ]f (z) ω n ,ω Q, k Z 0 . irreducibility: Perron-Frobenius simple dom. pole. Word problems from regular language models; Transfer matrices [Bender-Richmond]: dimer in strip, knights, etc.; Vallée’s generalization to dynamical sources via transfer operators. Algebraic functions, by Puiseux expansions (Z p/q ) S.A. or Darboux!X X n p/qn[z ]f (z) ω n ,ω Q, p/q Q,Asymptotics of coeff. is decidable [Chabaud-F-Salvy]. Word problems from context-free models; Trees; Geom. configurations (non-crossing graphs, polygonal triangs.);Planar Maps [Tutte.]; Walks [Banderier Bousquet-M., Schaeffer], . . .

(1 1 4z)/(2z)Square-root singularity is “universal” for many recursive classes controlled “failure” of Implicit Function Theorem Z Y 2Entails coeff. asymptotic ω n n 3/2 with critical exponent 3/2.E.g., unbalanced 2–3 trees (Meir-Moon): f zφ(f ), φ(u) 1 u2 u3 .Pólya’s combinatorial chemistry programme:1f (z) z Exp(f (z)) zef (z) 2 f (z2 ) 1 f (z 3 ) ···3Starting with Pólya 1937; Otter 1949; Harary-Robinson et al. 1970’s;Meir-Moon 1978; Bender/Meir-Moon; Drmota-Lalley-Woods thm. 1990

“Holonomic” functions. Defined as solutions of linear ODE’s withcoeffs in C(z) [Zeilberger] D-finite.L[f (z)] 0,L C(z)[ z ]. Stanley, Zeilberger, Gessel: Young tableaux and permutation statistics;regular graphs, constrained matrices, etc.Fuchsian case (or “regular” singularity) (Z β logk Z):Xn[z ]f (z) ω n nβ (log n)k ,ω, β Q, k Z 0 .S.A. applies automatically to classical classification.Asymptotics of coeff is decidable— general case: modulo oracle for connection problem;— strictly positive case: “usually” OKay.

QTrees:Example 6. Quadtrees—Partial Match [FGPR’92]Divide-and-conquer recurrence with coeff. in Q(n)Fuchsian equation of order d (dimension) for GF(d 2)Qn n( 17 3)/2 .E.g., d 2: Hypergeom 2 F1 with algebraic arguments.Extended by Hwang et al. Cf also Hwang’s Cauchy ODE cases.Panholzer-Prodinger Martinez, . . .2

Functional Equations and Substitution. Early example of balanced 2–3 trees by Odlyzko, 1979.T (z) z T (τ (z)),τ (z) : z 2 z 3 .Infinitely many exponents with common real part implies periodicities:φnΩ(log n).Tn n

Singular iteration for height of trees (binary and other simplevarieties; F-Gao-Odlyzko-Richmond; cf Renyi-Szekeres):2yh z yh 1,y0 z.— Moments and convergence in law; Local limit law of ϑ-type.Applies to branching processes conditioned on total progeny.Cf Chassaing-Marckert for // probabilistic approaches ; width Digital search trees via q–hypergeometrics: singularitiesaccumulate geometrically ; periodicities [F-Richmond]:z zk f (z) t(z) 2ez/2 f ( ).2 Order of binary trees (Horton-Strahler, Register function;F-Prodinger) via Mellin tr. of GF and & singularities.

0.30.250.20.150.15. Limit Laws0.0500.20.40.60.81 Moment pumping from bivariate GFEarly theories by Kirschenhofer-Prodinger-Tichy (1987)Factorial moment of order k: [z n ]„ F (z, u) k«u 1Example 7. Airy distribution of areas shows up in area below paths,path length in trees, Linear Probing Hashing, inversions in increasingtrees, connectivity of graphs.F (z, q) qF (qz, q) F (z, q) F (z, q) · z1 qLouchard-Takács[Darboux] ; Knuth; F-Poblete-Viola // Chassaing-Marckert2

Classical probability theory: sums of Random Variables ; powersof fixed function (PGF, Fourier tr.) ; N ormal Law.For problems expressed by Bivariate GF (BGF): field founded by E.Bender et al. developments by F, Soria, Hwang, . . .XIdea: BGF F (z, u) fn (u)z n , where fn (u) describes parameter onobjects of size n. If (for u near 1)fn (u) ω(u)κn ,κn ,then speak of Quasi-Powers approximation. Recycle continuitytheorem, Berry-Esseen, Chernov, etc. N ormal law and manygoodies. . .(speed of convergence, large deviation fn, local limits)

Two important cases: Movable singularity:„F (z, u) 1 zρ(u) Variable exponent:F (z, u) „1 zρ« α(u)« α fn (u) fn (1)„ρ(1)ρ(u)«n.8 nα(u) α(1)fn (u)“”log n α(u) α(1): efn (1).Requires uniformity afforded by Singularity Analysis(6 Tauber or Darboux).Singularity Perturbation analysis (smoothness) Uniform Quasi-Powers for coeffs N ormal limit law

Example 8. Polynomials over finite fields. Factor(x 7 x 1) mod 29;3222(x x 3 x 15) (x 25 x 25) (x 3 x 14) Polynomial is a Sequence of coeffs: P has Polar singularity. By unique factorization, P is also Multiset of Irreducibles:I has log singulariy.qn. Prime Number Theorem for Polynomials In n Marking number of I–factors is approx uth power:“”uI(z)P (z, u) e.Variable Exponent N ormality of # of irred. factors.(cf Erdős-Kac for integers.)(Analysis of polynomial fact. algorithms, [F-Gourdon-Panario])2

mple 9. Patterns in Random Strings Perturbation of linearsystem of eqns. (& many problems with finite automata, paths in graphs)Linear system X X0 TX w/ Perron-Frobenius. Auxiliary mark uinduces smooth singularity displacement. For “natural” problems:N ormal limit law. cf [Régnier & Szpankowski], . . .2Also sets of patterns; similarly for patterns in increasing labelled trees, inpermutations, in binary search trees [F-Gourdon-Martinez].Generalized patterns and/or sources by Szpankowski, Vallée, . . .

le 10. Non crossing graphs. [F-Noy] Perturbation of algebraic equation.G3 (2z 2 3z 2)G2 (3z 1)G 0G3 (2u3 z 2 3u2 z u 3)G2 (3u2 2u 3)G u 1 0Movable singularity scheme applies: N ormality. Patterns in context-free languages, in combinatorial tree models, in2functional graphs: Drmota’s version of Drmota-Lalley-Woods.

Example 11. Profile of Quadtrees.3F (z, u) 1 2 uZz0dx1x1 (1 x1 )Zx10dx21 x2Zx2F (x3 , u)0dx3.1 x3Solution is of the form (1 z) α(u) for algebraic branch α(u);Variable Exponent N ormality of search costs.Applies to many linear differential models that behave like cycles-in-perms.2

Example 12. Urn models. 2 2–balanced. G G (1 u6 ) u5 G 0(u5 z u) z u[FGP’03] Janson, Mahmoud, Puyhaubert,Panholzer-Prodinger, . . .2 Coalescence of singularities and/or exponents: e.g. Maps Airy Law Stable( 23 ) [BFSS’01]. Cf Pemantle, Wilson, Lladser,.

ConclusionsFor combinatorial counting and limit laws:Modest technical apparatus & generic technology.High-level for applications, esp., analysis of algorithms.Plug-in on Symbolic Combinatorics & Symbolic Computation.Discussion of Schemas & “Universality” in metric aspects ofrandom discrete structures.E.g. Borges’ theorem for words, trees, labelled trees, mappings, permutations,increasing trees, maps, etc.Thank you!

MSRI, Berkeley, June 2004 Singularity Analysis: A Perspective Philippe Flajolet . Construction as analytic functional. Singularities are crucial to asymptotic prop’s! (cf. analytic number theory, complex analysis, etc) .

Related Documents:

Facebook: SAMSON Connect Email: stephane.redon@inria.fr Phone: 33 4 38 78 16 92 Address: NANO-D Antenne INRIA – GIANT MINATEC Parvis Louis Néel 38000 Grenoble France April, 10, 2017 Appointments 01/08- : INRIA: Research Scientist, head of the NANO-D group

INRIA1, CEREA2, UVSQ3, FRANCE Etienne.Huot@inria.fr Giuseppe Papari Lithicon Norway AS NORWAY papari@lithicon.com Isabelle Herlin INRIA1, CEREA2 FRANCE Isabelle.Herlin@inria.fr Abstract This paper describes modeling and numerical computa-tion of orthogonal bases, which are used to describe im-ages and motion fields. Motion estimation from .

The technological singularity as defined by Vernor Vinge, Ray Kurzweil, and many others, refers to computational advancements, so let us refer to this as the “computational singularity”, to distinguish it from another singularity, which we shall refer to as the “sensory singul

Projective Geometry for Image Analysis Roger Mohr, Bill Triggs To cite this version: . on Photogrammetry & Remote Sensing (ISPRS '96), Jul 1996, Vienna, Austria. inria-00548361 Projective Geometry for Image Analysis A Tutorial given at ISPRS, Vienna, July 1996 Roger Mohr and Bill Triggs GRAVIR, project MOVI INRIA, 655 avenue de l'Europe

1. Teaching with a Multiple-Perspective Approach 8 . 2. Description of Perspectives and Classroom Applications 9 . 2.1 Scientific Perspective 9 . 2.2 Historical Perspective 10 . 2.3 Geographic Perspective 11 . 2.4 Human Rights Perspective 12 . 2.5 Gender Equality Perspective 13 . 2.6 Values Perspective 15 . 2.7 Cultural Diversity Perspective 16

RAPPORT DE STAGE Licence Professionnelle Systèmes Informatiques et Logiciels spécialité Imagerie Numérique et Informatique Stage effectué à l'INRIA Sophia Antipolis, équipe projet MASCOTTE mai août 2008. IUT Nice Côte d'Azur Rapport de stage MASCOTTE/INRIA REMERCIEMENTS Je tiens à remercier tou

SCILAB REFERENCE MANUAL Scilab Group INRIA Meta2 Project/ENPC Cergrene INRIA - Unit e de recherche de Rocquencourt - Projet Meta2 Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France) Email: Scilab@inria.fr. Contents 1 Basic functions 25

Adventure Tourism has grown exponentially worldwide over the past years with tourists visiting destinations previously undiscovered. This allows for new destinations to market themselves as truly .