Power Generation From Coal - Stanford University

2y ago
14 Views
2 Downloads
1.98 MB
114 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Aarya Seiber
Transcription

COAL INDUSTRY ADVISORY BOARDPowerGenerationfrom CoalMeasuring and ReportingEfficiency Performanceand CO2 Emissions

PowerGenerationfrom CoalMeasuring and ReportingEfficiency Performanceand CO2 EmissionsCoal is the biggest single source of energy for electricity production and itsshare is growing. The efficiency of converting coal into electricity matters:more efficient power plants use less fuel and emit less climate-damagingcarbon dioxide. This book explores how efficiency is measured and reportedat coal-fired power plants. With many different methods used to expressefficiency performance, it is often difficult to compare plants, even beforeaccounting for any fixed constraints such as coal quality and cooling-watertemperature. Practical guidelines are presented that allow the efficiency andemissions of any plant to be reported on a common basis and comparedagainst best practice. A global database of plant performance is proposedthat would allow under-performing plants to be identified for improvement.Armed with this information, policy makers would be in a better position tomonitor and, if necessary, regulate how coal is used for power generation.The tools and techniques described will be of value to anyone with aninterest in the more sustainable use of coal.

COAL INDUSTRY ADVISORY BOARDPowerGenerationfrom CoalMeasuring and ReportingEfficiency Performanceand CO2 Emissions

INTERNATIONAL ENERGY AGENCYThe International Energy Agency (IEA), an autonomous agency, was established inNovember 1974. Its mandate is two-fold: to promote energy security amongst its membercountries through collective response to physical disruptions in oil supply and to advise membercountries on sound energy policy.The IEA carries out a comprehensive programme of energy co-operation among 28 advancedeconomies, each of which is obliged to hold oil stocks equivalent to 90 days of its net imports.The Agency aims to:n Secure member countries’ access to reliable and ample supplies of all forms of energy; in particular,through maintaining effective emergency response capabilities in case of oil supply disruptions.n Promote sustainable energy policies that spur economic growth and environmental protectionin a global context – particularly in terms of reducing greenhouse-gas emissions that contributeto climate change.n Improve transparency of international markets through collection and analysis ofenergy data.n Support global collaboration on energy technology to secure future energy suppliesand mitigate their environmental impact, including through improved energyefficiency and development and deployment of low-carbon technologies.n Find solutions to global energy challenges through engagementand dialogue with non-member countries, industry,international organisations and other stakeholders. OECD/IEA, 2010International Energy Agency9 rue de la Fédération75739 Paris Cedex 15, FranceIEA member countries:AustraliaAustriaBelgiumCanadaCzech elandItalyJapanKorea (Republic of)LuxembourgNetherlandsNew ZealandNorwayPolandPortugalSlovak RepublicSpainSwedenSwitzerlandTurkeyUnited KingdomUnited StatesPlease note that this publicationis subject to specific restrictionsthat limit its use and distribution.The terms and conditions are availableonline at www.iea.org/about/copyright.aspThe European Commissionalso participates inthe work of the IEA.

COAL INDUSTRY ADVISORY BOARD OECD/IEA 2010The IEA Coal Industry Advisory Board (CIAB) is a group of highlevel executives from coal-related industrial enterprises, established bythe IEA in July 1979 to provide advice to the IEA Executive Directoron a wide range of issues relating to coal. The CIAB currently has44 members from 19 countries, contributing valuable experiencein the fields of coal production, trading and transportation,electricity generation and other aspects of coal use.3

OECD/IEA 2010

forewordForewordCoal plays an essential role in our global energy mix, particularly for power generation, but we need to useit efficiently and reduce its environmental footprint. Bringing clarity to the measurement and reporting ofefficiency performance and carbon dioxide emissions is a prerequisite to the more sustainable use of coal atpower plants. This study by the IEA Coal Industry Advisory Board (CIAB) seeks better ways to measure andreport the efficiency of coal use and related emissions. It offers practical advice on a subject that can oftenappear complex and confusing, but one that is extremely important to assuring coal’s role in our energyfuture, alongside carbon capture and storage.The recommendation to establish an international database of power plant performance data is welcome. Itwould be a powerful tool to help identify and target plants where performance can be improved, whetherthey be in OECD or non-OECD countries. The inefficient use of coal is undesirable and avoidable; itwastes a natural resource and leads to unnecessary pollutant and greenhouse-gas emissions. Moreover, as theworld moves to develop and deploy carbon dioxide capture and storage technology, high-efficiency coal-firedpower plants will become even more important to compensate for the energy used to capture and compresscarbon dioxide for transport and storage.Through the findings and recommendations in this report, the Coal Industry Advisory Board has made avaluable contribution that will guide policy makers towards better regulation of coal-fired power plants. Itis particularly timely given the growth in policies and legislation to curb carbon dioxide emissions in manycountries, and the emerging debate on power plant emission performance standards.Nobuo Tanaka, IEA Executive DirectorandRoger Wicks, IEA Coal Industry Advisory Board Chairman OECD/IEA 2010This report is published under the authority of the IEA Executive Director as part of the IEA roleto advise G8 leaders on alternative energy scenarios and strategies. The views and recommendationsexpressed do not necessarily reflect the view or policies of IEA member countries or of CIAB membersand their respective organisations.5

OECD/IEA 2010

acknowledgementsACKNOWLEDGEMENTSA project to examine coal-fired power plant efficiency and performance was called for in the Plan of Actionon climate change that was released with the G8 Gleneagles Summit communiqué in July 2005. This reportresponds to that call, forming part of a work package carried out under the guidance of Neil Hirst, formerDirector of the Global Energy Dialogue Directorate at the IEA.The report and its associated appendices, covering efficiency measurement and reporting, were preparedby a working group of the IEA Coal Industry Advisory Board (CIAB) under the leadership of Prof. AllanJones, Managing Director of E.ON Engineering. Mike Garwood, also of E.ON, was the principal author,while Brian Heath, CIAB Executive Co‑ordinator, gave considerable support to the project. Additionalinputs were provided by Dr. Colin Henderson of the IEA Clean Coal Centre and from the IEA Secretariatby Dr. Sankar Bhattacharya.Two IEA committees oversaw the work: the Committee on Energy Research and Technology and theStanding Group on Long-Term Co‑operation. Committee members and Energy Advisors from IEA membercountries provided ideas and assistance that improved the report. The IEA Working Party on Fossil Fuelsgave valuable support, as did participants at a special workshop held in January 2008.* Rebecca Gaghen andher team in the Communication and Information Office at the IEA ensured a publication of the highestquality. Brian Ricketts initiated the project and carried overall editorial responsibility.Thanks are also due to the following experts for their valuable assistance during the preparation andreview of this report: Dr. Seung-Young Chung (KETEP); Aneta Ciszewska (Ministry of Economy,Poland); Stuart Dalton (EPRI); Nataliia Denysenko (IEA); Takashi Iwasaki and Ikuo Nishimura (FEPC);Dipl.‑Ing. Hans‑Joachim Meier (VGB PowerTech); Elena Virkkala Nekhaev (World Energy Council); andDr. John Topper (IEA Clean Coal Centre).Comments and queries regarding this publication should be directed to cleanerfossilfuelsinfo@iea.org. OECD/IEA 2010* www.iea.org/work/workshopdetail.asp?WS ID 3487

OECD/IEA 2010

Table of contents OECD/IEA 2010TABLE OF CONTENTSForeword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5ACKNOWLEDGEMENTS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7EXECUTIVE SUMMARY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131.  INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15l1.1  Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15l1.2  Objective. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16l1.3  Report structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162.  FACTORS INFLUENCING POWER PLANT EFFICIENCY AND EMISSIONS. . . . . . . . . .17l2.1  Differences in reported efficiency values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17l2.2  Impact of condenser-operating conditions on efficiency. . . . . . . . . . . . . . . . . . . . . .24l2.3  Heat and power equivalence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26l2.4  Efficiency performance assessment periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29l2.5  Efficiency standards and monitoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30l2.6  Reporting bases for whole plant efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32l2.7  CO2 emissions reporting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .333.  GENERIC RECONCILIATION METHODOLOGY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37l3.1  Process boundaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37l3.2  Input data requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40l3.3  Output data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41l3.4  Generic corrections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .454.  EFFICIENCY OUTLOOK FOR POWER GENERATION FROM COAL. . . . . . . . . . . . . . . .579

Table of contents5.  CONCLUSIONS AND RECOMMENDATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61l5.1  IEA recommendations to the 2008 G8 Summit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61l5.2  Reporting efficiency performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62l5.3  Improved collection of performance data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62l5.4  Performance benchmarking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63l5.5  The way forward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63REFERENCES AND BIBLIOGRAPHY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65ACRONYMS, ABBREVIATIONS AND UNITS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69APPENDIX I: UNDERSTANDING EFFICIENCY IN A POWER STATION CONTEXT. . . . . .75Energy supply chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75What is efficiency?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76The vapour power cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77Entropy and the temperature-entropy diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79lThe Carnot cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80lSupercritical steam cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83lRankine and Carnot cycle efficiencies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83APPENDIX II: WORKED EXAMPLE OF EFFICIENCY RECONCILIATION PROCESS. . . . .85APPENDIX III: REGIONAL METHODOLOGIES AND DATA SOURCES. . . . . . . . . . . . . . . . .91lAustralia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91lCanada. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95lChina. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96lGermany. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97lIndia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98lItaly. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100lJapan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101lKorea. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102lPoland. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103llllRussia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 OECD/IEA 2010llSouth Africa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105lUnited Kingdom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106lUnited States. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10910

Table of contents OECD/IEA 2010List of figuresFigure 2.1 Typical relationship between steam turbine heat consumptionand operating load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19Figure 2.2Impact of unit operating load on heat rate. . . . . . . . . . . . . . . . . . . . . . . . . . .20Figure 2.3 Example energy flows in a typical 500 MW subcriticalpulverised coal-fired boiler. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24Figure 2.4 Example of the impact of cooling-water temperature on condenserpressure for constant unit load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25Figure 2.5Impact of condenser pressure on heat consumption. . . . . . . . . . . . . . . . . .25Figure 2.6 Effect of condenser fouling on turbine heat rate. . . . . . . . . . . . . . . . . . . . . .26Figure 2.7 Effect of heat supply on overall efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . .28Figure 2.8 Example of relationship between CO2 emissions and net plantefficiency (with and without CCS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35Figure 3.1 Example of a process boundary showing energy in‑flowsand out‑flows for a power plant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37Figure 3.2 System boundary for water-steam process. . . . . . . . . . . . . . . . . . . . . . . . . . . .38Figure 3.3 Steam turbine plant test boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39Figure 3.4 Australian GES plant boundary with co‑generation. . . . . . . . . . . . . . . . . . .39Figure 3.5 Comparing plant performance with best practice. . . . . . . . . . . . . . . . . . . . .43Figure 3.6 Relationship between coal GCV and as‑received moisturecontent for a large data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46Figure 3.7 Effect of coal moisture on GCV:NCV ratio for a large data set. . . . . . . .46Figure 3.8 Variation of GCV:NCV ratio with GCV for a large data set. . . . . . . . . . .47Figure 3.9 Dry, ash-free volatile matter as an indicator of carbon:hydrogen ratio for a large data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48Figure 3.10 Approximate influence of coal moisture on plant efficiency. . . . . . . . . . . .50Figure 3.11 Heat rate improvement with main steam and single reheattemperature at different main steam pressures. . . . . . . . . . . . . . . . . . . . . . .51Figure 3.12 Heat rate improvement at different main steam pressure, withincreasing main steam and double reheat temperatures. . . . . . . . . . . . . .52Figures 4.1-4.4 Evolution of coal-fired heat and power plant efficiencyin selected countries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58Figure 4.5 Efficiency improvement potential at hard coal-fired power plants. . . . . .5911

Table of contentsFigure I.1Typical sequence of events in fuel utilisation. . . . . . . . . . . . . . . . . . . . . . . . . .75Figure I.2Basic representation of the vapour-power cycle. . . . . . . . . . . . . . . . . . . . . . .78Figure I.3Temperature-entropy diagram for steam and water. . . . . . . . . . . . . . . . . . .79Figure I.4Carnot cycle for steam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80Figure I.5 Schematic of a simple steam cycle for power generation and associated temperature-entropy diagram. . . . . . . . . . . . . . . . . . . . . . . .81Figure I.6 Temperature-entropy diagram with condensed feed water heated by bled steam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82Figure I.783Temperature-entropy diagram of a supercritical steam cycle. . . . . . . . . . OECD/IEA 2010List of tablesTable 3.1Annual plant operating data requirements. . . . . . . . . . . . . . . . . . . . . . . . . . .40Table 3.2Supplementary data requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41Table 3.3Template for overall power plant assessment summary. . . . . . . . . . . . . . .42Table 3.4 Examples of uncontrollable external constraints and controllable design parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42Table 3.5General plant information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44Table 3.6Typical GCV:NCV ratios for various fuels. . . . . . . . . . . . . . . . . . . . .

Hans-Joachim Meier (VGB PowerTech); Elena Virkkala Nekhaev (World Energy Council); and Dr. John Topper (IEA Clean Coal Centre). Comments and queries regarding this publicat

Related Documents:

Our main source of coal comes from a coal mine near Butler, Missouri. A stock pile of coal for unexpected emergencies is maintained at Blue Valley. A 90-day supply of coal consists of 45,000 tons of coal. Coal Feeders Feeding coal from the bunkers to the pulverizers is the purpose of the coal feeders. The pulverizers grind the coal into a fine .

IEA Clean Coal Centre – New regulatory trends: effect on coal-fired power plant and coal demand 4 . Abstract . This review presents the recent regulatory trends, practices and developments, in major coal producing and consuming countries, which are affecting and may influence future demand for coal and coal-fired power generation.

SEISMIC: A Self-Exciting Point Process Model for Predicting Tweet Popularity Qingyuan Zhao Stanford University qyzhao@stanford.edu Murat A. Erdogdu Stanford University erdogdu@stanford.edu Hera Y. He Stanford University yhe1@stanford.edu Anand Rajaraman Stanford University anand@cs.stanford.edu Jure Leskovec Stanford University jure@cs.stanford .

as.edu / n e Resources -Coal 1 Based on -The Coal Resource by World Coal Institute 2005.-The Coal Resource Base, Chapter 2 of Producing Liquid Fuels from Coal by J.T. Bartis, F. Camm and D.S. Ortiz. Published by RAND 2008. ISBN: 978--8330-4511-9. -The Role of Coal in Energy Growth and CO2 Emissions, Chapter 2 of The Future of Coal, an Interdisciplinary MIT Study, 2007.

Coal is comprised of organic and inorganic (mineral) assemblages. . do we understand coal? (CCT, advanced applications) ORGANIC PETROLOGY FINDS RELEVANCE IN GEOLOGY, METALLURGY, CHEMICAL ENGINEERING, COAL SUSTAINABILITY ACROSS THE COAL VALUE-CHAIN . LIGHT WEIGHT COMPOSITE MATERIALS Underground coal gasification Many additional uses: Paper .

The Lower Kittanning coal bed assessment only includes maps showing its areal extent and geochemical parameters and a history of the mining of the coal bed. Pittsburgh Coal Bed The results of the Pittsburgh coal bed assessment (North-ern and Central Appalachian Basin Coal Regions Assessment Team, 2001; Tewalt, Ruppert, Bragg, Carlton, and others,Author: Michael H. Trippi, Leslie F. Ruppert, Robert C. Milici, Scott A. Kinney

Coal deposits are mined by cutting a network of 'roads' into the coal seam & leaving behind 'pillars' of coal to support the roof of the mine. These pillars can be up to 40% of the total coal in the seam - although this coal can sometimes be recovered at a later stage by 'retreat mining'.The roof is then allowed to collapse and the mine is

EIA Energy Conference 2016 World Coal Markets : The Changing Global Landscape for Coal Coal continues to be a major source of energy for India. Fossil fuels are the major drivers of the economy. Biomass still used significantly in rural areas. Role of Coal Coal, 341.00, 44% Oil, 178.25, 23% Gas, 46.50, 6% Nuclear, 7.75, 1% Others .