A New Technique For Systems Of Abel-Volterra Integral .

2y ago
24 Views
2 Downloads
397.74 KB
11 Pages
Last View : 25d ago
Last Download : 3m ago
Upload by : Jayda Dunning
Transcription

International Journal of the Physical Sciences Vol. 7(1), pp. 89 - 99, 2 January, 2012Available online at http://www.academicjournals.org/IJPSDOI: 10.5897/IJPS11.864ISSN 1992-1950 2012 Academic JournalsFull Length Research PaperA new technique for systems of Abel-Volterra integralequationsJafar Biazar1* and H. Ebrahimi21Department of Mathematics, Rasht branch, Islamic Azad University, P. O. Box 41335-3516, Rasht, Iran.Faculty of Mathematical Science, University of Guilan, P. O. Box. 41635-19141, P. C. 4193833697, Rasht, Iran.2Accepted 8 September, 2011Extension of a computational method for solving a special kind of singular system is the novelty ofthis paper. These systems are called systems of Abel Volterra integral equations. This method isbased on the application of Legendre wavelets, as a basis functions for numerical solutions. Someexamples are presented to illustrate the efficiency and the simplicity of the method.Key words: Systems of Abel Volterra integral equations, Legendre wavelets method, operational matrices.INTRODUCTIONMathematical modeling of many physical systems leadsto functional equations in various fields of physics andengineering. In recent years some methods have beenused by many authors to obtain approximate solutions(He, 1999; Biazar et al., 2003, 2009; Faraz et al., 2010;Khan and Faraz, 2011). System of Volterra integralequations arise in mathematical modeling of manyphenomena (Delves and Mohamed, 1988; Jerri, 1999;Linz, 1985) and several methods have been proposed inthe literature to solve these systems. These systemshave been solved by Adomian decomposition method(Biazar et al., 2003), homotopy perturbation method(Biazar et al., 2009), variational iteration method (Biazarand Ebrahimi, 2010) and radial basis function networks(Golbabai et al., 2009).In the present paper, special kind of singular systemsof Volterra integral equations, called systems of Abelintegral equations are studied. Historically, Abel is thefirst person who had studied integral equations, duringthe 1820 decade (Jerri, 1999; Linz, 1985). He obtainedthe following equation, when he was generalizing thetautochrone problem. x0u (t )dt f ( x).x t(1)function which could be determined. This equation is aparticular case of a linear Volterra integral equation of thefirst kind. The kernel of Abel integral equations has weaksingularity and Abel integral equations are somewhat illposed and any small changes in the measurement datamay cause unpredictable huge errors in the numericalapproximate solutions.Some methods for solving the system of Abel integralequations are known. The idea of the fractional calculushas been used for a special kind of these systems(Mandal et al., 1996), an operational matrix methodbased on block-pulse functions for singular integralequations has been introduced (Maleknejad and Salimi,2008). In Pandey and Mandal (2010), Bernsteinpolynomials have been used for numerical solutions ofsystems of generalized Abel integral equations.The method introduced in this paper consists ofreducing a system of Abel integral equations into asystem of algebraic equations, by expanding theunknown functions, as a series in terms of Legendrewavelets with unknown coefficients (Maleknejad andSohrabi, 2007; Mahmoudi, 2005; Yousefi, 2006; Biazarand Ebrahimi, 2010). The general form of these systemsis considered as the following.mwhere f ( x) is a known function and u ( x) is an unknown Fi jm *Corresponding author. E-mail: biazar@guilan.ac.ir. Tel: 981313233509. Fax: 981313233509.( x , u 1 ( x ) , ., u n ( x ) ) j 1j 1xaG i j ( u 1 (t ) ,., u n (t ) )αi jdt f i ( x ),( x t )i 1, 2 ,., n , m 1, 2 ,.,(2)

90Int. J. Phys. Sci.0 α i j 1 ,0 x 1 ,whereandalsof i ( x ), i 1, 2 ,., n, are known functions.2 k 1 M 1f ( x) cnmψ n m ( x ) C T ψ ( x ).(6)n 1 m 0This paper is organized as follows: Legendre waveletsmethod is explained, applications of the method forintroduced systems are studied, numerical examples arepresented and conclusions are given, finally.where C and ψ ( x ) are 2k 1C c 10 ,c 11 ,K,c 1M 1 ,c 20 ,c 21 ,K,c 2M 1,K,c 2 k 1 0 ,K,c 2 k 1 ,M 1 LEGENDRE WAVELETS METHODWavelets constitute a family of functions constructed fromdilation and translation of a single function called themother wavelet (Daubeches, 1992; Christensen andChristensen, 2004). When the dilation parameter a andthe translation parameter b , vary continuously thefollowing family of continuous wavelets will appear:M 1 matrices given by:T(7)T c 1 ,c 2 ,K,c M ,c M 1 , K,c 2 k 1 M , andψ ( x ) [ ψ10 (x ),K,ψ1,M 1(x ),ψ 20 (x ) ,K,ψa ,b(t ) a1 2ψ(t b),aa ,b , a 0.(3)Tψ 2,M 1(x ),K,ψ 2 0 (x ),K,ψ 2k 1k 1(x ) ,M 1 (8)T ψ1(x ),K,ψ M (x ),ψ M 1(x ), K,ψ 2k 1 M (x ) . Legendre wavelets are defined on the interval [ 0 ,1 ] asfollows:Also, a functionapproximated by:ψ n m (t ) ψ (t ; k , n , m ) 1 k2n 1nm 2 Pm (2 k t 2n 1), k 1 t k 1 , 222 0,otherwise. where n 1, 2 , ., 2k 1(4)nm, k is any positive integer, m isψ n m ( x ),(5)n 1 m 0where c n m ( f ( x ) ,ψproduct of f ( x ) andnm(9)will be obtain by: cbeHere the entries of the matrix K [ k i j ] k 12 M 2 k 1 Mand t is the normalized time. Pm ( t ) is the famousLegendre polynomial of order m . These polynomials areorthogonal with respect to the weight function w (t ) 1 .The set of Legendre wavelets are an orthonormal set.2A function f ( x ) L [ 0 ,1 ] may be expanded asfollows:f ( x) canf (x , y ) ψ T (x ) K ψ ( y ).((k i , j ψ i ( x ) , f ( x , y ) ,ψ j ( y )the degree of Legendre polynomials, m 0,1,., M 1 f ( x , y ) L 2 [ 0 , 1 ] 2)( x ) , stands for the inneri , j 1 , 2 , . , 2k 1) ),(10)M .The integration of the vector ψ ( x ) , defined in Equation8, can be achieved as the following.x 0ψ(11)( t ) dt P ψ ( x ).k 1where P is the 2M 2 k 1 M operational matrix forintegration (Razzaghi and Yousefi, 2001).The following property of the product of two Legendrewavelet vector functions is well known as:ψ ( x )ψ T ( x ) YY% ψ ( x ).(12)ψ n m ( x ) . Let’s consider truncatedseries in Equation 5, as the following.whereYisagivenvectorandY%isa

Biazar and Ebrahimis2 k 1 M 2 k 1 M matrix. This matrix is called themmFiTψ (x ) X iTjψ (x ) operational matrix of product.x0j 1j 1mmj 1j 1 k 0mmj 1j 1 k 0 Ai jktkk 0( x t )sαi jdttkdtα( x t ) i jSOLUTION OF SYSTEMS OF ABEL VOLTERRAINTEGRAL EQUATIONS X iTjψ (x ) Ai j k Here, two cases of these systems will be studied. X iTjψ (x ) Ai j k Z k i j (x ),Case 1x0s(15)αi 1,2,., n, s 2k 1M ,2k 1M 1,. .Consider the system (Equation 2) with the limits 0 andx for integral signs. To solve this system by Legendrewaveletsmethod,unknownfunctions,u i ( x ), i 1 , 2 , ., n91areconsideredasalinearαwhere Ai j k andZ k i j (x )following formulas:combination of these wavelets as the following.Ai j k (c10 ,K, c n ,2 k 1 M ) u i (x ) C i T ψ (x ), i 1, 2,., n .(13)wherecan be determined by thed k G (C1Tψ (t ),.,C 2Tψ (t ))t 0k!,(16)i 1,2,., n , j 1,2,., m , k 0,1,., s .andTC i c i ,1 ,c i ,2 ,K,c i ,M ,c i ,M 1 , K,ci ,2 k 1 M , i 1,2,., n .αi jZkOther terms also will be considered as the followinggeneral expansions:tk(x ) α dt0( x t ) i jΓ (k 1)Γ (1 α i j ) k α i j 1 x,Γ (k α i j 2)x(17)k 0,1,., s .f i (x ) F iT ψ (x ),F i j ( x , u 1(x ),.,u n (x ) )Now let’s consider:X Ti j ψ (x ),s As) Ai j k t k ,(G i j u 1(t ), u 2 (t ),., u n (t ) (14)k 0i 1, 2,., n , j 1, 2,., m ,s 2 k 1M , 2 k 1 M 1,. .αi jkZ k i j (x ) Y iTj ψ ( x ),k 0i 1, 2 ,., n , j 1, 2,., m .Substitution of Equation 18 into the system (Equation 15),leads to the following system:mk 1where F i are the 2M 1 matrices and X i j arek 1the 2M 1 matrices with the entries which are interms of the components of the vectors C i fori 1 , 2 , ., n , j 1 , 2 , ., m .By substituting Equations 13 and 14 into the system,one gets:(18)Fi T ψ (x ) X iT j Y iTj ψ (x ), i 1, 2,., n , (19)()j 1Multiplyingψ T ( x) ,in both sides of the system(Equation 19) and applying1 0 ( . ) dx , a linear or non-linear system in terms of the elements of

92Int. J. Phys. Sci.whereC i , i 1, 2 , ., n , will be obtained.52914 x 2 16 x 2243 ( x 1 ) 3 xf 1(x ) 2 x 1515440Case 2If in Equation 2, limits of integral are different from 0 andx , then the formula (Equation 17) would not beapplicable, and another approach should be considered.One can write the kernels as:1αijψ T (x ) K i j ψ (t ),( x t )i 1, 2,., n , j 1, 2,., m .where K i , j are 2k 12Mci nψ n (x ) .3(21)n 1If one set x x j , where x j [ 0 , 1] , the error values canbe obtained. Therefore we can check the accuracy of themethod by using error functions.NUMERICAL EXAMPLESTo illustrate the method, some systems are consideredand solved by the proposed method.The19524exactareu (x ) x 2 1,andv (x ) x . This system is of the case 2. Let’s writethe system (Equation 22) as the following.x111 2 ( x 1) 0 x t u (t )dt x 0 3 x t v (t )dt x 1v (t )dt f 1(x ), x 3 0x t x 3 1 1 u (t )dt x 1 u (t )dt 0 4 x t 0 4 x t x 1 (1 x ) 5v (t )dt f 2 (x ), 0x t Consider k 1 , M 8 , andu (x ) C 1T ψ (x ) ,v (x )f 1 (x )TF1 ψ (x ),Tx 2 1 A 11ψ (x ),x3Consider the following system of Abel integral equationson [ 0,1] :3A T21ψ ( x ),1x t14(22)solutions3Example 1x111 2(x 1)u(t)dt xv (t )dt f1(x), 0x3x tx t 1x11 x 3u(t )dt (1 x ) 5v (t )dt f 2(x), 4x0 x tx t356 ( x 1 ) 4 x 3 128 ( x 1 ) 4 xf 2 (x ) 332313M 2 k 1 M complex matrices 232 ( x 1 ) 4 x 4 625x 5 625x 5. 7715961596considered as approximate solutions.Since the truncated Legendre wavelets series areapproximate solutions of system (Equation 2), one hasan error function e ( u i ( x ) ) as follows:e (u i (x ) ) u i (x ) 281 ( x 1 ) 3 x 3 27 (x 1) 3 x 2 3 ( x 1) 3 x, 2208811(20)with the entries according to the Equation 10. Inapplying Legendre wavelets method, obtained solutionswill be complex, because of complex entries of matricesK i j , and the real parts of the solutions can bek 124x tx 0C T2 ψ (x ),Tf 2 (x ) F 2 ψ (x ),xTA 12ψ (x ),1 xψ T (x ) K 1ψ (t ),ψ T (x ) K 2 ψ (t ),1u (t ) dt Y 1T ψ (x ),x tA T22 ψ ( x ),(23)

Biazar and Ebrahimi93Figure 1. The exact and approximate solutions of Example 1 (a1 and b1).1x 0345x tTY 2 ψ ( x ),c 2 ,6 0.0000632693604 0.0001176234874I ,c 2 ,7 0.0001577272089 0.00001908555302 I .Tu (t ) dtY 3 ψ ( x ),v (t ) dtY 4T ψ ( x ).x t1x 0x t1x 0v (t ) dtSince entries of the matrices K 1 and K 2 are complex,the real parts are considered as approximate solutions.u (x ) 0.1059683526 x 7 0.0279973931 x 6 0.4092470195 x 5 0.5281462460 x 4Substituting into the system (Equation 23) and solving theobtained system, the following results will be achieved. 0.2415872910 x 3 0.9532702993 x 2 0.00157711934 x 0.9998653975,c 1 , 0 1 .332139718 0 .0001712234033 I ,c 1 , 1 0 .2881733408 0 .0003360200620 I ,v (x ) 2.096522496 x 7 7.127044981x 6c 1 , 2 0 .07495349421 0 .0003778882289 I , 9.334519464 x 5 5.928096298 x 4c 1 , 3 0 .0004166935511 0 .00007348614476 I , 0.9036584798 x 3 0.2968255414 x 2c 1 , 4 0 .00009264304313 0.0002144572776 I , 0.01824363652 x 0.0002621496533.c 1 , 5 0 .000126694 0664 0 .00009326947553 I ,c 1, 6 0.0001029232530 0.00001070354157 I ,c 1, 7 0.0000079722934141 0.00001920837799 I ,Plots of the exact and approximate solutions are shownin Figure 1, and plots of error functions are shown inFigure 6.c 2 ,0 0.2501175456 0.001356238161 I ,c 2 ,1 0.2595052996 0.0009835260024 I ,c 2 , 2 0.1112783354 0.0002757174589 I ,c 2 ,3 0.01885257238 0.0006609553538 I ,c 2 , 4 0.0003527252537 0.0002674685299 I ,c 2 ,5 0.0002311584955 0.000081849724430 I ,Example 2Consider the following linear system of Abel integralequations, with the exact solutions u ( x) x , andv ( x) x on [ 0,1] (Maleknejad and Salimi, 2008).

94Int. J. Phys. Sci.x1 4v(x) u(x) 0 (x t )3 u(t )dt x, xπ1(v (t ) u(t ))dt x v (x ) u (x) 02x t 4 x 3/2.3 u (x ) 5.885144996 x 9 26.84654734 x(24)F1T ψx 0x 0x 0( x t ) 31x t1x t 32.39185155 x 5 11.76755039 x48 2953.049126 x 7 3320.767151 x6 2258.593806 x 5 956.3816582 x4 251.5888474 x 3 40.83119833 x 2 5.012913708 x 0.04957533208.Plots of the exact and approximate solutions arepresented in Figure 2. Error functions are plotted inFigure 7.101x6v ( x ) 303.0097084 x 9 1452.320553 xv (x ) C T2 ψ ( x ),4x x 3 / 2 F 2T ψ ( x ),3(x ), 51.26379778 x 7 53.12871470 x 2.458395282 x 3 0.2686523078 x 2 1.012477244 x 0.0001419708482,In Maleknejad and Salimi (2008), the authors obtainedLaplace transforms of this system, and then foundinversion of Laplace transform by operational matrices.Let’s take k 1 and M 10 , and such that:u (x ) C 1T ψ ( x ) ,8 A 1 Z k3 2 (x ) Y 1T ψ (x ),u (t ) dtk 010u (t ) dt A 2 Z k1 2 (x ) Y 2T ψ (x ),k 010v (t ) dt A 3 Z k1 2 (x ) Y 3T ψ (x ).k 0Therefore, the following system will be obtained: 4 C2T C 1T Y1T F1T , T π TTTT C 2 C 1 Y 3 Y 2 F2 . 2(25)Example 3Consider the following non-linear system of Abel integralequations:x1 22 u (x ) 2v (x ) 0 5 x t (u (t ) v (t ))dt 390625 34/5 3125 24/5 x 2 2x 3 x x , 15736569576 v (x ) u (x ) x 1 u (t )v (t )dt 0 3 x t 2187 17/3 x 3 x 2 x , 0 x 1. 5236With the exact solutions, u ( x ) xElements of vectors C 1 and C 2 are computed bysolving a linear system, with twenty equations and thesame number of unknowns, as follows:c 2 , 0 0.66666678324,c 2 ,1 0.2309422413,c 2 , 2 0.04258874862,c 2 , 3 0.01680244769,c 2 , 4 0.008652711337,c 2 , 5 0.005161156387,c 2 , 6 0.003351718010,c 2 , 7 0.002352618714,c 2 , 8 0.001673003306,c 2 , 9 0.001429765418.Therefore, the following approximate solutions will beresulted:2(26)3and v ( x) x .Applying the Legendre wavelets method for k 1 andM 6 results in the following.c 1, 0 0.3333333332,c 1,1 0.2886751346,c 1, 2 0.07453559914,c 1, 3 0.1593029682 10 10 ,c 1, 4 0.3468681244 10 12 , c 1, 5 0.1888710861 10 11,c 2, 0 0.2499999998,c 2 ,1 0.2598076210,c 2, 2 0.1118033988,c 2 , 3 0.01889822361,c 2, 4 0.1116409590 10 10 , c 2, 5 0.2114302164 10 11.Therefore, one gets the following approximate solutions:

Biazar and Ebrahimi95Figure 2. The exact and approximate solutions of Example 2 (a2 and b2).u (x ) 0.1578564606 10 8 x 5 0.4019253820 10 8 x 4Let’s consider k 1 and M 5 . Entries of the vectorsC 1 and C 2 can be computed as the following. 0.2810653885 10 8 x 3 0.9999999981x 2 0.1508736445 10 8 x 0.4641165416 10 9 , 8 5 8 4v (x ) 0.1767111437 10 x 0.2073318451 10 x3 9 2 0.9999999981x 0.458286971 10 x 9c 1, 0 0.7500000001,c 1, 2 0.1118033985,c 1, 4 0.1532165690 10 9 0.1405246551 10 x 0.18 10 .c 2 ,1 0.2886751347,Plots of the exact and approximate solutions are plottedin Figure 3 and error functions are shown in Figure 8.c 1,1 0.2598076212,c 1, 3 0.011889822359, 9,c 2 , 0 0.4999999999,c 2 , 2 0.1136139673 10 10 ,c 2 , 3 0.1068365696 10 10 , c 2 , 4 0.3978712670 10 11.The approximate solutions are:Example 4u (x ) 0.3217547949 10 7 x 4 0.9999999324 x 3Consider the following non-linear system with the exact3solutions u ( x ) x 1 and v ( x ) x .x1 2v 3 (t )dt x 6 2 x 3 u (x ) 03( x t ) 32 x 5/2 1, 5 x132768 23/4 2 v (x ) 0 4 x t u (t )v (t )dt x 100947 x 128 11/4 x ,0 x 1. 231 0.4136847363 10 7 x 2 0.5692994140 10 8 x 1,v (x ) 0.8355296607 10 9 x 4 0.1105733333 10 8 x 3 0.3786925712 10 7 x 2 x 0.3717337006 10 9.(27)Plots of the exact and approximate solutions are shownin Figure 4 and plots of error functions are shown inFigure 9.Example 5Consider the following system of Abel Volterra integral ofthe first kind:

96Int. J. Phys. Sci.Figure 3. The exact and approximate solutions of Example 3 (a3 and b3).Figure 4. The exact and approximate solutions of Example 4 (a4 and b4).x x 1x 0 x t (u (t ) v (t )) dt e 2 , x1 (u (t ) 2v (t ))dt e x x 3, 0 x 1. 0 x t(28)xWith the exact solutions u ( x ) e e r f (πv (x) 1 xxπx ) and

Biazar and Ebrahimi97Figure 5. The exact and approximate solutions of Example 5 (a5 and b5).u ( x ) 226.0149470x 9 1063.703653 x 8 2122.157100 x 7 02339.491704 x 6 1558.306153 x 5 645.2812734 x 4 165.6773181 x 3 25.68774288 x 2 3.275655345 x 0.03104332440,v ( x ) 42845.65844 x 9 198904.9387 x 8 389906.1701 x 7 419870.7757 x 6 270634.2637 x 5 106685.4261 x 4 25219.19223 x 3 3360.406582 x 2 223.3096447 x 6.535131213.Plots of the exact and approximate solutions and errorfunctions are shown in Figures 5 and 10.ConclusionFigure 6. Plots of error functions of Example 1.By applying the Legendre wavelets approach for k 1and M 10 , the following solutions would be obtained.In this paper, the Legendre wavelets method is used tofind approximate solutions of systems of Abel Volterraintegral equations. It is observed that the solutionobtained by this method converges rapidly to an exactsolution and plots confirm it. Research for finding moreapplications of this method and other orthogonal basisfunctions is one of the research fields in our research

98Int. J. Phys. Sci.1.21.00.80.60.40.2Figure 7. Plots of error functions of Example 2.Figure 9. Plots of error functions of Example 4.1.41.21.00.80.60.40.2Figure 10. Plots of error functions of Example 5.Figure 8. Plots of error functions of Example 3.group. The computations associated with examples are

Biazar and Ebrahimiperformed using the package Maple 13.REFERENCESBiazar J, Babolian E, Islam R (2003). Solution of a system of Volterraintegral equations of the first kind by Adomian method. Appl. Math.Comput., 139: 249-258.Biazar J, Ebrahimi H (2010). Legendre Wavelets for Systems ofFredholm Integral Equations of the Second Kind. World Appl. Sci. J.,9(9): 1008-1012.Biazar J, Ebrahimi H (2010). Existence and uniqueness of the solutionof non-linear systems of Volterra integral equations of the secondkind. J. Adv. Res. Appl. Math., 2 (4): 39-51.Biazar J, Eslami M, Aminikhah H (2009). Application of homotopyperturbation method for systems of Volterra integral equations of thefirst kind. Chaos, Solitons Fractals, 42: 3020-3026.Christensen O, Christensen KhL (2004). Approximation Theory: fromTaylor polynomial to wavelets. Birkhauser Boston, 530-554.Daubeches I (1992). Ten Lectures on Wavelets. CBMS-NSF.Delves LM, Mohamed JL (1988). Computational methods for integralequations. Cambridge University.Faraz N, Khan Y, Jafari H, Yildirim A, Madani M (2010). Fractionalvariational iteration method via modified Riemann-Liouville derivative.J. Ki. Sa. Uni. (Sci.). In Press.Golbabai A, Mammadov M, seifollahi SS (2009). Solving a system ofnonlinear integral equations by an RBF network. Comput. Math.Appl., 57: 1651-1658.He JH (1999). Variational iteration method a kind of non-linear analyticaltechnique: some examples. Int. J. Non-Lin. Mech., 34(4): 699-708.Jerri AJ (1999). Introduction to integral equation with applications. 2thed., John Wiley and Sons. Inc. New York, pp. 91–122.Khan Y, Faraz N (2011). Application of modified Laplace decompositionmethod for solving boundary layer equation. J. Ki. Sa. Uni. Sci.,23(1): 115-119.99Linz p (1985). Analytical and Numerical Methods for Volterra Equations.SIAM Philadelphia. PA.Mahmoudi Y (2005). Wavelet Galerkin method for numerical solution ofnonlinear integral equation. Appl. Math. Comput., 167: 1119-1129.Maleknejad K, Salimi SA (2008). Numerical solution of Singular Volterraintegral equations system of convolution type by using operationalmatrices. Appl. Math. Comput., 195: 500-505.Maleknejad K, Sohrabi S (2007). Numerical solution of Fredholmintegral equation of the first kind by using Legendre wavelets. Appl.Math. Comput., 186: 836-843.Mandal N, Chakrabarti A, Mandal BN (1996). Solution of a system ofgeneralized Abel integral equations using fractional calculus. Appl.Math. Lett., 9(5): 1-4.Pandey RK, Mandal BN (2010). Numerical solution of a system ofgeneralized Abel integral equations using Bernstein polynomials. J.Adv. Res. Sci. Comput., 2 (2): 44-53.Razzaghi M, Yousefi S (2001). The Legendre wavelets operationalmatrix of integration. Int. J. Sys. Sci., 32(4): 495-502.Yousefi S (2006). Numerical solution of Abel’s integral equation byusing Legendre wavelets. Appl. Math. Comput., 175: 574-580.

of Volterra integral equations, called systems of Abel integral equations are studied. Historically, Abel is the first person who had studied integral equations, during the 1820 decade (Jerri, 1999; Linz, 1985). He obtained the following equation, when he was g

Related Documents:

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsługi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare känner säkert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 då han ställde frågan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begränsade storlek inte återfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C är acceptabel men att motiven för en högre standard är starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan användas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill använda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-märkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

och krav. Maskinerna skriver ut upp till fyra tum breda etiketter med direkt termoteknik och termotransferteknik och är lämpliga för en lång rad användningsområden på vertikala marknader. TD-seriens professionella etikettskrivare för . skrivbordet. Brothers nya avancerade 4-tums etikettskrivare för skrivbordet är effektiva och enkla att

Den kanadensiska språkvetaren Jim Cummins har visat i sin forskning från år 1979 att det kan ta 1 till 3 år för att lära sig ett vardagsspråk och mellan 5 till 7 år för att behärska ett akademiskt språk.4 Han införde två begrepp för att beskriva elevernas språkliga kompetens: BI

**Godkänd av MAN för upp till 120 000 km och Mercedes Benz, Volvo och Renault för upp till 100 000 km i enlighet med deras specifikationer. Faktiskt oljebyte beror på motortyp, körförhållanden, servicehistorik, OBD och bränslekvalitet. Se alltid tillverkarens instruktionsbok. Art.Nr. 159CAC Art.Nr. 159CAA Art.Nr. 159CAB Art.Nr. 217B1B