A Table Of Integrals Of The Error Function. II. Additions .

2y ago
23 Views
2 Downloads
8.32 MB
15 Pages
Last View : 16d ago
Last Download : 3m ago
Upload by : Braxton Mach
Transcription

JOURNAL OF RESEAR CH of the Noti ona l Bu rea u of Stand a rd s- B. Mathemotical SciencesVo l. 75 B, Nos. 3 a nd 4, July- Decembe r 1971A Table of Integrals of the Error Function.II. Additions and Corrections*Murray Geller** and Edward W. Ng**(September 28,1971)Thi s is a n exte nsion of a co mpe ndium of ind e finit e a nd d e finit e integra ls of produ c ts of th e erro rfun ction with e le me ntary or tra nsce nd e ntal fun c tions rece ntl y publi s he d by the a uthors.Ke y word s : Error fu nc ti ons; indefinit e integra ls; s pec ia l fun ctions.1. IntroductionSince th e present a uthors publi shed an exte nsive compe ndium of integrals involvin g th e errorfun ction [1J ,] numerou s co mme nts and s ugges tions have bee n received. In parti c ular , we havebe en advi sed by P . I. Hadji (II. II. XA,I1)RII) of hi s publi cation in Ru ssia n [2] , whi c h cont ainsformulas not included in [1]. Careful examination of [2] has r evealed num erou s mathe mati caland typogra phi cal errors. Beann g in mind also th e m access ibilit y of hi s re port , th e a uth or s beli e veit to be appropriate to publi sh an exte nsion of [1] based largely on corrected versions of Hadji 'sformulas but also co ntaining new res ults. It should be noted that the authors have verified and/ orcorrected aU of Hadji 's formulas in additi on to rederiving and c heckin g all of the formulas in [1].Throu ghout thi s arti cle, we conform to the format and notation of [1] , including secti on a ndequation numb ers. A s upple me ntary glossary is also included. Within eac h s ubsec tion, typograph ·ical e rrors, equivale nt form s a nd errors de tected in [1J will be li s ted under correction s.2. Supplementary GlossaryB(p, q)Beta Fun ctionf3(X)f (p )f(q ) /f(p q)H",(t h) - ",(h)]Gegenbauer PolynomialGCatalan's Constant0.915965594 .Jacobi PolynomialTn(X)Chebyshe v PolynomialAMS S ubject Classifiw tio1l ; Prim ary 6505.* An in vit e d pa per. Thi s pa pe r prese nt s th e res ult s of one phase of resea rc h carri ed out at the Je t Propul sion Labora tory, C alifornia In stitut e of T ec hn o logy,und er C ontra ct #NA S7- 100 , s p o n so fl d by th e Na ti ona l Aerona uti cs a nd S pace Admini stration .** Present a ddress: J et P ro pul sio n Laborat ory, Ca li fo rni a Ins titut e of T ec hno logy, Pasade na, CaHfornia 91103.IFi gures in b rackets indi ca te the lit e rature references a t the e nd of thi s pa pe r.149

3.* Integrals of Products of Error Functions with Other Functions3.1 . Combination of Error Function with PowersAdditionsf(20)1e a erf(x)x-pdx p-1[erf(a)a p- I1 v-;e- a2 /2]aP/2 W P/4 ,(P 2)/4(a 2) ,Jdxo [erf(ax c) -erf(bx c)] ---; In(21)OOp l(a)b erfc(c)Jo( oo [berf(ax) -aerf(bx)] dxx2 2abv-; In (b)-;;(22)JOO(23)odx1[Yxerf(Yx)-erf(x)] 2 . (2-y)x1 2] dX l (2-y)r oo [erf(x) 2xV;l x(24)y1TJo:; V;x[1- r( 2 ( r4e-a/(2U) W P-{5/4) '( )(25)Jou(u - x)Perf[ V (a/x) ]dx (26)Jo[(b iX) - P- ' - (b - ix) - P- I]erf(ax)dx - 2i (a Y2)Pea2b2/2D p(ab V2),p(27)Jooox[(b ix) -P-' (b-ix) - p-']erf(ax)dx002p (p -1) (a/b )p- Iea2b2/2[(p -l)aD p(a) - pDt pea) J,Joo(28)-xJoo(29)(30)(31)(32)oJerf[1/4J.p -lp 0p 1, a ab Y2erf(ax), f--'-----'-- dx 2a Y 1Te - a2b2e rfi (ab )(x b)2erfc[aO x)I/4] d x --e4-a2- 4e rfc ( a )(1 x)3/4aV;. x-b2Yx. . Y (ax)] Yx(X b)2 dx - x b erf[ v (ax)] -2 Y (a/1T)e abE,(ab ax)lou X2V-I(U2-X2)JL-I erf (ax)dx( 00 x erf (ax) d Jo (x2 b2)2 x- 2b·Section 3 co rres pond s to section 4 of referencey:;;fll·1501T ea 2b 2erf c(ab)

lf'"' xerf(ax) d x a V7TejU' 2(33)o (x 2 1)2(34)4x e rf-:( ax-,-) dx f'!:, (x2 1)24[f' ()]l - er2a --, erf()a4V7i e [1 U2erf(a)] -'- erf(a)41'"erf (ax)- 12 2o (X2 b2)3/2 dx - b2 [l exp (a b ) erf c (ab)](36)(37)(38)(39)3 .2 . Combination of Error Function with Exponentials and PowersCo rrections(10)Replace (bz" nz'l-l) in last exp ression by (bz" - ' (n - 1)zn - 2) .(12)Replace (bz" nz'l-l) in last expressio n by ' 1 (bz'l-l(13)Replace (2a)(k - II)/2 by (2a 2 )(k -v:;;a (n -1 )ZIl- 2) .") /2 .Additions(b)( '" [ er f(e - ax ) - e rf(e - ox)] dx erf (l) i n Jo(15)(1 6)(17)f[ ae- iPX ]oefoe-00(1 8)7T[ ae PC]( a) .(a)7T erf - - .- e- 1PX - .dx- - ? - e pc erf - - ,p 0 , b "'" c for the lower sianb LXx 2 ccb c"foe- 00(19)dxerf (b ix)a x2 c2 e rf (b c)n ,p O,a O ,b""'cforth e lower s i gn-00,dx7T(ix) - p erf (ae- to :r ) - ?- - erf (ae - oc ), Iplx- c2cp 1 J oo erf (ae:t iDX) T-oox-c151 i7T erf (ae :t ioc) 1

r"(20)Jodx[erf (1 ix) erf (1- ix) ] 2·sin hhrx(1 iX)2(1- ix)2 rf (1)e3.3. Combination of Error Function with Exponentials of More Complicated ArgumentsCorrectionsi"erf(ax)e- b 2x 2 dx -1- tan- 1(a)(2)Equivalent form:(3)Remove condition "b may be complex" and replace by.9t(a2 ) .9t (b 2 )(8)For the form given , add the condition .9t (b 2 ) .9t (a 2 )oby;.-bEquivalent form:.9t (a 2 ) 0 ,.9t (b 2 ) 0,p -2.(16)(35)Add the condition .9t (c 2 ) .9t (a 2 )Additionsf"1x exp (x 2 ) erf(x )dx 2 ,exp (x 2 ) erf (x) -(39)1-:y; x(40)f(41)f(42)(43)(44)2b 2fVrr[erf(ax)]n exp (-a 2 x 2)dx -:--:--- [erf (ax)] 11 12a(n 1)[a erf (bx) exp (- a 2x 2 ) b erf(ax) exp (- b 2x2 ) Jdx V;;erf(ax c)exp(-b 2x 2 )xdxfx 2n erf (ax) exp( - a 2 x 2 ) dx 152 ----erfl(ax) erf (bx)(2n)!y;.---;;r:- (2a)2n 1 A,

where12a,11 - 1k !A - erf2 (ax) - - x erf (ax) exp (- a x )(4a 2x 2 ) h'2y:;.'. 0 (2k 1) !2:exp(-2a 2x2) 1I 12"L.7Tf(45)X 211 1 erf(ax)"' 0hk!k!eh' (2a 2x 2 )(2k 1)-,------,-,n!exp(- a 2x 2 )dx - 211 - 2 Ba '.where8 2 - 3 / 2 erf (ax \12)2: (2n 8 - "'- :2 erf(ax)e - a' x' e (a 2x 2 )II]ll1.' 0- -axV;(46)26 f x I l erf(ax)exp(-6 2x 2 )dx 2n fX 211 - 1e - 2a 'X 2,, 1f(48)f exp{ - 62 [ erf (ax) ] "}exp (-a 2x 2) [ erf (ax) ] Qdxdx1erf(ax)exp(-a2x 2 ) o --erf(ax)exp(-a2 x 2 )x-x ::;f(49)(1n1!k - I8-k2:. , (8a 2x2)I1 0(2/ 1),erf(ax)exp(- 62 x 2 ) dx-x 2 I1 erf(ax)exp(-6 2x 2 )(47)2:II faV;---6-'4 1 Q) /P'}' (2X 2 11exp[- (a b2) x2]dxae rf2 (ax)- - E 1 (2a 2x 2 )y:;.q; 1, 62 (erf (ax)]p), q -e- a2x2V;erf(ax) dx 2a In[ erf(ax)](50)(51))0{oo erf [ ]. e- b / x dxx2(52) b1 [1- e -2V(abf](53)(54){oo [a erf (ex exp [- ce ax ])Jol-e - ax6 erf (ex ex p [- cebX ] ) ] dx Inl-ebx(55)153(l!.-)erf (exeac)1,p 0

(56)foo X-erf i (ax) e- a2x2 - - dx - erf c (ab ) ea2b2ox 2 b22(57)3.4. Definite Integrals from Laplace Transforms Involving Erf ( )Corrections(12) Replace erf ( ) in integrand by erfc ( ) and remove the condition b a.(13) First term inside square brackets in integrand should read (2ax l)xeax erf c ( ) insteadof (2a l / 2x l /2 1 )xeax erf ( ) and remove the condition b a.(14)Last term inside square brackets in integrand should read- 2 (ax3/ ) 1/2 (2ax 5) instead of -2(a3x5/ )1/2(2ax 5).(15)Replace erfc (v;;-) in integrand by erf (v;;-) and add the condition b c.(16)First term inside square brackets in integrand should read(18)First term inside brackets in integrand should readAdditionsroo e- X erf (y ) dx l Jo(l e- x j2(19)i(20)00ofOO(21)e- X erf ( )[(v'2 1) (1)1 - e - nx] dx21- -x . r , Ievx v o1L ,{,tanknk II[V(a/k) ]Vdx-e- bx erf ( Vax) e- ncx [sin hcx] n2-Vx 2 L.n (-I)k(V 2nk 0n) (b 2ck)-1/2 tan--kI( a )1 /2b 2ck3.5. Combination of Error Function with Trigonometric FunctionsCorrections(10)For the form given a b.Fora b:2 b 2 abv'2) 21 [1 n (aa 2 b2ab v'2 tanroo f ( ) . b2 2d Jo er ax sm x x 4bV(2 )154-I (abv'2)]b2-a 2 2

(11)Change the condition on p to Yt (p) - 2.(12)Change the condition on p to Yt (p ) -1.1;(13)Iooo(16)erf( ) sin bxdx -l; [l-e -10 erf( ) cos bxdx -l;e 00(17)(24): E, (: 2) aV; erf (;a)·erf (ax) sin bx1000erf c(ax)x sin x sin hxdx AAcos A],sinA,A (2ab)1/2A (2ab)1/2 [:2 sin (2 2) cos (2 2) -1]Additions2i(b 2 c 2)(31)I ic)A - -erf (ax) e- bx sin cxdx (b(b - ic)A ,whereA ", (exp [( b iC)2]2aerfaxI [tan erf (ax)]e - a(32) b iC)2a-2 2xV;dx - 2a In {cos [erf (ax)]}V;'2b(33)Joerf (ax)e -(34)fTerf (a sin x) cos (2n l)x dx 00ifx2sin cxdx (27TJo(35)Le- C?)/ 4b-2 (erf i[2b(a2DT erf (a sin x) acb2)1/2]s in 2nxdx Oerf (a sin x b cos x)dx O27T(36)exp [ - (b ic)x ] err (ax)erf (ae ix ) sin nx dx i02 v;.-1n 2k 2k 1 ika2k 1n 2k 1n 2k(37)n 2k 1[7T/2(38)Joerf (a tan x) sin 2x dx V"ii ae a2 erf c (a)(39)155

(40)folerf (ax) cos [(2n 1) COS-I x](l- X2) - 1/2dx10"(42)[erf (tan - I ax) - erf (tan-I bx)] :x In( )erf( )3 .6. Combination of Error Function With Logarithms and PowersCorrectionsReplace tz2 erf (az) In z on the R.H.S. by t z2 erf c(az) In z.(5)Additions(10)xdx fo"erf (ax) In (2 2 cos x) -2--2x cbf"oerf (a In x)(a)Ierf 2c dx ! [f3 (2.) - f3 (1-2.)]1 XCcccerf(1f/2Jo1[r (ta) Perf (b sin 2x) In (a tan x)dx "2 (In a) erf (2b) r(a)Jo1f/2(15)(16)(17)(18)(19)( ),2c( ) (c d)Jo" In rc derf(ax)]dxc d erf (bx) x - In b Inc(13)(14)In (1 e- c ) erf i (ac)J(I0 erf (a lnx) 1X - X C dx --;;1 f3 (b) (11)(12)1Terf (a In tan x) dx 0dxb -:;J'" erf (x2a xb2) In (x)opx)Jo{ " erf ( x 2p b2pInf"f'"oo(x)b 0dxx 2 b2 0dxerf (xP x - p ) In x - 0xerf (x P x- p ) In x156dx1 x 2-- 0c b

100(20)oerf (a In x) OIn xl-x 21dx00o erf (a In x) 1(21)(22)2a 2Loo x bx x 20 , Ib I 2In x erf c (x) e - a2x2 dx3.7. Combination of Two Error FunctionsCorrections(3)2bLas t term on R.H.S. should read V; E, (2ab)(4)Last term on R.H .S . should read -f(7)2bV; E 1 (2ab)erf (x) erf [(l-X 2)1 /2]xdx (2e) - '(8)Remove the entire express ion and replace by(9)Add the condition c a.Additions(10)f erf (ax) erf (bx)dx x ert (ax) erf (bx) -(11)(2n 1) f X211 erf (ax) erf (bx)dx X211 1 erf (ax) erf (bx)(12)f f X211 1V;,1 r;;;. (a 2 b 2)1 /2 ert [xY(a 2 b 2)]ab v 1Terf (ax)e - b 2X2 dx -n'2a f x2n , erf (bx)e - a2x2 dxV;X2 11 14X211 erf2 (ax)dx -- erf2 (ax ) - - .A,2n l2n l V;a2n 1157

whereL (2k) 8 - La::.- e - 2a2x2 11-V7Tk Okkk-I1 0I'.,(21 1).(8a 2x 2) (erf2 (ax) x erf (ax)e - a2X2 e - 2a2x2Jx erf2 (ax)dx (X22 - )4aa y:;;.2r.a(13)Jx 211 1 erf2 (ax )dx-- [ x(14)271 22(2n I)!] erf2 (ax)n! (2a)211 22n 2 2(2a)271 2(2n I)! B(n I)! 'where(16)(""xp-1erfc(ax)erf(bx)dJox r(l pI2).Fa P I 7T(p l)a b,(17)132(1.2' p lp 2. P 3. b2 ' 2 '2' 2 ' a 22)'p -100 erfax( ) erf (bx)e- c 22dxx 2xo J;{a In [(a2b c ) 1/ 2 ] bIn [ (b2a : ) 1/2] -c tan- I (;!)} ,d (a 2 b 2 c 2 )1 / 2(18)(19)(20)(006( 2)1/2(21)Jo [1- erf3 (x) ]dx ;:;:(22)(0012 (2 )1/2Jo [1-e r f 4 (x)]dx -:;;:tan-I (8- 1/2 )158tan- I (2- 1 / 2 )

3.S. Combination of Error Function with Bessel FunctionsCorrections(12)b2 ) on th e R.H.S. by I ( - pR eplace f ( - p -1 , 4a2(13)ReplaceW-fJ /2,fJ /2(::2)bychange the condition -1 P (19)Multiply the R.H.S. by1 4ab2 )-2'2 W-P/2, P/2(4b: 2);f to - t p f,J;;change the condition on p to- t p O.J;(20)Multiply the R.H.S. by(21)Re place th e condition A tp 0 by A tp -tAdditions(22)(23)Jo( 00 Ko(ax) erf (bx)xdx 8b1(24)2ec[Kt(c)-Ko(c)], c a 2 j (8b 2 )(25)Jo((26)00x 2 fJ- 2e - x Kv(x2)erf(x)dx 2(1)P 2f (p v) f (p - v)2pfp (a)2V2"b2v- 21.- tf(A - v l),;v7T(2v-2A-1)f(2v 1)(3F211 31)p v,P - v' 2;P 2'2 ; -2 'Ivi11 a bZ;2v 1,v- A, V-A Z;- 4 2tF 3 (v- A-2 )a)2A 2 bf(v-A-1)(1 3a 2b 2 ),;tF 3 2;2,A-V 2,A V 2;-- , ( v7Tf(v A 2),45V A - 4159

3.9. Combination of Error Function with Other Special Functions!Corrections(3)Replace si(2p x) in integrand by si ((5)Replace e a2/ 4 on R.H.S. by e a2 / 2 ; ).change second index of W from (1 21L)/4 to (1 2v)/4;change argument of W from a 2 to a 2 /2;change the condition IL v to IL v. -t.(6)Add the condition v(7)Add the condition v -to(9)Change the R.H.S. to.); 2 (2a-2b 1)-1 2F, (a, a-b t; a-b i; -1),(10)Change the R.H.S. to(11)Change the R.H.S. to(16)Change the condition on p to p O.(18)Integrand should contain erfc (a ! b x ) instead of erfc ( x );coefficient on R.H.S. should read2V/2 1a- 3/2/ [ ( 1 )r ( 1 - )](20)Replace pV I /2 on the R.H.S. by a V 1/2(21)First term inside 3F2 expression should readinstead of 2V/2 2a-3/2/ (lJ7T)- A. IL t instead of A. IL t;argument of 3F2 should read a insteadof - a;add the condition a:S; 1; a 1, A. tp.160IJ

Additions./i'0 T u ' (x) e rf (ax) (l -x-)(22)L:(23)(24)i' PII(l-2x ), IIuf (n t) - a 2».//-dx- (- 1) 2a(2 n 1)!e /-M- , / , II I / (a-)- I '){Til [e rf (x)]} e-x2dx v';(!: ::::De rf (ax)dx1.(2n l)f(n 'f)(25)(26)i'L(l -x )pII n 1()Xerf (ax) dx - (1)11 1y;;- - F ( n t, n 1;n , 2n 2; -a2)1I' (n t) -,,2/ M2aY(a1T) r(2n ) e- 3/4 , n 3 /4 ' (a )Pk;.:)/(x) e rf (ax) dx ( 1)" I'(n t) 1'(2n p 2 ) e- "- f22v'; (2n 1)! r (2n p ) al :lU M - fJ/ - :J /4 , ; II I)/ :1/4 ( an, p - lA - l ; l1- l(28)Je rf (ax) H // (ax) dx [2a(nI(29)x 1) ]- 1 { e rf (ax) H II , (ax) .e - :L'2H II '(x) erf (x)dx (-1)//IIJo( '" e - X2fh,(x)(30)(31)I"'.2-5;(2 n)!2n 1 / Hu(ax)e - fl 2'L'2 },n.u 1 (2n)! 2n 1elf( x)xdx - ( 1)2 n 3/ 1I! 2 n - 1.o e- :r Hu( x) H// 2I11 , (x)e rf (x)dx (- l)1II(2m 211 2) !11(m n 1)! 2"' II 3/ 2 m 1p161449 -7 64 OL - 72 - 5 0; b2 a

(33)J:(1- X 2)P- l/2 Cfn l (x) erf (ax) dxp O(34)(''')0 e-a2x2/4D2n ,(ax) erf (bx)dx (-l)n(2n-1) II ( 2b2 )n l/2a " a 2 2b2-2Q-p-l/2 r(2p 1) F (.1 .1 1.3 1 ' 1)r(p q 1)32 2,P 2,P,"2,P q, "2,P 1"21 (2)n l /2 2n r(2n 3/2)-.y; .3 :n!(n t)122Fl (- n, n "2; n i; 3)(a n) r(t tp)( p p 1.p !!:.2). 22npbPv;. 3F 2n'2' 2 ,a 1, 2 'b2 ,a 1,p 0,b a(aeerf (aeJ '" [erfr(a x)r(,B-x) sinrrxoo(39)(40)i1TX ) -loco x p- 1 erf c(bxJy(a,i1TX )] 2a I:I-ldX lr(a ,B-l) erf(a),a ,B la 2x2)dx1 (a)p !3 l a 2/(2c 2 )(a 2)'eW(l - a- !3)/2, (a- {3)/2 c 2 , a 0, ,B 0- 4a,Ba 2 c162

-----------------,!p Of(2,13-1)r(1 a-f3) F (a, ,I3-t; a t; 1-'\12),22 /l - 1 r(t a)2 11 r(a-t)r(5/2-,I3)(51) 2 y 3 r(a)r(a-,I3 2) 2F, 1'2-,13; a-,I3 2; 1- y2 'a t; y2 t; ,13 !, r(l ,I3 p)r(l-,I3 p)I. .- 2 v (a/1T)f(3 /2 -a p)3F2 (2, 1 ,I3 p,1-,I3 p ,t a p, a),p 1 1,1314. References[I] Ng, Edward W. , and Ge ll er, Murray , A Tabl e of Int egral s of th eError Functions, 1. Res. Nat. Bur. Stand. (U.s.), 73B (Ma th.Sci.), No. I , 1- 20 (Jan. - Mar. 1969).[2] Hadji , P. 1. , Th e Calculation of Some Integral s Co ntaining aProbability Fun ction, Moldavian Academy of Sciences SSR;Series of Physical , Tech. and Math. Sci. 2,81 (1968).(Paper 75B3&4-355)163

(16) Iooo erf( ) sin bxdx -l; [l-e-A cos A], A (2ab)1/2 (17) 10 00 erf( ) cos bxdx -l;e-A sinA, A (2ab) 1/2 (24) 10 00 erf c(ax)x sin x hxdx [:2 (2 2) cos (2 2) -1 . (a2 b2)1/2 (34) fT erf (a sin x) cos (2n l)x dx DT erf (a sin x) sin 2nxdx O (35) Jo (27T erf (a sin x b cos x)dx O (36) i 0 L 27T -1 k a2k 1 erf (aeix) sin nx dx .

Related Documents:

Iterated Double Integrals Double Integrals over General Regions Changing the Order of Integration Triple Integrals Triple Integrals over General Regions Iterated Double Integrals Let f be a real-valued function of two variables x,

S8: Double integrals in polar co–ordinates. Sometimes we can reduce a very difficult double integral to a simple one via a substitution. You will have seen this general technique for single integrals. However, for double integrals, we can make a transformation tha

1. Double Integrals 2. Triple Integrals 1. Double Integrals R f(x,y) dx dy is called the double integral where R ϵ [(x1, x2)(y1, y2)] Methods to Evaluate Double Integrals Method 1: If y1, y2 are functions of x only and x1, x2 are co

Appendix A Singular integrals. In this appendix, we are concerned with integrals involving functionsthat are sin- dpoints. Withoutfurtherloss eorigin. Suppose thatwearegivenafunctionfthatislocally integrable inany neighbour- hood in Rdthat excludes the .

Surface area Vector integrals Changing orientation Changing orientation P1: OSO coll50424úch07 PEAR591-Colley July 29, 2011 13:58 478 Chapter 7 Surface Integrals and Vector Analysis The parametrized surface Y is the same as X, except that the standard nor-mal vector arising from Y points in the opposite direction to the one arising

3.2 Double integrals. We are now going to give a brief definition of what a double integral is. We write double integrals as ZZ R f(x,y)dxdy where f(x,y) is a function of tow variables that makes sense for (x,y) R, and R is a part of the (x,y)-plane. We should not allow R to be too c

The Obara-Saika relations are written for auxillary integrals Π as. One-electron Coulombic integrals The auxillary integrals have the special cases where and F is the Boys function. Boys fun

classical or Maxwell-Boltzmann gas de ned above agrees with the high temperature behavior of the ideal Bose and Fermi gases, as we shall show later. For an ideal gas, the integrals over position in (7) give VN, while the integrals over momenta separate into 3N Gaussian integrals, so that, Z VN