Atmospheric Neutrino fluxes And Prompt Neutrinos From Heavy .

3y ago
22 Views
2 Downloads
3.15 MB
27 Pages
Last View : 3d ago
Last Download : 3m ago
Upload by : Raelyn Goode
Transcription

Atmospheric neutrino fluxes andprompt neutrinos from heavy flavorHallsie RenoUniversity of IowaWork with A. Bha@acharya, R. Enberg, A. Stasto, I. Sarcevic, Y.S. Jeong, C. S. KimTeV ParMcle Astrophysics, August 8, 2017JHEP 1611 (2016) 167JHEP 1506 (2015) 110

Neutrinos produced in theatmosphere by cosmic ray interacMonsFigure from h@ps://astro.desy.de/Atmospheric flux intrinsically interesMng, notjust a background to the astrophysical flux!1998 SuperKamiokandediscovery of neutrinooscillaMons2

Neutrinos produced in theatmosphere by cosmic ray interacMonsInputs include:Figure from h@ps://astro.desy.de/ cosmic ray (CR) fluxand composiMon ParMcle physicsinputs: CRinteracMons with airnuclei to producemesons/baryons thatdecay3

Plan Review the energy dependence of the atmosphericneutrino flux. Review some features of the “convenMonal flux” ofneutrinos from pion and kaon decays. Compare andcontrast with the flux from heavy flavor decays(“prompt flux”). Discuss some of the details of the flux at high energies –neutrinos from heavy flavor decays (predominantlycharmed parMcles) where theoreMcal uncertainMes arethe largest.4

Energy dependence of the CR all parMclespectrumtradiMonal rescaling in other figures, by power of 2.7 or 3Equivalent to E2.7Equivalent to EFrom Table 1, Gaisser, Astropart. Phys. 35 (2012) 8013Brokenpower law(almost)5

Energy dependence, schemaMcally, neglecMngbreak in power law of cosmic raysE 2.7Cosmic rays producehadrons. They decay toneutrinos (low energy-all,high energy- few) Scaling byapproximateCR energyspectrumKDEPdecay (E) 12exp( D/ c )' D/ c Ec /EE 1.712.7 cm2 s sr GeVEGeV6

Energy dependence, schemaMcally, similar (withdifferent criMcal energies)E 2.7Impact of thedifferent lifeMmes Scaling byapproximateCR energyspectrum115 GeV850 GeV“convenMonal”KD “prompt”E108 GeV2EElectron neutrino flux from K-short, Gaisser & Klein,Astropart. Phys. 64 (2015)1.2 105 GeV7

Features-convenMonal flux Angular dependence Flavor raMosHonda et al., Phys. Rev. D 83(2011) and earlier work. Bartol: Barr et al., Phys. Rev. D70 (2004) and earlier work. FLUKA: Bakstoni et al.,Astropart. Phys. 19 (2003). MCeQ: e.g., Fedynitch et al.,PoS (ICRC2017) 1019. ConvenMonal flux (charged mesons): ! µ µ (100%)K ! µ µ (64%)K ! 0 (35%)Neutral kaons:KL ! (2741%)KS ! e e (0.07%)8

Features-convenMonal flux Angular dependence Flavor ra(osMuons decayMuons don’tdecay Honda et al., Phys. Rev. D 83(2011).9

Features-convenMonal flux downward Angular dependence Flavor raMoswww2.slac.stanford.edu/vvc/cosmic rays.html Honda et al., Phys. Rev. D 83(2011).At Kamioka, averaged over azimuth,10including geomagneMc effects.

Features-prompt flux Angular dependence Flavor raMos ERS: Enberg, Reno, Sarcevic ,Phys. Rev. D 78 (2008)BERSS: Bha@acharya et al.,JHEP 06 (2015) 110Bha@acharya et al., JHEP 1611(2016)GMS: Garzelli, Moch and Sigl,JHEP 10 (2015) 115GRRST: Gauld et al, JHEP 02(2016) 130Benzke et al., 1705.10386Prompt flux:D ! X (16D0 ! X (617%)7%)Ds ! e e X (6.5%)Ds ! (5.5%)Assume flavor equality forelectron neutrinos and muonneutrinos. Tau neutrinos arespecial!11

Features-prompt flux Angular dependence Flavor ra(os e : µ : µ 1 : 1 : 1Isotropic up to highenergies, since all of theD’s have “prompt” decays.Prompt flux:D ! X (16D0 ! X (617%)7%)Ds ! e e X (6.5%)Ds ! (5.5%)12

Cascade Equationsd j dXS(k ! j) j jdecjjZ1E XS(k ! j)00 (E)dn(k!j;E, E)k0dE0dEk (E )High enoughenergies thatmuons are“stable”.e.g., pA ! DXdn(k ! j; Ek , Ej ) dEje.g., D ! µ X1d (kA ! jY ; Ek , Ej )dEjkA (Ek )dn(k ! j; Ek , Ej )1 d (k ! jY ; Ek , Ej ) dEjdEjKProductionDecayNeed cosmic ray flux (j N) and energy distribuMon of thefinal state parMcle.13

We use Z-moments: spectrumweighted momentsS(k ! j) Z1E00 (E,X)dn(k!j;E, E)k0dE0dEk (E ) k (E, X)S(k ! j) Zkj (E)k (E)Zkj (E) Z1EdE0k (E0, X)k (E, X)k (E)0k (E )dn(k ! j; E 0 , E)dEApproximate relaMon – flux factorizes so Z only depends on E.Calculate the differenMal cross secMon or decay distribuMon,convolute with the flux, integrate to get Z.Spectrum weights favor forward producMon of charm – wantthe largest E (charmed meson) given E’ (cosmic ray nucleon).14

Approximate formulaelow highZN M ZM 1 ZN NZN M ZM ln( 1 ZN N 1NCosmic ray –nucleon fluxM/ N)McN/ ME c 115 GeV Kc 850 GeV N8 D 10GeVc M M /(1 ZM M )ExponenMal atmosphere, 1D, approximate factorizaMon of depthdependence. c!sµ c!se eµZN D , Z D , DCosmic Rays and Particle Physics, T. Gaisser, Cambridge U Press; L. V.Volkova, Sov. J. Nucl. Phys. 31 (1980);P. Lipari, Astropart. Phys. 1 (1993)15

A numerical tool: MCEqDembinski et al., and Fedynitch etal., PoS (ICRC2017) 1019.MCEq: numerical soluMon to cascadeequaMons, Fedynitch et al., arXiv:1503.0054Error band around black curve shows SIBYLLerror band.See also, e.g., Barr et al., Phys. Rev. D 74(2006).GeomagneMc and 3D effects not included(shaded region below 20 GeV).16

What is new in our prompt charmevaluaMon using the Z-moment method? NLO QCD evaluaMon of charm pair cross secMon and energydistribuMon with nuclear correcMons. Cacciari, Greco, Nason, JHEP9805 (1998); Cacciari, Frixion, Nason, JHEP 0103(2001); Mangano, Nason,Ridolfi, NP B273 (1992); Nason, Dawson, Ellis, NP B303 (1988), NP B373(1992); Lai et al, PRD 82 (2010) Dipole Model: Soyez, Block et al. approximaMon, AAMQS(Soyez in ERS). MulMple ways to include nuclear correcMons.Soyez, Phys. Le@. 655B (2007) 32, Block, Durand, Ha, Phys. Rev. D 89 (2014)094027, Albacete et al. Phys. Rev. D 80 (2009) 034031. Enberg, MHR &Sarcevic, PRD 78 (2008). kT factorizaMon, low x off-shell gluon. Catani, Ciafaloni andHautmann, Nucl. Phys. B 366 (1991) 135; Collins and Ellis, Nucl. Phys. B360(1991) 3, Kutak and Sapeta, Phys. Rev. D 86 (2012) 094043.Forward producMon means small-x in parton distribuMonfuncMon or dipole cross secMon.17

Cross secMon for charm, b quarks18

Compare with LHC data for charmNLOperturbaMvefor example.For theprompt fluxfrom charm,need evenlargerrapidiMes.LHCb, Nucl. Phys. B 871 (2013) 1; JHEP 03 (2016) 15919

NLO QCD result for fluxBERSS: Bha@acharya et al., JHEP 06 (2015) 110 uses CT10 PDFs withno nuclear correcMons.Nuclear correcMons via nCTEQ15 parton distribuMon funcMons aresignificant.20

Dipole modelERS: Enberg, Reno, Sarcevic, PRD 78 (2008) 043005Nuclear correcMons in dipole model are 10-20% reducMon. Here,updated Z-moments, gluon PDF, more dipole models for uncertainty21band.

KT factorizaMon22

Comparison with other recent resultsUse the broken power law for comparison with recent results fromother groupsGMS: Garzelli, Moch and Sigl, JHEP 10 (2015) 115 using POWHEG BOX and Pythia; GRRST:Gauld et al, JHEP 02 (2016) 130 with different assessment of PDF uncertainMes.23

Prompt fluxes with different scalingSuggested upper limit on prompt flux: 0.54 ERS from Radel andSchoenen for IceCube, ICRC 2015 (2015) 1079.24

Tau neutrinos plus anMneutrinosDs ! ! X25

Summary If we had a completely reliable calculaMonal method for charmproducMon, we wouldn’t need three different approaches. Our new NLO pQCD results are lower than BERSS, because ofnCTEQ15 PDFs for nitrogen, which have small-x suppression.There are sMll nuclear uncertainMes. A limit of 0.54*ERS cuts into dipole model range of fluxpredicMons, and kT factorizaMon without nuclear correcMons. Have not talked about intrinsic/spectator charm, see, e.g.,Halzen and Wille, Phys. Rev. D94 (2016) 014014; Laha andBrodsky, 1607.08240.26

LHCb update2-2.53-3.54-4.5LHCb, red updated with errata published in JHEP05 (2017) 074.27

Sarcevic, PRD 78 (2008). kT factorizaon , low x off-shell gluon. Catani, Ciafaloni and Hautmann, Nucl. Phys. B 366 (1991) 135; Collins and Ellis, Nucl. Phys. B360 (1991) 3, Kutak and Sapeta, Phys. Rev. D 86 (2012) 094043. 17 Forward producMon means small-x in parton distribuMon funcon or dipole cross secon.

Related Documents:

Atmospheric Neutrino Oscillation In the simplest, two-flavor, oscillation case, the survival probability depends on m2 L/E ν The various atmospheric neutrino sub-samples span a range of five decades in neutrino energy Eν From 100 MeV to 10 TeV Depending on the neutrino's arrival direction, L spans a range of three decades From 15 km .

Ina Sarcevic University of Arizona Models of Neutrino Mass with a Low Scale Symmetry Breaking New Interactions of Supernova Relic Neutrinos Probing Neutrino Properties with Supernova Neutrinos Experimental Detection of the New Interactions via Light Scalar (HyperK, GADZOOKS, UNO, MEMPHYS) BBN and SN1987A Constraints on the Parameter Space of the

Study of Acoustic Ultra-high-energy Neutrino Detection (SAUND) J. Vandenbroucke et al. ApJ 2005 7 hydrophones at undersea Navy array in Bahamas Searched for neutrino signals in 195-day exposure First acoustic neutrino limit, not competitive with radio but new technique SAUND-II now underway, 49 hydrophones (103 km2)

Vol.:01234567813 Climate Dynamics https://doi.org/10.1007/s00382-020-05431-y Uface latent and sensible heat uxes in contemporarAGCMver tropical oceans

Doc no.: DSE-RTOS-EVA-019 Issue: 2.49 (Drft) Date: August 13, 2002 2 Installation and Configuration QNX NEUTRINO v6.2 0108 ELDS v1.1 0103 2.1 QNX NEUTRINO RTOS v6.2 The QNX NEUTRINO RTOS v6.2 is quick and easy to install. After only a few minutes the basic modules are installed i.e., the kernel and a user interface (Photon Windowing System).

This scale is 0.02 Mpc-1 for a 1 eV neutrino. Power on smaller scales is suppressed Even for a small neutrino mass, a large impact on structure. The power spectrum is an excellent probe of neutrino masses Neutrinos affect the large scale structure They do not participate in

compared to one for which no oscillation effect is expected. (B) Neutrino mixing parameters: shows measurements of sin2(θ12), sin2(θ23), sin2(θ13), m2 21, m 2 32, and δCP as ex-tracted from the measured data in the quoted publications in the frame of the three-neutrino mixing scheme. The quoted

nucleon). This excludes the possibility of very energetic explosions by the neutrino-heating mechanism, because the typical mass in the gain layer is about 0.1 M and does not exceed a few tenths of a solar mass. The toy model also allows for a crude discussion of the global e ects of convective energy transport in the neutrino-heating layer.