An Integrated Manufacturing System For The Design .

2y ago
9 Views
2 Downloads
1.40 MB
7 Pages
Last View : 13d ago
Last Download : 3m ago
Upload by : Mara Blakely
Transcription

OPTI-521 ReportZhihan HongPaper title:An Integrated Manufacturing System for the Design,Fabrication, and Measurement of Ultra-Precision FreeformOpticsL. B. Kong, C. F. Cheung, W. B. Lee, and S. To1. IntroductionFor the demand of the freeform optics ultra-precision fabrication, the experienceand the skills are both important. Through an expensive trial and error approach whennew materials, new surface design, or new machine tools are used. In addition, thecutting strategy in ultra-precision machining is extremely important.In order to make the machining process more predictable and controllable, analternative approach is to build simulation models to predict and optimize themachining process.An integrated platform will provide an important means for the optimization ofthe cutting strategy as well as the prediction of surface generation in ultra-precisionmachining.A series of preliminary experiments have been conducted to evaluate theperformance of the platform. One application of F-theta lens, which is commonly usedin laser scanners and printers, is demonstrated for its optics design, fabrication andmeasurement by the system. The results show that the proposed integrated platformnot only helps to shorten the cycle time for the development of freeform componentsbut also provides an important means for the optimization of the surface quality in theultra-precision machining of ultra-precision freeform surfaces.2. Layout of the integrated systemThe platform mainly consists of four key modules, which are, as shown in Fig. 1,the optics design module (ODM), the data exchange module (DEM), the machiningprocess simulation and optimization module (MPSOM) and the freeform measurementand evaluation module (FMEM).1

OPTI-521 ReportAs shown in Fig. 1, an optics design module is employed for optics design andsimulation of optical performance, and the optics design data can be output as a CADfile for further processing. A precise computation algorithm for freeform control knotvectors has been proposed based on the principle of conservation for edge-ray Etendue[20], as shown in Fig. 2, which can accomplish the design of freeform optics part withoptimum efficiency and accuracy light distribution just within a short time period (e.g.,a few hours or even shorter).In Fig. 2, the conservation for edge-ray Etendue can be expressed as𝐾[𝑀(Σ𝑂 )] 𝐾[𝑀(ÎŁđŒ )] 𝑛2 đ‘‘đŽđ‘đ‘œđ‘ đœƒđ‘‘Î©where E[.] is the Etendue operation, M(.) means the edge light is the output light, Σ𝑂 isthe input light, ÎŁđŒ is the refraction index, n is the area of light source, A Ω is the apertureangle, and is the solid angle.2

OPTI-521 ReportData Exchange ModuleThe aim of surface reconstruction is to find a continuous surface fitted from thescattered points based on a certain criterion, especially the scattered points from theoptics design module, which is used as the designed reference surface for thesubsequent freeform machining and characterization.Fig. 3 shows the flow chart of freeform reconstruction and optimization. The freeformcontinuous model is optimized by selecting proper parameters (e.g., the order ofpolynomial, order and weight of Nurbs, etc.).Machining Simulation and Optimization ModuleBasically, optical freeform surface can be classified as continuous freeform surfaceand structural freeform surface. A modelbased simulation system has been establishedto simulate the machining process, predict the surface generation, and optimizeThe cutting strategies for the continuous freeform surface and structural freeformsurface, the high precision surface quality depends largely on the proper selection ofcutting condition parameters and cutting strategies, for example, selecting horizontalcutting or vertical cutting as the cutting strategy, as shown in Fig. 4(a), selecting unidirection or bi-direction cutting, with or without retreat, as the cutting path planning, asshown in Fig. 4(b).The surface roughness profile of the machined surface is formed by the repetition ofthe tool tip making a cut at intervals according to the tool feed rate and then moving a3

OPTI-521 Reportspecified distance by steps under ideal cutting conditions. The feed direction isperpendicular to the raster direction, and both of the directions used in horizontalcutting are opposite to those used in vertical cutting. The generalized equation for thedetermination of theoretical arithmetic roughness for the different cutting strategies inultra-precision raster milling is shown asc2Δ2Ra 24R1 24R 2Where R1 R and R2 r for horizontal cutting while R1 r and R2 R for vertical cutting; Ris the swing distance and r is the tool nose radius.1) Tool Path Generation Based on the Workpiece Design Surface for Raster Milling: Oneimportant step for machining process simulation is the tool path generation, which isalso applicable for the real NC program generation. As shown in Fig. 5, cutting pointPc (xc , yc , zc ), tool nose center Po (xo , yo , zo ), swing center (cutter location, CL) PT (xT , yT , zT ), surface normalized normal vector at nt (nx , ny , nz ) cutting point . Theswing distance is R and the tool nose radius is . After tool nose radius compensation,the location of tool nose centerPo Pc r (cosϕsinΞ, sinϕ, cosϕcoΞ) Pc r (nx , ny , nz )Where ϕ is the angle between the normal vector nt and the X-Z plane; Ξ is the anglebetween the projection of nt on the X-Z plane and the Z axis. Swing center PT after thecompensation of swing distancenxnzPT Po (R r) (sinΞ, 0, cosΞ) Po (R r) (, 0,) n2x n2x n2x n2xnxxc r nx (R r) n2x n2xyc r ny nzzc r nz (R r) n2x n2x{4

OPTI-521 ReportAnd based on the flow diagram:EXPERIMENTAL AND IMPLEMENTATION RESULTSOne experiment has been conducted to study the surface roughness by raster milling, tofurther validate the roughness model in the proposed platform. Fig. 9 shows the designof the workpiece used in the cutting test. Fig. 9(a) shows the dimension of theworkpiece, and (b) is the produced workpiece. As shown in Fig. 9(b).Wyko NT8000 optical measurement system. Fig. 10 shows predicted and measuredsurface roughness (Ra). It is interesting to note that the predicted values show a goodagreement or similar trend with the measured results. There exist some deviationsbetween the measured values and the predicted ones, especially in the studies ofspindle speed and feed rate as shown in Fig. 10(a) and (b). This can be explained as thatthe surface generation in raster milling process is also affected by other factors such asrelative vibration between cutting tool and workpiece, material swelling, etc. Besides,with the increasing of spindle speed, much more vibration is caused, which limits the5

OPTI-521 Reportimprovement of the surface quality. The experimental results are helpful for theoptimization of machining parameters to obtain good surface quality and highmachining efficiency at the same time, by finding out the optimum cutting conditions.The F-theta lens, which is commonly applied to laser scanners or copiers, is a typicalexample of optical freeform surface. The surface representation of the F-theta lens canbe defined by an anamorphic aspheric surface. For the two side surfaces (S1, S2) of theF-theta Lens, the parameters are defined in Table II. The F-theta surface workpiece wasfabricated using the multi-axis freeform machining system mentioned in the previoussection. The machining parameters are shown in Table III. Fig. 11 shows the freeformapplication: F-theta lens.3. ConclusionIn this paper, the technological development of an integrated system for optical design,ultra-precision machining, and precision measurement of freeform optical surfaces ispresented. With the successful development of the platform, the optimal machiningparameters and strategies can be obtained. The machining and measuring process canbe simulated on the computer and the verified data can then be input into the advancedCNC ultra-precision machine for machining the components. This results in shorteningthe cycle time for product development and in improving the quality of the productwithout the need for time-consuming and expensive trial-and-error cutting tests.6

OPTI-521 Report4. Reference[1] Harnessing Light: Optical Science and Engineering for the 21st Century. Washington, DC: NationalResearch Council (ed.) National Academic Press, 1998.[2] K. I. Kim and K. Kim, “A new machine strategy for sculptured surfaces using offset surface,” Int. J.Prod. Res., vol. 33, no. 6, pp. 1683–1697,1995.[3] A. M. Ramos, C. Relvas, and J. A. SimĂ”es, “The influence of finishing milling strategies on texture,roughness and dimensional deviations on the machining of complex surfaces,” J. Mater. Process.Technol., vol. 136, pp. 209–216, 2003.[4] Y. W. Sun, D. M. Guo, and Z. Y. Jia, “Spiral cutting operation strategy for machining of sculpturedsurfaces by conformal map approach,” J. Mater. Process. Technol., vol. 180, pp. 74–82, 2006.[5] H. El-Mounayri, M. A. Elbestawi, A. D. Spence, and S. Bedi, “General geometric modelling approachfor machining process simulation,” Int. J. Adv. Manuf. Technol., vol. 13, pp. 237–247, 1997.[6] T. Bailey, M. A. Elbestawi, T. I. El-Wardany, and P. Fitzpatrick, “Generic simulation approach for multiaxis machining, part 1: Modelingmethodology,” J. Manuf. Sci. Eng., vol. 124, no. 3, pp. 624–633, 2002.[7] T. Bailey, M. A. Elbestawi, T. I. El-Wardany, and P. Fitzpatrick, “Generic simulation approach for multiaxis machining, part 2: Modelcalibration and feed rate scheduling,” J. Manuf. Sci. Eng., vol. 124, no. 3, pp. 634–642, 2002.[8] Y. Lin and Y. Shen, “Modelling of five-axis machine tool metrology models using the matrix summationapproach,” Int. J. Adv. Manuf. Technol., vol. 21, pp. 243–248, 2003.[9] K. Weinert, S. J. Du, P. Damm, and M. Stautner, “Swept volume generation for the simulation ofmachining processes,” Int. J. Mach. Tools Manuf., vol. 44, no. 6, pp. 617–628, 2004.[10] C. Lartigue, E. Duc, and C. Tournier, “Machining of free-form surfaces and geometrical specifications,”Proc. Inst. Mech. Eng., vol. 213, pt.Part B, pp. 21–27, 1998.[11] E. Duc, C. Lartigue, C. Tournier, and P. Bourdet, “A new concept for the design and themanufacturing of free-form surfaces: The machining surface,”CIRP Ann. -Manuf. Technol., vol. 48, no. 1,pp. 103–106, 1999.[12] R. Zhu, S. G. Kapoor, and R. E. DeVor, “Mechanistic modeling of the ball end milling process formulti-axis machining of free-form surfaces,” J. Manuf. Sci. Eng., vol. 123, no. 3, pp. 369–379, 2001.[13] C. Brecher, S. Lange, M. Merz, F. Niehaus, C. Wenzel, M. Winterschladen, and M. Weck, “NURBSbased ultra-precision free-form machining,” CIRP Ann.-Manuf. Technol., vol. 55, no. 1, pp. 547–550, 2006.[14] G. Elbert and E. Cohen, “Tool path generation for freeform surface models,” in 2nd ACM SolidModeling 93-5/93, Montreal, Canada,1993, pp. 419–428.[15] L. Zhang, J. Deng, and S. C.-F. Chan, “A next generation NC machining system based on NC featureunit and real-time tool-path generation,”Int. J. Adv. Manuf. Technol, vol. 16, pp. 889–901, 2000.[16] W. B. Lee, S. To, and C. F. Cheung, Design and Advanced Manufacturing Technology for FreeformOptics. Hong Kong: Hong KongPolytechnic Univ., 2005, p. 237.[17] W. B. Lee, C. F. Cheung, S. To, D. Gao, and S. J. Wang, “An investigation of fast tool servomachining of optical microstructures,” Nanotechnol. Prec. Eng., vol. 3, no. 3, pp. 216–221, 2005.[18] C. F. Cheung, W. B. Lee, B. Wang, and J. B. Jiang, Design and Fabrication of Electronic and OpticalSystems for Advanced AutomotiveLighting. Hong Kong: The Hong Kong Polytechnic University, 2007, vol. 2, Advanced Optics, p. 282.[19] J. B. Jiang, S. To, W. B. Lee, and B. Cheung, “Design of the freeform V-cut optics in the cell phonebacklight system,” Chinese J. LiquidCrystals Displays, vol. 20, no. 3, pp. 178–184, 2005.[20] J. B. Jiang, C. F. Cheung, S. To, K. W. Cheng, H. Wang, and W. B. Lee, “Design and fabrication offreeform reflector for automotive headlamp,” in Proc. 2nd Int. Conf. Power Electron. Syst. Applicat., HongKong, Nov. 12–14,2006, , pp. 220–224.7

surface, the high precision surface quality depends largely on the proper selection of cutting condition parameters and cutting strategies, for example, selecting horizontal cutting or vertical cutting as the cutting strategy, as shown in Fig. 4(a), selecting uni-

Related Documents:

Bruksanvisning för bilstereo . Bruksanvisning for bilstereo . Instrukcja obsƂugi samochodowego odtwarzacza stereo . Operating Instructions for Car Stereo . 610-104 . SV . Bruksanvisning i original

10 tips och tricks för att lyckas med ert sap-projekt 20 SAPSANYTT 2/2015 De flesta projektledare kĂ€nner sĂ€kert till Cobb’s paradox. Martin Cobb verkade som CIO för sekretariatet för Treasury Board of Canada 1995 dĂ„ han stĂ€llde frĂ„gan

service i Norge och Finland drivs inom ramen för ett enskilt företag (NRK. 1 och Yleisradio), fin ns det i Sverige tre: Ett för tv (Sveriges Television , SVT ), ett för radio (Sveriges Radio , SR ) och ett för utbildnings program (Sveriges Utbildningsradio, UR, vilket till följd av sin begrÀnsade storlek inte Äterfinns bland de 25 största

Hotell För hotell anges de tre klasserna A/B, C och D. Det betyder att den "normala" standarden C Àr acceptabel men att motiven för en högre standard Àr starka. Ljudklass C motsvarar de tidigare normkraven för hotell, ljudklass A/B motsvarar kraven för moderna hotell med hög standard och ljudklass D kan anvÀndas vid

LÄS NOGGRANT FÖLJANDE VILLKOR FÖR APPLE DEVELOPER PROGRAM LICENCE . Apple Developer Program License Agreement Syfte Du vill anvĂ€nda Apple-mjukvara (enligt definitionen nedan) för att utveckla en eller flera Applikationer (enligt definitionen nedan) för Apple-mĂ€rkta produkter. . Applikationer som utvecklas för iOS-produkter, Apple .

och krav. Maskinerna skriver ut upp till fyra tum breda etiketter med direkt termoteknik och termotransferteknik och Àr lÀmpliga för en lÄng rad anvÀndningsomrÄden pÄ vertikala marknader. TD-seriens professionella etikettskrivare för . skrivbordet. Brothers nya avancerade 4-tums etikettskrivare för skrivbordet Àr effektiva och enkla att

Den kanadensiska sprÄkvetaren Jim Cummins har visat i sin forskning frÄn Är 1979 att det kan ta 1 till 3 Är för att lÀra sig ett vardagssprÄk och mellan 5 till 7 Är för att behÀrska ett akademiskt sprÄk.4 Han införde tvÄ begrepp för att beskriva elevernas sprÄkliga kompetens: BI

**GodkÀnd av MAN för upp till 120 000 km och Mercedes Benz, Volvo och Renault för upp till 100 000 km i enlighet med deras specifikationer. Faktiskt oljebyte beror pÄ motortyp, körförhÄllanden, servicehistorik, OBD och brÀnslekvalitet. Se alltid tillverkarens instruktionsbok. Art.Nr. 159CAC Art.Nr. 159CAA Art.Nr. 159CAB Art.Nr. 217B1B