Toward New Era Of Photonuclear Reactions - 東京大学

1y ago
1 Views
1 Downloads
8.99 MB
99 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Brady Himes
Transcription

Toward New Era of Photonuclear ReactionsHiroaki Utsunomiya(Konan University)ContentLecture 1 : Past of Photonuclear Reactions1.1 g-ray sources1.2 Nuclear physics – (g,n) for GDR1.3 Compilations of experimental data- Atlas, IAEA, CDFE, EXFORLecture 2 : Present of Photonuclear Reactions2.1 Laser Compton-scattering g-ray beam2.2 Nuclear Physics (g,g’) for PDR2.3 Nuclear Astrophysicsa. p-process – (g,n)b. s-process - gamma-ray strength function for (g,n) and (n,g)

Lecture 3: Present and Future of Photonuclear Reactions2.3 Nuclear Astrophysicsc. reciprocity theorem – photodisintegration of D, 9Be, 16O2.4 Evaluated Nuclear Data Library – ENDF, JEFF, JENDLReference Input Parameter Library - RIPL3. ELI-NP project3.1 ELI-NP vs HIGS and NewSUBARU3.2 p-process – rare isotopes3.3 Precision Era of Nuclear Physicsa. PDR above neutron thresholdb. GDR – (g,g), (g,n) (g,2n), (g,3n) cross sections3.4 Special topicPhotoreactions on isomers – laser-gamma combined experiment

Lecture 1 : Past of Photonuclear Reactionsg-ray sources: radioisotopesGreen and Donahue, PR 135, B701 (1964)

Lecture 1 : Past of Photonuclear Reactions181Ta(g,n)7Li(g,n)

Lecture 1 : Past of Photonuclear Reactionsg-ray sources: Nuclear reactions27Al(p,g)28Si, Ep 992 keV resonanceAnttila et al., NIM 147, 501 (1977)

Lecture 1 : Past of Photonuclear Reactions27Al(p, g)28Si, Ep 992 keV resonance

Lecture 1 : Past of Photonuclear ReactionsResponse of a high-resolution and high-energy spectrometerHarada et al., NIM in Phys. Res. A 554, 306 (2005)BGOCompton-suppressionTwin Ge crystals27Al(p,g)28Si, Ep 992 keV resonance

Lecture 1 : Past of Photonuclear ReactionsCiemada et al., NIM Phys. Res. A 608, 76 (2009)Response of a 2” x 2” LaBr3(Ce) detector23Na(p, g)24Mg, Ep 1416.9 keV7Li(p, g)8Be, Ep 441 keV

Lecture 1 : Past of Photonuclear Reactionsg-ray sources: BremsstrahlungCollisional loss: Electrons lose kinetic energies in matter by collidingwith atomic electrons, leading to atomic excitation and ionization.Bremsstrahlung (Radiation loss): Electrons lose kinetic energies inmatter by radiative processes.linear stopping power of electrons for radiation lossRadiative losses are most important for high electron energies and for absorbermaterials of large atomic number.Ratio of the specific energy lossesE in MeV

Lecture 1 : Past of Photonuclear ReactionsBremsstrahlung facilities1.2.3.4.5.Moscow State University, Nuclear Physics Institute, Moscow, Russia (microtron)Joint Institute for Nuclear Research, Dubna, Russia (microtron)Uzhgorod State University, Ukraine (betatron)Kharkovskii Fiziko-Tekhnicheskii Institute, Kharkov, Ukraine (linear accelerator)Forschungszentrum-Rossendorf (FZD), Dresden, ELBE, Germany (linearaccelerator)6. Tech. Universitaet, Darmstadt, S-DALINAC, Germany (linear accelerator)7. Kyoto University, Kyoto, Japan (linear accelerator)8. Pohang University of Science and Technology, Pohang, Korea (linear accelerator)9. Bhabha Atomic Res. Centre, Trombay, India (linear accelerator)10. Mangalore University, Mangalagangotri, Konaje, India (microtron)11. Australian Radiat. Protect. & Nucl. Safe. Agency, Melbourne, Australia (linearaccelerator)

Lecture 1 : Past of Photonuclear ReactionsCourtesy by R. Schwenger

Lecture 1 : Past of Photonuclear ReactionsYield : convolution of the photonuclear cross section with the bremsstrahlungspectrum over the photon energies.E0: electron beam energy; K(E0, Eg): bremsstrahlung spectrumYield curve: obtained by changing the electron beam energy in small stepsThis technique requires:(1) Accurate knowledge of the bremsstrahlung spectrum for all electron energies(2) Great stability in the accelerator operation and large counting statisticsto accurately measure the yield curve(3) Unfolding (differentiation) procedure of the yield curve(a) Photon Difference Method: difference of two bremsstrahlung spectra withslightly-different end-point energies(b) Penfold-Leiss Method: a set of liner equations for a given energy bin(c) Regularization MethodsTikhonov’s Method, Cook’s Least Structure Method, the Second DifferenceMethod, the Statistical Regularization Method

Lecture 1 : Past of Photonuclear Reactions16OBremsstrahlung datacompiled in CDFE, MSU208Pb

Lecture 1 : Past of Photonuclear Reactionsg-ray sources: Positron annihilation in flightNeutron detectorBF3 counters paraffinAnnihilationTarget 9Bee beamg-ray BeamEγ Ke 3/2(mc2)Converter (W, Au, Ta, Pt) e- e e- beame- bremsstrahlungPair productionLawrence Livermore National Laboratory (USA)

Lecture 1 : Past of Photonuclear ReactionsSaclay (France)Annihilation targetConverter targetGd-doped Liquid Scintillation tank

Lecture 1 : Past of Photonuclear Reactionse -e- annihilation(quasi-monochromatic)Subtractede bremsstrahlung(background)

Lecture 1 : Past of Photonuclear Reactions(g,n) cross section measurements in 1960s – 1980sLLNL (USA)Saclay (France)pER 79A-1/3 MeVThomas-Reiche-Kuhn sum rule (energy-weighted sum rule)NZ16 3 (E)dE 60 A [MeV mb] 9 E B(E1) n

Lecture 1 : Past of Photonuclear ReactionsCompilations photoneutron cross sections(1) ATLAS of photoneutron cross sections obtained with monoenergetic photons,S.S. Dietrich and B.L. BermanAtomic Data and Nuclear Data Tables 38, 199-338 (1988)(2) Handbook on photonuclear data for applications, Cross sections and spectraIAEA TECDOC-1178 (2000)International Nuclear Reaction Database in the format EXFORIAEA https://www-nds.iaea.org/exfor/exfor.htm/CDFE http://cdfe.sinp.msu.ru/exfor/index.php/USA NNDC - http://www.nndc.bnl.gov/exfor/exfor.htm/

Lecture 2Present of Photonuclear Reactions2.1 Laser Compton-scattering g-ray beam2.2 Nuclear Physics (g, g’) for PDR2.3 Nuclear Astrophysicsa. p-process – (g,n)b. s-process - gamma-ray strength function for(g,n) and (n, g)

Lecture 2 : Present of Photonuclear Reactionsg-ray sources:Inverse Compton scatteringCompton scattering vs Inverse Compton scatteringCompton scatteringIncident photonh ' h 1 h (1 cos ) / mc2h mc2 h ' p 2c2 m2c 4h h ' cos p cos cch '0 sin p sin cLorentz factor

Lecture 2 : Present of Photonuclear ReactionsLaser Compton scattering g-ray beamg Ee/mc2 (Lorentz factor)〜 2 x 103 Ee 1 GeVEnergy amEg/εL 4g2〜1.6 x 107εL〜 1eVEγ 〜 16 MeV

Lecture 2 : Present of Photonuclear Reactions(g, g)Sn(g,n), (g,2n), (g,3n), (g,p), (g, )g-ray strength functionNucleosynthesis (p-process, s-process)modified by H. Utsunomiya

Lecture 2 : Present of Photonuclear Reactions“Applications” of low-lying E1 strengthpnp/nPDR is / might be sensitive to neutron skin thickness sensitive to parameters of symmetry energy influencing reaction rates / nucleosynthesis detailed understanding of the PDR mandatoryCourtesy by D. SavranDeniz Savran ExtreMe Matter Institute

Lecture 2 : Present of Photonuclear ReactionsPhoton scattering . using BremsstrahlungNg(Eg) · (Eg)„inelastic“„elastic“E0 9.1 MeV Investigation of large energy regione.g. Darmstadt High Intensity Photon Setup (DHIPS):K. Sonnabend et al., Nucl. Instr. and Meth. A640 (2011) 6 Excellent energy resolution: Stateto-state analysis, investigation of finestructureCourtesy by D. SavranDeniz Savran ExtreMe Matter Institute

Lecture 2 : Present of Photonuclear ReactionsPhoton scattering . using Laser Compton Backscattering130TeE1M1 Determination of paritiese.g. High Intensity g-ray Source (HIgS):H.R. Weller et al., Prog. Part. Nucl. Phys. 62 (2009) 257Cortesy by D. SavranDeniz Savran ExtreMe Matter Institute

Lecture 2 : Present of Photonuclear Reactions138BaSpin and Parity DeterminationN. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474Courtesy by A. Tonchev

Lecture 2 : Present of Photonuclear Reactions138BaSpin and Parity DeterminationN. Pietralla, at al. PRL 88 (2002) 012502; A. Tonchev, NIM B 241 (2005) 51474Courtesy by A. Tonchev

Lecture 2 : Present of Photonuclear ReactionsPDR study by NRF (nuclear resonance fluorescence photon scattering (g, g’)) measurements1) Ideal to separate PDR (E1) and M1 resonance usinglinearly-polarized photons2) Limited below neutron threshold (Sn)3) Best suited to even-even nuclei 0 ground state high neutron threshold (Sn)4) Determine partial strength discrete (resolved) states unresolved states: model -dependent

Lecture 2 : Present of Photonuclear ReactionsPDR in 207,208Pb above neutron thresholdT. Kondo et al., Phy. Rev. C 86, 014316 (2012)9587 mg, 98.5%, 208Pb3482 mg, 99.1%, 207Pbl 0, 11- 1 1/2207PbE1 M10 208Pb

Lecture 2 : Present of Photonuclear ReactionsNeutron anisotropy detectorfor E1 & M1 (g,n) cross section measurements

Lecture 2 : Present of Photonuclear ReactionsE1 cross sections for 208,207PbHFB QRPA E1 strength pluspygmy E1 resonancein Lorentzian shapeEo 7.5 MeV, G 0.4 MeV o 20 mb for 208Pb o 15 mb for 207PbTRK sum rule0.42% for 208Pb0.32% for 207Pb

B(E1) 208PbPresentB( E1) 0.82 0.09 e 2 fm 2E 7.51 8.32 MeV207PbB( E1) 0.88 0.17 e 2 fm 2E 7.02 8.32 MeV(p,p’) experimentB( E1) 0.982 0.206 e 2 fm 2E 7.515 8.430 MeV

Lecture 2 : Present of Photonuclear ReactionsM1 cross sections for 208,207PbM1 resonancein Lorentzian shape208PbEo 8.06 MeV, G 0.6 MeV o 3.6 mbB(M1) 4.2 2.3 mN2 E 7.51-8.32 MeV207PbEo 7.25 MeV, G 1 MeV o 3.2 mbB(M1) 4.0 1.9 mN2 E 7.02-7.52 MeV

Lecture 2 : Present of Photonuclear ReactionsPDR study by (g,n) measurements1) Limited above neutron threshold (Sn)2) Best suited to odd-A nuclei low Sn3) Determine partial strength above Sn (complementary to (g,g’)) both discrete and continuum components4) energy resolution low with 4 neutron detector high with TOF technique (future)

Lecture 2 : Present of Photonuclear ReactionsNucleosynthesis of Heavy Elementss-process, r-process and p-process

Lecture 2 : Present of Photonuclear Reactionsp-nuclei35 neutron-deficient nucleifrom Se(Z 34) to Hg(Z 80)④③ (p,g ) decay④ (g,n) (g, p)(g,n) (g, ) decay① ( p,g )②②③① (g,n)

Lecture 2 : Present of Photonuclear Reactionsp-process nucleosynthesisP. Mohr et al., Phys. Lett. B 488 (2000) 127H. Utsunomiya et al., Nucl. Phys. A 777 (2006) 459Photoreaction rates for gs gn (T) cng (E,T) g (E)dEPhotoneutron CSPlanck distr.n0Planck distribution1E2ng (E,T )dE 2dE3 (hc) exp(E / kT ) 11Gamow peak

Lecture 2 : Present of Photonuclear ReactionsStellar photoreaction ratePhotoreaction rates for a state m gmn (T) Tg m (Eg ,J )Tn (E,J )1 (Eg ) Dg (2J 1) T (E,J )2(2 j m 1) J totmgn cng (E,T) gm (E)dEn0Stellar photoreaction rate (2 j m 1) gmn (T)exp( m /kT) *gn mTgm (E g ,J ) 2 g3 f g (E g ) for E1 transition (2 j m 1)exp( m /kT)Key quantity:m A 1XEgg-ray strength function fg (Eg)E, J E Eg EmEg Snfor gsm, EmEg Snfor excited states mSn AX2

Lecture 2 : Present of Photonuclear ReactionsOnly naturally occurring isomer 180Tam Odd-odd Nucleus (Z 73, N 107)Neutron deficient nucleus (classified as one of p-nuclei)Solar Abundance ; 2.48 10‐6(the rarest)Half Life 1.2 1015yEx 75keVJ 910 210 1s-process10 0r-process10 -110 -210 -3180Tags Half Life 8.152h J 1 10p-process180138-410 -510WLa180Ta-680100120140A160180200

Lecture 2 : Present of Photonuclear ReactionsStableNetwork of nucleosynthesis180W179Ta181W182W180Tam181Ta1.2 d179Hfgs180Hfm5.5h181Hf180HfgsPrimary s-process flow ZA X (n, g ) A Z1X ( ) ZA 11X r-processp-process 181Ta(g , n)180Ta(thermal equilibriu m)180TamWeak branching s-process 179Hf m ( )179Ta(n, g )180Tam

Lecture 2 : Present of Photonuclear ReactionsNucleosynthesis of 180Tam p-process in the pre-supernova phase of massivestars or during their explosions as type-ⅡsupernovaeTemperature ; 1.8 T[109K] 3.0Peak photon energy ; 200[keV]181Ta(g,n)180Ta(thermal equilibrium) 180Tam s-process in the Low-mass AGB starTemperature ; 2.9 T[108K] 3.3(Zs. Nèmeth, F. Käppeler, G. Reffo; 1992)Typical neutron energy ; 25[keV]179Hfm( )179Ta(n,g)180Tam

Lecture 2 : Present of Photonuclear Reactions181Ta(g,n)180TaH. Utsunomiya et al., Phys. Rev. C 67, 015807 (2003)Extra E1 g-ray strength near SnPygmy Dipole ResonanceN. Paar, D. Vretenar, E. Khan, G. ColòRep. Prog. Phys. 70 691 (2007)Ta(g,n) 180Ta (g,n) [mb]181100101IAEA [8]Utsunomiya et al. (2002)QRPAHybridLorentzian891011E [MeV]1213

Lecture 2 : Present of Photonuclear ReactionsModel calculation of the p-process nucleosynthesisH. Utsunomiya et al., Phys. Rev. C 67, 015807 (2003)S. Goriely, ULB

Lecture 2 : Present of Photonuclear ReactionsNuclear Level Density of 180Ta4 ,5-,4-,3-, s-waveneutron3 2-9/2-, 7/2-, 5/2-s-waveneutron5(7/2 )T1/2 1.82y6 78 T1/2 1.2 1015y9-75.32 421 0179TaT1/2 8.152hE1180Ta7/2 181Ta

Lecture 2 : Present of Photonuclear Reactions181Ta(g,n)180TaProgress of the reactionsT1/2 1.2 1015yT1/2 8.152h75keV9- m1 (gs) gs total180TaIncident g-ray7.576MeVElectronCapture93keV2 181Ta - decay0.03104keV0.24180W0.58180Hfper 1 decay of 180Tags93keV g-ray 4.665%55.8keV K 1 33.12%54.6keV K 2 19.20%2 0 0.150 (Target)m total -gs

Lecture 2 : Present of Photonuclear ReactionsExperimental Set-upTarget Sample;181Ta3HeProportional Counter 20NaI(Tl) ScintillatorTarget Sample;197AuNeutron Moderator ; Polyethylene

Lecture 2 : Present of Photonuclear ReactionsGe DetectorSet-upActivated Ta foilson the acrylic cap

Lecture 2 : Present of Photonuclear Reactions180Tags 180Hf;Electron Capture1000120λexp 0.084λnominal 0.085Counts / hCounts / h / 230 V]65.070.0051015Time[h]2025

Lecture 2 : Present of Photonuclear ReactionsExperimental results, and comparisonwith theoretical modelsGoko et al. Phys. Rev. Lett. 96, 192501 (2006)Ta(g,n)180TaCross Section [mb]181100Systematicuncertainties10 26%10181Ta(g,n)180Tam10.17891011Eg[MeV]Present work (2006)IAEA : Lee et al. (1998)121314Combinatorial NLD modelStatistical NLD modelHF model calculations by S.Goriely (ULB)

Lecture 2 : Present of Photonuclear ReactionsTa(n, g )180Tam179for the s-process 180Tam production310 Goko et al.Phys. Rev. Lett. 96,192501 (2006)0.4mng0.3520.30.251100.2 nmg010-10.15 ntotg0.05-2030keV(s-process) nmg 90 22mb nmg 0.04 0.01 ntotgat 30 keV0.11010Present results m/ totCross Section [mb]100.11E [MeV]n100.040Combinatorial NLD modelStatistical NLD modelPrevious PredictionsHF model calculations by S.Goriely (ULB) m: 44mb (Zs. Nèmeth, F.Käppeler, G.Reffo ;1992) m/ tot: 0.02 0.09 (K.Yokoi, K.Takahashi ;1983)0.043 0.008 (Zs. Nèmeth, F.Käppeler, G.Reffo ;1992)

Lecture 2 : Present of Photonuclear ReactionsRadiative neutron capture - AX(n,g)A 1XcontinuumE, J, decay processgSFNLDn AXA 1X

Lecture 2 : Present of Photonuclear Reactions Hauser-Feshbach model cross section for AX(n,g)A 1X Tg (E,J, ) Tn (E,J, ) 2 gJ Tg (E,J, ) ng (E) 2 gJkn J , kn J , Ttot Ttot Tn (E,J, )Total g transmission coefficientTg (E,J, ) T X ,X , X E, M 1, 2, After integrating over J and π ( g ) TX ( g ) (E g )d gX , g-ray strength functionnuclear level density (E g )TX ( g ) 2 g2 1 f X ( g ) neutron resonance spacinglow-lying levels

Lecture 2 : Present of Photonuclear Reactions(n,g) and (g,n) are interconnected throughthe g-ray strength function and the nuclear level densityin the Hauser-Feshbach model.Radiative neutron capturePhotoneutron emissioncontinuumAX(n,g)A 1XA 1X(g,n)AXE, J, n AXf X ( g ) g ( 2 1)GX ( g )abs g 2 1 X ( g )f X ( g ) ( c)2 2 1D g Sn g SnA 1X Brink Hypothesisf X ( g ) f X ( g )

Lecture 2 : Present of Photonuclear Reactionsg-ray Strength Function MethodH. Utsunomiya et al., Phys. Rev. C 80, 055806 (2009)Indirect determination of (n, g) cross sections for unstable nucleibased on a unified understanding of (g,n) and (n, g) reactionsthrough the g-ray strength functionThe best understanding of the γ SF with PDR and M1 resonanceis obtained by integrating (g, n) data(g, g’) NRF dataParticle-g coin. data , Oslo MethodExisting (n, g) data

Lecture 2 : Present of Photonuclear ReactionsApplications of the g-ray Strength Function Method1. Nuclear Astrophysicss-process branch-point nuclei: unstable nuclei along the line of -stabilityF. Käppeler et al., Rev. Mod. Phys. 83, 157 (2011)63Ni, 79Se, 81Kr, 85Kr, 95Zr, 147Nd, 151Sm, 153Gd, 185W2. Nuclear Data for Nuclear Engineering

Lecture 2 : Present of Photonuclear ReactionsLLFP (long lived fission products)nuclear wasteApplicationsAstrophysical significancePresent ( ,n) measurementsExisting (n, ) data(n, ) c.s. to be deduced7354SnPdZrSe6115104893.27 d75120 d6116105907611710691771181191076.51069278H. Utsunomiya et al., PRC80 (2009)y120122129 d124H.U. et al., PRL100(2008)PRC81 (2010)931.5327 h123H.U. et al., PRC82 (2010)108106121y792.95 103 y94809564 d96F. Kitatani, Ph.D. thesis,to be published

Lecture 2 : Present of Photonuclear ReactionsH.U. et al., PRC88 (2013)6In collaboration with Univ. Oslo etc.5In collaboration with ELI-NP etc.7

Lecture 2 : Present of Photonuclear ReactionsStructure of g-ray strength functionExtra strengthsSnGDR6 – 10 MeVPDR, M1E1 strength of the low- energy tail of GDR

Lecture 2 : Present of Photonuclear ReactionsExperimental determination of g-ray strength functionA-1X(n,A-1g)AXAStatistical model calculation of A-1X(n, g)AXcross sections with experimental γSF g Sn(g.n) data g Sn(g, g’) NRF dataParticle-g coin. data(Oslo Method)PDR, M1SnGDR

Lecture 2 : Present of Photonuclear ReactionsTheoretical extrapolation of g-ray strength function(g,n)A-1(g,n)AA 1Statistical model calculation ofA 1X(n,γ)A 2X cross sections withexperimentally-constrained γSFA 2known (n, g)2. g SnExtrapolation bymicroscopic model1. g Sn(g.n) dataGDRPDR, M1Sn3. Justification of gSF byreproducing known (n,g)cross sections in theHauser-Feshbach modelcalculation

Lecture 2 : Present of Photonuclear ReactionsSn isotopesHFB QRPA E1 strength supplemented with a pygmy E1resonance in Gaussian shapeEo 8.5 MeV, G 2.0 MeV, o 7 mb〜 1% of TRK sum rule (E1 strength)

Lecture 2 : Present of Photonuclear ReactionsgSF for Sn isotopes(g,n) dataH. Utsunomiya et al., PRC84 (2011)Oslo data(3He, αγ), (3He, 3He’ g)Toft et al., PRC 81 (2010); PRC 83 (2011)

Lecture 2 : Present of Photonuclear Reactions(n,g) CS for Sn isotopes

Lecture 2 : Present of Photonuclear Reactions(n,g) CS forunstable Sn isotopes121Sn[T 271/2Uncertainties:30-40%h]123Sn[T 1291/2d]Uncertainties:a factor of 〜 2

Lecture 2 : Present of Photonuclear ReactionsMo isotopes(g,n) dataH. Utsunomiya et al., PRC 88 (2013)Oslo data(3He, αg), (3He, 3He’g)M. Guttormsen et al., PRC71 (2005)(g,g’) dataG. Rusev et al., PRC77 (2008)

Lecture 2 : Present of Photonuclear Reactions(n,g) CS forStable Mo isotopes(n,g) CS forUnstable Mo isotopes93MoT1/2 4000 yr99MoT1/2 2.75 d

Lecture 3 : Present and Future of Photonuclear ReactionsLecture 3Present and Future of Photonuclear Reactions2.3 Nuclear Astrophysics (continued)c. reciprocity theorem – photodisintegration of D, 9Be, 16O2.4 Evaluated Nuclear Data Library – ENDF, JEFF, JENDL, RIPL3. ELI-NP project3.1 ELI-NP vs HIGS and NewSUBARU3.2 p-process – rare isotopes3.3 Precision Era of Nuclear Physicsa. PDR above neutron thresholdb. GDR – (g, g), (g,n) (g,2n), (g,3n) cross sections3.4 Special topicPhotoreactions on isomers – laser-gamma combined experiment

Lecture 3 : Present and Future of Photonuclear ReactionsNucleosynthesis of light nucleiA a B b QB b A a – Q Q value (b a ) ( a b) 2(2 I A 1)(2ia 1) pa (2 I B 1)(2ib 1) pb2Reciprocity TheoremNeutron Channela n, b gpg k Egcpn2 2m E n 2 jb 1 2Equivalency between (n, g) and (g,n) nA 1 XAX

Lecture 3 : Present and Future of Photonuclear ReactionsExamplesDBig Bang Nucleosynthesis: p(n,g)D vs D(g,n)p

Lecture 3 : Present and Future of Photonuclear ReactionsExamplesDBig Bang Nucleosynthesis: p(n,g)D vs D(g,n)pK.Y. Hara et al., PRD 68, 072001 (2003)

Lecture 3 : Present and Future of Photonuclear ReactionsExamples9Be Supernova Nucleosynthesis 8Be(n,g) 9Be vs 9Be(g,n)8BeNeutrino-Driven Windn,seeds, T 0.2 MeVr-process ,nT 0.5 MeVp,n -process Type II SupernovaR 100 kmR 50 kmR 10 kmHotProto-NeutronStar ,n

Lecture 3 : Present and Future of Photonuclear ReactionsExamples9Be Supernova Nucleosynthesis 8Be(n,g) 9Be vs 9Be(g,n)8BeH. Utsunomiya et al. PRC 63, 018801 (2001)K. Sumiyoshi et al. NPA709, 467 (2002)2.02.01.51.01.5 (mb)0.50.01.61.71.81.92.01.00.50.01.52.02.53.0E g(MeV)3.54.04.5

Lecture 3 : Present and Future of Photonuclear ReactionsExamples9BeSupernova Nucleosynthesis 8Be(n,g) 9Be vs 9Be(g,n)8BeC.W. Arnold et al. PRC 85, 044605 (2012)HIGSA new measurement has been done by Konan University and CNS, University of Tokyo etc.at the NewSUBARU synchrotron radiation facility and data reduction is in progress.

Lecture 3 : Present and Future of Photonuclear ReactionsReciprocal advantage:a factor of 100Application16O(g, α)12CCourtesy by C. Ugalde

Lecture 3 : Present and Future of Photonuclear ReactionsApplication16O(g, α)12CClaudio Ugalde, The University of ChicagoBubble ChamberSuperheated Target forAstrophysics Research (STAR)Moshe Gai, U. Conn. and YaleOptical Readout TPC

Lecture 3 : Present and Future of Photonuclear ReactionsEvaluated Nuclear Data Library ENDF (USA)http://t2.lanl.gov/nis/data/endf/index.html JEFF vatapes/jeff 32/ JENDL (Japan)http://wwwndc.jaea.go.jp/jendl/j40/J40 J.htmlReference Input Parameter Library (RIPL-3)https://www-nds.iaea.org/RIPL-3/

Lecture 3 : Present and Future of Photonuclear ReactionsELI-NP (Europe)(Extreme Light Infrastructure- Nuclear Physics)Magurele-Bucharest, RomaniaApproved by the European Commission in 2012First Experiments in 2018Eg 0.2 -19 MeVIg 1011 (s-1 mm-2 mrad-2 0.1%-1)DE/E 0.5%

Lecture 3 : Present and Future of Photonuclear ReactionsHIGS (USA)(High Intensity Gamma-Ray Source)Duke Free Electron Laser LaboratoryEg 1 -100 MeVIg 108 s-1 cm-2 on targetDE/E 1%0.24-0.28 GeVElectron Linac0.24-1.2 GeVBooster Injector0.24-1.2 GeVStorage RingFEL Undulators

Lecture 3 : Present and Future of Photonuclear ReactionsAIST Electron Accelerator FacilityStroge Ring NIJI-IVGeneral-purpose Storage ��ータ光・放射光400MeV Electron Linear Acc.TELLS-band small linear mall Storage Ring NIJI-II・SRプロセスPulsed slow positron beam line・ナノメートル 原子レベル空孔計測

Lecture 3 : Present and Future of Photonuclear ReactionsAIST : National Institute for Advanced Industrial Science and TechnologyTERAS (Tsukuba Electron Ring for Acceleration and Storage)closed in April 2012

Lecture 3 : Present and Future of Photonuclear ReactionsLEPS, LEPS2GeV gSACLA8 GeV e- linacSPring8 8 GeV e- storage ring8 GeV e- synchroton1 GeV e- LinacNewSUBARUMeV g81

Lecture 3 : Present and Future of Photonuclear ReactionsNewSUBARU (Japan)0.55 – 1.5 GeV storage ringEg 0.5 – 76 MeVIg 106 – 107 s-1(3 – 6 mm dia.)DE/E 2%

Lecture 3 : Present and Future of Photonuclear ReactionsExperimental Hutch GACKO(Gamma Collaboration Hutch ofKonan University)Table-top Lasers

Lecture 3 : Present and Future of Photonuclear ReactionsI. Physics and Experiments with a 4 NeutronDetectorPhysicsRare isotope measurements for the p-process nucleosynthesisp-nuclei are very rare.

Lecture 3 : Present and Future of Photonuclear Reactions Highest intensity and monochromatic g-ray beam 1mg samples of rare Not so everRarest elementOnly naturallyoccurring isomerH. Utsunomiya et al.,PRC67, 015807 (2003)

Lecture 3 : Present and Future of Photonuclear ReactionsDay 1 Experiment #1180Ta(g,n)& 138La(g,n) measurement20 3He proportional countersembedded in polyethylene moderatorTriple-ring configuration1st ring of 4 counters4 Neutronnd2 ring of 8 counters3rd ring of 8 countersDetector

Lecture 3 : Present and Future of Photonuclear Reactions180Tavs 181Ta ( Isotopic Impurity)A 180Ta sample with rather low enrichment may contain a largeamount of 181Ta.Sn(181Ta:7576.8 keV) - Sn(180Ta: 6641.2 keV) 935.6 keVSimilarly,Sn(139La:8778 keV) - Sn(138La: 7495 keV) 1283 keVWe have to be careful about the amount of chemical impuritiesof 180Ta and 138La samples as well.

Lecture 3 : Present and Future of Photonuclear ReactionsRare isotopes tobe studied35 4Mo92MoNatural6abundance Abundance (10 20.02010.004040.0350.00080.00790.1030.2360.378

Lecture 3 : Present and Future of Photonuclear Reactions(g, g)Sn(g,n), (g,2n), (g,3n), (g,p), (g, )g-ray strength functionNucleosynthesis (p-process, s-process)modified by H. Utsunomiya

Lecture 3 : Present and Future of Photonuclear ReactionsResonances above SnThreshold Photoneutron TechniqueBremsstrahlung n-TOF207Pb(g,n)C.D. Berman et al., PRL25, 1302 (1970)R.J. Baglan et al., PRC3, 2475 (1971)208Pb(g,n)

Lecture 3 : Present and Future of Photonuclear Reactions57Fe(g,n)53Cr(g,n)

Lecture 3 : Present and Future of Photonuclear ReactionsDay 1 Experiment #2PDR and M1 resonance in 207Pb- 207Pb(g,n) measurement Liquid Scintillation and LaBr3(Ce) Detector Array6234LaBr3(Ce), 3” x 3”

Lecture 3 : Present and Future of Photonuclear ReactionsDay 1 Experiment #3Exclusive neutron decays of GDR in 159Tbin collaboration with Vladimir Varlamov x 1, 2, Sn 8.133 MeV S2n 14.911 MeV159Tb(g,xn)IAEA –TECDOC-11781g/cm2Eg(max) 19 MeV (g,2n)2n 157Tb (g,n)n 158TbNeutron multiplicity sorting witha multi-stop TDC with a time range 512 ns159Tb

Lecture 3 : Present and Future of Photonuclear ReactionsDay 1 Experiment #4-1Production of long-lived Isomers by2 x 10PW lasers at E7Laser2 x 10 PW189Os:9/2-, 30.8 keV, 5.81h176Lu: 1-, 123 keV, 3.66hLaser acceleration of heavyions that undergo nuclearexcitations induced byelectrons.

Lecture 3 : Present and Future of Photonuclear ReactionsExperimental setup for Laser acceleration of Fe ionsPrivate communication with Dr. Nishiuchi of JAEA-KIZU

Lecture 3 : Present and Future of Photonuclear Reactions

Lecture 3 : Present and Future of Photonuclear ReactionsDay 1 Experiment #4-2Photoexcitation of long-lived isomers at E8189Os:9/2-, 30.8 keV, 5.81h176Lu: 1-, 123 keV, 3.66hGammaWe can confirm photo-excitation of isomers by detecting neutrons.175Lu n1176Lu7-

Lecture 3 : Present and Future of Photonuclear ReactionsE8E7

Lecture 3 : Present and Future of Photonuclear ReactionsSummary Following pioneering developments at HIGS,AIST, and NewSUBARU, ELI-NP will open upa new era of nuclear science with intensegamma and laser photon beams. Please join photon physics at differentfacilities worldwide.Imagination is more important than knowledge.- A. Einstein

p 992 keV resonance Lecture 1 : Past of Photonuclear Reactions . 27Al(p, g)28Si, E p . Radiative losses are most important for high electron energies and for absorber materials of large atomic number. Ratio of the specific energy losses . Handbook on photonuclear data for applications, Cross sections and spectra IAEA TECDOC-1178 (2000) .

Related Documents:

Qual era l'organizzazione sociale e politica dei Sumeri? I Sumeri vivevano in città-stato, ovvero ogni città formava un piccolo Stato indipendente. Chi era a capo di ogni città? A capo di ogni città vi era un re, il quale era affiancato da un consiglio degli anziani. Inizialmente il re era anche sacerdote.Era il sacerdot

Noches misteriosas en Granada Todo estaba perfecto. A Kevin le gustaba el orden. Su dormitorio era perfecto y su ropa era perfecta. En las clases, Kevin era perfecto. Era obvio que Kevin era un chico perfecto. Kevin miró su com-putadora. Tenía una computadora Macbook. Era una Macboo

Welcome to the Cognitive Era. A new era of technology. A new era of business. A new era of thinking. Ad No.: BRA-15-37 W SAP No.: IMN.IMNBRP.15124.K.013 Ad Title: IBM - OUT THINK LAUNCH This advertisement prepared by: Ogilvy & Mather To appear in: WSJ / NYT Size: WSJ Page Color: 4/c Safety: 10.87"w x 21"h Creative Director: Kieth Anderson Art Director: Sid Thompkins Copywriter: Joe Perry

Jan 29, 2021 · major era will look like. But let’s start by looking at the megatrends that will shape that era. 1970 2014 The beginning of the Digitalization Era 1979 The beginning of the Globalization Era 1970s The end of the Industrialization Era 1980 1990 2000 2010 2020 2030 8 Finding

Write the answer on the other side of the card. Quiz yourself until you know all of the answers. Visual Check 1. Name List the periods of the Mesozoic era from oldest to youngest. Mesozoic Era Eons Eras Periods Phanerozoic Mesozoic Cretaceous Jurassic Triassic Precambrian 251 mya 65.5 mya Mesozoic The Mesozoic Era Geologic Time The Mesozoic Era .

Perform the dissection only on the dissection tray. Follow proper hygiene practices before, during, and after the lab. 2 Direction or Plane Definition Lateral Toward the right or left side Medial Toward the midline Proximal Near or toward the point of reference Distal Away from the point of reference Dorsal Toward the back Ventral Toward the belly

tilt of the pelvis toward the left. Thus the lumbar spine showed a scoliosis that was convex toward theleft. 6. The lumbar lordosis usually wasincreased. 7. The vertebral bodies rotated toward the right side,-that is, toward the concavity ofthe scoliosis ‘. 8. Thetrunk, asawhole, tended tolist toward the right.

The Holy Bible: Russian Version by Anonymous. This document has been generated from XSL (Extensible Stylesheet Language) source with RenderX XEP Formatter, version 3.6.1 Client Academic.