Geometry And Dynamics Of Surface Group Representations - UMD

1y ago
1 Views
1 Downloads
4.07 MB
115 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Melina Bettis
Transcription

Geometry and Dynamics of Surface GroupRepresentationsWilliam M. GoldmanDepartment of Mathematics University of MarylandColloque de mathématiques de MontréalCRM/ISM14 September 2007()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

1Enhancing Topology with Geometry2Representation varieties and character varieties3Symplectic geometry4Real projective structures on surfaces()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Geometry through symmetryIn his 1872 Erlangen Program, Felix Klein proposed that a geometry is thestudy of properties of an abstract space X which are invariant under atransitive group G of transformations of X .()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Putting geometric structure on a topological spaceTopology: Smooth manifold Σ with coordinate patches U α ;Charts — diffeomorphismsψαUα ψα (Uα ) XOn components of Uα Uβ , g G such thatg ψα ψβ .Local (G , X )-geometry independent of patch.(Ehresmann 1936): Geometric manifold M modeled on X .()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Putting geometric structure on a topological spaceTopology: Smooth manifold Σ with coordinate patches U α ;Charts — diffeomorphismsψαUα ψα (Uα ) XOn components of Uα Uβ , g G such thatg ψα ψβ .Local (G , X )-geometry independent of patch.(Ehresmann 1936): Geometric manifold M modeled on X .()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Putting geometric structure on a topological spaceTopology: Smooth manifold Σ with coordinate patches U α ;Charts — diffeomorphismsψαUα ψα (Uα ) XOn components of Uα Uβ , g G such thatg ψα ψβ .Local (G , X )-geometry independent of patch.(Ehresmann 1936): Geometric manifold M modeled on X .()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Putting geometric structure on a topological spaceTopology: Smooth manifold Σ with coordinate patches U α ;Charts — diffeomorphismsψαUα ψα (Uα ) XOn components of Uα Uβ , g G such thatg ψα ψβ .Local (G , X )-geometry independent of patch.(Ehresmann 1936): Geometric manifold M modeled on X .()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Putting geometric structure on a topological spaceTopology: Smooth manifold Σ with coordinate patches U α ;Charts — diffeomorphismsψαUα ψα (Uα ) XOn components of Uα Uβ , g G such thatg ψα ψβ .Local (G , X )-geometry independent of patch.(Ehresmann 1936): Geometric manifold M modeled on X .()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Putting geometric structure on a topological spaceTopology: Smooth manifold Σ with coordinate patches U α ;Charts — diffeomorphismsψαUα ψα (Uα ) XOn components of Uα Uβ , g G such thatg ψα ψβ .Local (G , X )-geometry independent of patch.(Ehresmann 1936): Geometric manifold M modeled on X .()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Classfication of geometric structuresBasic question: Given a topology Σ and a geometry X G /H,determine all possible ways of providing Σ with the local geometry of(X , G ).Example: The 2-sphere does not admit Euclidean-geometry structure:6 metrically accurate world atlas.Example: The 2-torus admits a rich moduli space ofEuclidean-geometry structures.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Classfication of geometric structuresBasic question: Given a topology Σ and a geometry X G /H,determine all possible ways of providing Σ with the local geometry of(X , G ).Example: The 2-sphere does not admit Euclidean-geometry structure:6 metrically accurate world atlas.Example: The 2-torus admits a rich moduli space ofEuclidean-geometry structures.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Classfication of geometric structuresBasic question: Given a topology Σ and a geometry X G /H,determine all possible ways of providing Σ with the local geometry of(X , G ).Example: The 2-sphere does not admit Euclidean-geometry structure:6 metrically accurate world atlas.Example: The 2-torus admits a rich moduli space ofEuclidean-geometry structures.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Classfication of geometric structuresBasic question: Given a topology Σ and a geometry X G /H,determine all possible ways of providing Σ with the local geometry of(X , G ).Example: The 2-sphere does not admit Euclidean-geometry structure:6 metrically accurate world atlas.Example: The 2-torus admits a rich moduli space ofEuclidean-geometry structures.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Quotients of domainsSuppose that Ω X is an open subset invariant under a subgroupΓ G such that:Γ is discrete;Γ acts properly and freely on ΩThen M Ω/Γ is a (G , X )-manifold covered by Ω.Convex RPn -structures: Ω RPn convex domain.For example, the projective geometry of the interior of a quadric Ω ishyperbolic geometry. B y x AThe hyperbolic distance is defined by cross-ratios:d(x, y ) log[A, x, y , B]()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: A projective tiling by equilateral 60o -trianglesThis tesselation of the open triangular region is equivalent to the tiling ofthe Euclidean plane by equilateral triangles.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: A projective deformation of a tiling of thehyperbolic plane by (60o ,60o ,45o )-triangles.Both domains are tiled by triangles, invariant under a Coxeter groupΓ(3, 3, 4). The first domain is bounded by a conic and enjoys hyperbolicgeometry. The second domain is bounded by C 1 α -convex curve where0 α 1.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: A hyperbolic structure on a surface of genus twoIdentify sides of an octagon to form a closed genus two surface.b2a2a1a2b2 b1b1a1Realize these identifications isometrically for a regular 45 o -octagon.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: A hyperbolic structure on a surface of genus twoIdentify sides of an octagon to form a closed genus two surface.b2a2a1a2b2 b1b1a1Realize these identifications isometrically for a regular 45 o -octagon.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: A hyperbolic structure on a surface of genus twoIdentify sides of an octagon to form a closed genus two surface.b2a2a1a2b2 b1b1a1Realize these identifications isometrically for a regular 45 o -octagon.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Modeling structures on representations of π1fMarked (G , X )-structure on Σ: diffeomorphism Σ M where M is a(G , X )-manifold.Marked (G , X )-structures (fi , Mi ) are isotopic isomorphismφM1 M2 with φ f1 ' f2 .Define the deformation space(D(G ,X ) (Σ) : )Marked (G , X )-structures on Σ /Isotopyη Diff(Σ) acts on marked (G , X )-structures: (f , M) 7 (f η, M).Mapping class groupMod(Σ) : π0 Diff(Σ)acts on D(G ,X ) (Σ).()Surface group representations Colloque de mathématiques de Montréal CRM/ 29

Modeling structures on representations of π1fMarked (G , X )-structure on Σ: diffeomorphism Σ M where M is a(G , X )-manifold.Marked (G , X )-structures (fi , Mi ) are isotopic isomorphismφM1 M2 with φ f1 ' f2 .Define the deformation space(D(G ,X ) (Σ) : )Marked (G , X )-structures on Σ /Isotopyη Diff(Σ) acts on marked (G , X )-structures: (f , M) 7 (f η, M).Mapping class groupMod(Σ) : π0 Diff(Σ)acts on D(G ,X ) (Σ).()Surface group representations Colloque de mathématiques de Montréal CRM/ 29

Modeling structures on representations of π1fMarked (G , X )-structure on Σ: diffeomorphism Σ M where M is a(G , X )-manifold.Marked (G , X )-structures (fi , Mi ) are isotopic isomorphismφM1 M2 with φ f1 ' f2 .Define the deformation space(D(G ,X ) (Σ) : )Marked (G , X )-structures on Σ /Isotopyη Diff(Σ) acts on marked (G , X )-structures: (f , M) 7 (f η, M).Mapping class groupMod(Σ) : π0 Diff(Σ)acts on D(G ,X ) (Σ).()Surface group representations Colloque de mathématiques de Montréal CRM/ 29

Modeling structures on representations of π1fMarked (G , X )-structure on Σ: diffeomorphism Σ M where M is a(G , X )-manifold.Marked (G , X )-structures (fi , Mi ) are isotopic isomorphismφM1 M2 with φ f1 ' f2 .Define the deformation space(D(G ,X ) (Σ) : )Marked (G , X )-structures on Σ /Isotopyη Diff(Σ) acts on marked (G , X )-structures: (f , M) 7 (f η, M).Mapping class groupMod(Σ) : π0 Diff(Σ)acts on D(G ,X ) (Σ).()Surface group representations Colloque de mathématiques de Montréal CRM/ 29

Modeling structures on representations of π1fMarked (G , X )-structure on Σ: diffeomorphism Σ M where M is a(G , X )-manifold.Marked (G , X )-structures (fi , Mi ) are isotopic isomorphismφM1 M2 with φ f1 ' f2 .Define the deformation space(D(G ,X ) (Σ) : )Marked (G , X )-structures on Σ /Isotopyη Diff(Σ) acts on marked (G , X )-structures: (f , M) 7 (f η, M).Mapping class groupMod(Σ) : π0 Diff(Σ)acts on D(G ,X ) (Σ).()Surface group representations Colloque de mathématiques de Montréal CRM/ 29

Modeling structures on representations of π1fMarked (G , X )-structure on Σ: diffeomorphism Σ M where M is a(G , X )-manifold.Marked (G , X )-structures (fi , Mi ) are isotopic isomorphismφM1 M2 with φ f1 ' f2 .Define the deformation space(D(G ,X ) (Σ) : )Marked (G , X )-structures on Σ /Isotopyη Diff(Σ) acts on marked (G , X )-structures: (f , M) 7 (f η, M).Mapping class groupMod(Σ) : π0 Diff(Σ)acts on D(G ,X ) (Σ).()Surface group representations Colloque de mathématiques de Montréal CRM/ 29

Representation varietiesLet π hX1 , . . . , Xn i be finitely generated and G GL(N, R) a linearalgebraic group.The set Hom(π, G ) of homomorphismsπ Genjoys the natural structure of an affine algebraic variety.Evaluation on the generatorsHom(π, G ) G nρ 7 ρ(X1 ), . . . , ρ(Xn ) embeds Hom(π, G ) onto an algebraic subset of GL(N, R) N .Structure is {X1 , . . . , Xn }-independent.Classical topology (and Zariski topology).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Representation varietiesLet π hX1 , . . . , Xn i be finitely generated and G GL(N, R) a linearalgebraic group.The set Hom(π, G ) of homomorphismsπ Genjoys the natural structure of an affine algebraic variety.Evaluation on the generatorsHom(π, G ) G nρ 7 ρ(X1 ), . . . , ρ(Xn ) embeds Hom(π, G ) onto an algebraic subset of GL(N, R) N .Structure is {X1 , . . . , Xn }-independent.Classical topology (and Zariski topology).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Representation varietiesLet π hX1 , . . . , Xn i be finitely generated and G GL(N, R) a linearalgebraic group.The set Hom(π, G ) of homomorphismsπ Genjoys the natural structure of an affine algebraic variety.Evaluation on the generatorsHom(π, G ) G nρ 7 ρ(X1 ), . . . , ρ(Xn ) embeds Hom(π, G ) onto an algebraic subset of GL(N, R) N .Structure is {X1 , . . . , Xn }-independent.Classical topology (and Zariski topology).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Representation varietiesLet π hX1 , . . . , Xn i be finitely generated and G GL(N, R) a linearalgebraic group.The set Hom(π, G ) of homomorphismsπ Genjoys the natural structure of an affine algebraic variety.Evaluation on the generatorsHom(π, G ) G nρ 7 ρ(X1 ), . . . , ρ(Xn ) embeds Hom(π, G ) onto an algebraic subset of GL(N, R) N .Structure is {X1 , . . . , Xn }-independent.Classical topology (and Zariski topology).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Representation varietiesLet π hX1 , . . . , Xn i be finitely generated and G GL(N, R) a linearalgebraic group.The set Hom(π, G ) of homomorphismsπ Genjoys the natural structure of an affine algebraic variety.Evaluation on the generatorsHom(π, G ) G nρ 7 ρ(X1 ), . . . , ρ(Xn ) embeds Hom(π, G ) onto an algebraic subset of GL(N, R) N .Structure is {X1 , . . . , Xn }-independent.Classical topology (and Zariski topology).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Representation varietiesLet π hX1 , . . . , Xn i be finitely generated and G GL(N, R) a linearalgebraic group.The set Hom(π, G ) of homomorphismsπ Genjoys the natural structure of an affine algebraic variety.Evaluation on the generatorsHom(π, G ) G nρ 7 ρ(X1 ), . . . , ρ(Xn ) embeds Hom(π, G ) onto an algebraic subset of GL(N, R) N .Structure is {X1 , . . . , Xn }-independent.Classical topology (and Zariski topology).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Natural symmetriesHom(π, G ) admits an action of Aut(π) Aut(G ):φ 1ραπ π G Gwhere (φ, α) Aut(π) Aut(G ), ρ Hom(π, G ).Preserves the algebraic structure.The quotientHom(π, G )/G : Hom(π, G )/ {1} Inn(G )under the subgroup {1} Inn(G ) Aut(π) Aut(G )is the space of equivalence classes of flat connections on G -bundlesover any space with fundamental group π.Inherits an action ofOut(π) : Aut(π)/Inn(π).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Natural symmetriesHom(π, G ) admits an action of Aut(π) Aut(G ):φ 1ραπ π G Gwhere (φ, α) Aut(π) Aut(G ), ρ Hom(π, G ).Preserves the algebraic structure.The quotientHom(π, G )/G : Hom(π, G )/ {1} Inn(G )under the subgroup {1} Inn(G ) Aut(π) Aut(G )is the space of equivalence classes of flat connections on G -bundlesover any space with fundamental group π.Inherits an action ofOut(π) : Aut(π)/Inn(π).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Natural symmetriesHom(π, G ) admits an action of Aut(π) Aut(G ):φ 1ραπ π G Gwhere (φ, α) Aut(π) Aut(G ), ρ Hom(π, G ).Preserves the algebraic structure.The quotientHom(π, G )/G : Hom(π, G )/ {1} Inn(G )under the subgroup {1} Inn(G ) Aut(π) Aut(G )is the space of equivalence classes of flat connections on G -bundlesover any space with fundamental group π.Inherits an action ofOut(π) : Aut(π)/Inn(π).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Natural symmetriesHom(π, G ) admits an action of Aut(π) Aut(G ):φ 1ραπ π G Gwhere (φ, α) Aut(π) Aut(G ), ρ Hom(π, G ).Preserves the algebraic structure.The quotientHom(π, G )/G : Hom(π, G )/ {1} Inn(G )under the subgroup {1} Inn(G ) Aut(π) Aut(G )is the space of equivalence classes of flat connections on G -bundlesover any space with fundamental group π.Inherits an action ofOut(π) : Aut(π)/Inn(π).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Natural symmetriesHom(π, G ) admits an action of Aut(π) Aut(G ):φ 1ραπ π G Gwhere (φ, α) Aut(π) Aut(G ), ρ Hom(π, G ).Preserves the algebraic structure.The quotientHom(π, G )/G : Hom(π, G )/ {1} Inn(G )under the subgroup {1} Inn(G ) Aut(π) Aut(G )is the space of equivalence classes of flat connections on G -bundlesover any space with fundamental group π.Inherits an action ofOut(π) : Aut(π)/Inn(π).()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

HolonomyA marked structure determines a developing map Σ̃ X and aholonomy representation π G .Globalize the coordinate charts and coordinate changes respectively.Well-defined up to transformations in G .Holonomy defines a mappingholD(G ,X ) (Σ) Hom(π, G )/GEquivariant respectingMod(Σ) Out π1 (Σ) (Thurston): The mapping hol is a local homeomorphism.For quotient structures, hol is an embedding.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Examples: Hyperbolic structuresHyperbolic geometry: When X H2 and G Isom(H2 ), thedeformation space D(G ,X ) (Σ) identifies with the Fricke-Teichmüllerspace F(Σ) of Σ.Identifies with Teichmüller space (marked conformal structures viaUniformization Theorem.hol embeds F(Σ) as a connected component of Hom(π, G )/G ).F(Σ) R6g 6 and Mod(Σ) acts properly discretely.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Examples: Hyperbolic structuresHyperbolic geometry: When X H2 and G Isom(H2 ), thedeformation space D(G ,X ) (Σ) identifies with the Fricke-Teichmüllerspace F(Σ) of Σ.Identifies with Teichmüller space (marked conformal structures viaUniformization Theorem.hol embeds F(Σ) as a connected component of Hom(π, G )/G ).F(Σ) R6g 6 and Mod(Σ) acts properly discretely.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Examples: Hyperbolic structuresHyperbolic geometry: When X H2 and G Isom(H2 ), thedeformation space D(G ,X ) (Σ) identifies with the Fricke-Teichmüllerspace F(Σ) of Σ.Identifies with Teichmüller space (marked conformal structures viaUniformization Theorem.hol embeds F(Σ) as a connected component of Hom(π, G )/G ).F(Σ) R6g 6 and Mod(Σ) acts properly discretely.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Examples: Hyperbolic structuresHyperbolic geometry: When X H2 and G Isom(H2 ), thedeformation space D(G ,X ) (Σ) identifies with the Fricke-Teichmüllerspace F(Σ) of Σ.Identifies with Teichmüller space (marked conformal structures viaUniformization Theorem.hol embeds F(Σ) as a connected component of Hom(π, G )/G ).F(Σ) R6g 6 and Mod(Σ) acts properly discretely.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Examples: Hyperbolic structuresHyperbolic geometry: When X H2 and G Isom(H2 ), thedeformation space D(G ,X ) (Σ) identifies with the Fricke-Teichmüllerspace F(Σ) of Σ.Identifies with Teichmüller space (marked conformal structures viaUniformization Theorem.hol embeds F(Σ) as a connected component of Hom(π, G )/G ).F(Σ) R6g 6 and Mod(Σ) acts properly discretely.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: CP1 -structuresWhen X CP1 and G PGL(2, C), Poincaré identified D (G ,X ) (Σ)with an affine bundle over F(Σ) whose fiber over a Riemann surface Ris the vector space H 0 (R, K 2 ) of holomorphic quadratic differentials.Thus D(G ,X ) (Σ) R12g 12 and Mod(Σ) acts properly discretely.D(G ,X ) (Σ) contains the space of quasi-Fuchsian representations.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: CP1 -structuresWhen X CP1 and G PGL(2, C), Poincaré identified D (G ,X ) (Σ)with an affine bundle over F(Σ) whose fiber over a Riemann surface Ris the vector space H 0 (R, K 2 ) of holomorphic quadratic differentials.Thus D(G ,X ) (Σ) R12g 12 and Mod(Σ) acts properly discretely.D(G ,X ) (Σ) contains the space of quasi-Fuchsian representations.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: CP1 -structuresWhen X CP1 and G PGL(2, C), Poincaré identified D (G ,X ) (Σ)with an affine bundle over F(Σ) whose fiber over a Riemann surface Ris the vector space H 0 (R, K 2 ) of holomorphic quadratic differentials.Thus D(G ,X ) (Σ) R12g 12 and Mod(Σ) acts properly discretely.D(G ,X ) (Σ) contains the space of quasi-Fuchsian representations.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: CP1 -structuresWhen X CP1 and G PGL(2, C), Poincaré identified D (G ,X ) (Σ)with an affine bundle over F(Σ) whose fiber over a Riemann surface Ris the vector space H 0 (R, K 2 ) of holomorphic quadratic differentials.Thus D(G ,X ) (Σ) R12g 12 and Mod(Σ) acts properly discretely.D(G ,X ) (Σ) contains the space of quasi-Fuchsian representations.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: RP2 -structuresWhen X RP2 and G PGL(3, R), the deformation spaceD(G ,X ) (Σ) is a vector bundle over F(Σ) whose fiber over a Riemannsurface R is the vector space H 0 (R, K 3 ) of holomorphic cubicdifferentials (Labourie, Loftin)For any R-split semisimple G , Hitchin found a contractiblecomponent containing F(Σ).More recently, Labourie showed all representations in this componentare discrete embeddings and that Mod(Σ) acts properly discretely.Markedly different from CP1 -structures, where the holonomyrepresentations may not be discrete embeddings and hol is verycomplicated.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: RP2 -structuresWhen X RP2 and G PGL(3, R), the deformation spaceD(G ,X ) (Σ) is a vector bundle over F(Σ) whose fiber over a Riemannsurface R is the vector space H 0 (R, K 3 ) of holomorphic cubicdifferentials (Labourie, Loftin)For any R-split semisimple G , Hitchin found a contractiblecomponent containing F(Σ).More recently, Labourie showed all representations in this componentare discrete embeddings and that Mod(Σ) acts properly discretely.Markedly different from CP1 -structures, where the holonomyrepresentations may not be discrete embeddings and hol is verycomplicated.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: RP2 -structuresWhen X RP2 and G PGL(3, R), the deformation spaceD(G ,X ) (Σ) is a vector bundle over F(Σ) whose fiber over a Riemannsurface R is the vector space H 0 (R, K 3 ) of holomorphic cubicdifferentials (Labourie, Loftin)For any R-split semisimple G , Hitchin found a contractiblecomponent containing F(Σ).More recently, Labourie showed all representations in this componentare discrete embeddings and that Mod(Σ) acts properly discretely.Markedly different from CP1 -structures, where the holonomyrepresentations may not be discrete embeddings and hol is verycomplicated.()Surface group representationsColloque de mathématiques de Montréal CRM/ 29

Example: RP2 -structuresWhen X RP2 and G PGL(3, R), the deformation spaceD(G ,X ) (Σ) is a vector bundle over F(Σ) whose fiber over a Riemannsurface R is the vector space H 0 (R, K 3 ) of holomorphic cubicdifferentials (Labourie, Loftin)For any R-split semisimple G

hyperbolic geometry. x y B A The hyperbolic distance is de ned by cross-ratios: d(x;y) log[A;x;y;B] Surface group representations Colloque de math ematiques de Montr eal CRM/ISM 14 September 2007 6 / 29. Quotients of domains Suppose that ˆ X is an open subset invariant under a subgroup ˆ G such that:

Related Documents:

Business Ready Enhancement Plan for Microsoft Dynamics Customer FAQ Updated January 2011 The Business Ready Enhancement Plan for Microsoft Dynamics is a maintenance plan available to customers of Microsoft Dynamics AX, Microsoft C5, Microsoft Dynamics CRM, Microsoft Dynamics GP, Microsoft Dynamics NAV, Microsoft Dynamics SL, Microsoft Dynamics POS, and Microsoft Dynamics RMS, and

Microsoft Dynamics 365 for Operations on-premises, Microsoft Dynamics NAV, Microsoft Dynamics GP, Microsoft Dynamics SL, Microsoft Dynamics AX 2012 or prior versions, or Microsoft Dynamics CRM 2016 or prior versions. This guide is not intended to influence the choice of Microsoft Dynamics products and services or provide technical specification.

Microsoft Dynamics Guide Dynamics GP vs. Dynamics 365 (NAV) vs. Dynamics SL . Dynamics 365 BC -1 Premium User 100/month/user (Subscription) 2000 (On-Premise) . Solomon's application became Dynamics SL. Dynamics SL is geared first and foremost for project-based businesses. This makes SL the

Microsoft Dynamics 365 for Operations on-premises, Microsoft Dynamics NAV, Microsoft Dynamics GP, Microsoft Dynamics SL, Microsoft Dynamics AX 2012 or prior versions, or Microsoft Dynamics CRM 2016 or prior versions. This guide is not intended to influence the choice of Microsoft Dynamics products and services or provide technical specification.

This guide is designed to improve your understanding of how to license Microsoft Dynamics 365, Business edition. This document does not apply to Dynamics 365, Enterprise edition, Microsoft Dynamics NAV, Microsoft Dynamics GP, Microsoft Dynamics SL, Microsoft Dynamics AX 2012, or Microsoft Dynamics CRM 2016 or any other prior version.

www.ck12.orgChapter 1. Basics of Geometry, Answer Key CHAPTER 1 Basics of Geometry, Answer Key Chapter Outline 1.1 GEOMETRY - SECOND EDITION, POINTS, LINES, AND PLANES, REVIEW AN- SWERS 1.2 GEOMETRY - SECOND EDITION, SEGMENTS AND DISTANCE, REVIEW ANSWERS 1.3 GEOMETRY - SECOND EDITION, ANGLES AND MEASUREMENT, REVIEW AN- SWERS 1.4 GEOMETRY - SECOND EDITION, MIDPOINTS AND BISECTORS, REVIEW AN-

course. Instead, we will develop hyperbolic geometry in a way that emphasises the similar-ities and (more interestingly!) the many differences with Euclidean geometry (that is, the 'real-world' geometry that we are all familiar with). §1.2 Euclidean geometry Euclidean geometry is the study of geometry in the Euclidean plane R2, or more .

Process Modeling For control applications: Modeling objectives is to describe process dynamics based on the laws of conservation of mass, energy and momentum The balance equation 1.Mass Balance 2.Energy Balance 3.Momentum Balance (Newton’s Law) Rate of Accumulation of fundamental quantity Flow In Flow Out Rate of Production - File Size: 1MBPage Count: 32Explore furtherPDF Download Process Dynamics Modeling And Control Freewww.nwcbooks.comProcess Dynamics and Control - PDF Free Downloadepdf.pubUnderstanding Process Dynamics And Control PDF Download .www.fuadherbal.netA Short Introduction to Process Dynamics and Controlwww.users.abo.fiProcess Dynamics And Control Lecture Notesrims.ruforum.orgRecommended to you b