Psychrometrics 1) Ideal Mixing 2) Ideal Gas Air 3) Ideal Gas Water .

8m ago
10 Views
1 Downloads
3.89 MB
29 Pages
Last View : Today
Last Download : 3m ago
Upload by : Ronnie Bonney
Transcription

Psychrometrics 1) 2) 3) 4) Ideal Mixing Ideal Gas Air Ideal Gas Water Vapor Adiabatic Saturation 1

Ideal Gas Law AVOGADRO'S LAW One (1) mole of any gas 22.4 liters. 6.023 1023 molecules /mole of gas at STP (1 atm and 0o C ) BOLYES LAW p1 v1 p 2 v 2 CHARLES LAW v1 T1 v 2 T2 p1 T1 p 2 T2 IDEAL (PERFECT) GAS LAW pv RT pV mRT p - absolutepressure, psia, kPa T - absolute temperature, o R,o K R* R molecularweight lbf/lbmo R R 1545.15 lbmole kJ kPa m3 * R 8.314 or o kmole K kmole o K * mass moles MolecularWeight m n MolecularWeight pv R *T pV nR*T 2

The specific volume of air at 75o F and 14.7 psia ( RT 53.35 ft lbf/lbm R 459.69 o R 75o F v p 14.7 lbf/in 2 144 in 2 /ft 2 ) v 13.476 ft 3 /lb The specific volume of air at 24 o C and 101.325 kPa ( RT .287 kPa m 3 /kg 273.15o K 24o C v p 101.325 kPa 2 ) v .8417 m 3 /kg 3

æ ¶T ö çç JT Coefficient è ¶p ø h h constant 4

Specific and Relative Humidity Basis of calculation - 1 lb m dry air, 1 kgm dry air Specific Humidity, Mass Fraction, ω mass water vap or mass dry air æç pV ö mass water vap or è RT ø water p water MW Twater ω mass dry air p air MW Tair æç pV ö è RT ø air 18 p w ω (12.43) 29(p ambient - p w ) Relative humidity f actual mass water vapor mass water vap or at saturation æç pV ö actual mass water vap or è RT ø f mass water vap or at saturation æ pV ö ç RT è øsaturation p w vg f (12.44) pg v w H H air H w BTU/lb dryair , kJ/kg dryair h h a ω h v c p T ω h v c p T ω c pv T 5

Metric Psychrometric Chart Moran Table A-9, A-9E 6

Given, 25o C, f 50 %, barometer 100 kPa. Find : a) p air c) specific humidity, ω b) specific volume a) f pw pg p w f p g .5 3.1698 ω p w 1.5849 kPa p a p atm - p w 98.415 kPa b) ω 18 p v 1.5849 .622 29 (p atm - p v ) (100 - 1.5849) v c) v v air R a T/p a kPa 289.15 K 3 m K v .843 kg/m 3 (100 - 1.5849) v v vapor ωR v T/p v .287 v .001 .4615 kPa 289.15 K 3 mK .842 kg/m 3 1.5849 7

Given: lb moist air, 75o F, f 50%, barometer14.69 psia Find : pw, w, va , ma , mv f pw pgat 75 pw .5 .43016 .21508psia ω 18 pw .21508 .622 29 patm - pw 14.69- .21508 ω .00924lb water /lb dry air V Va Vw pv RT Va m RT 53.35 (459.69 75) 1 13.685ft3 p (14.69- .21508) 144 pa Va (14.69- .21508) 144 1ft3 ma .0731lb RT 53.35 (459.69 75) pv Vv .21508 144 1ft3 mv .000675lb RT 85.766 (459.69 75) mv .00924lb water /lb dry air (check) ma Tdp T at pv .21508 55.11 F o Psychrometric Chart ω .093 lb water/lb dry air h 28.5 BTU/lb dry air T dp 55o F v 13.68 ft 3 / lb 8

Adiabatic Saturation h g1 1 db 2 wb Tdb h f2 basis of calculation 1 mass unit dryair Steady Flow Energy Equation E air vapor in E water added E air vapor out 2 Twb T 3 T 0 h v1 1 4 h g2 s h a1 ω1h v1 (ω2 - ω1 )h fg2 h 2a ω 2 h v2 1) h v1 saturation vapor enthalpy @(T Tdb , p p v ) substituti ng, (h a1 - h a2 ) c p (T1 - T2 ) 3) h v1 h g@ Twb .45 (Tdb - Twb ) (h v2 - h f2 ) h fg c p (T2 - T1 ) ω1 (h v1 h f2 ) ω2 h fg2 ω h - c (T - T ) ω1 2 fg2 p 2 1 (h v1 -h f2 ) ω wb h fg2 - c p (Tdb - Twb ) ω (h v db -h f wb ) 2) h v1 h g@ Tdb 4) h v1 h g@ 0 F .44 (Tdb - Twb ) 1061.8 .44 (Tdb ) for 75F db,70 F wb 1) h v1 1094.07 BTU/ lb dry air 2) h v1 1093.9 BTU/lb dry air Exact easiest to use 3) h v1 1094.05BTU/lb dry air most accurate 4) h v1 1094.80BTU/lb dry air 9

Adiabatic Saturation basis of calculation 1 mass unit dryair 1 db 2 wb Steady Flow Energy Equation E air vapor in E water added E air vapor out h a1 ω1h v1 (ω 2 - ω1 )h fg2 h 2a ω 2 h v2 substituti ng, (h a1 - h a2 ) c p (T1 - T2 ) (h v2 - h f2 ) h fg c p (T1 - T2 ) ω1 (h v1 h f2 ) ω 2 h fg2 ω 2 h fg2 - c p (T1 - T2 ) ω1 (h v1 -h f2 ) ω wb h fg2 - c p (Tdb - Twb ) ω (h v db - h f wb ) 10

95 F db 65 F wb 14.7 atm Specific Humidity ? T p Tdb 95 hf h fg Twb 65 F w(Twb ) hg Tdb 95 F 1102.6 Twb 65 .30578 33.08 1056.5 ω(Twb ) .622 ω(Tdb ) ω(Tdb ) p saturation (Twb ) .30578 .622 .0132 lb water /l b dry air p atm - p saturation (Twb ) 14.7 - .30578 ω(Twb ) h fg (Twb ) c p (Twb - Tdb ) h g (Tdb ) - h f (Twb ) .0132 1056.5 .24 (65 - 96) 13.946 - 7.2 .0063 lb water /l b dry air 1102.6 - 33.08 1069.52 11

h g1 Tdb 2 Twb T h f2 3 T 0 h v1 1 4 h g2 s 1) h v1 saturation vapor enthalpy @(T Tdb , p p v ) 2) h v1 h g@ Tdb 3) h v1 h g@ Twb .45 (Tdb - Twb ) 4) h v1 h g@ 0 F .44 (Tdb - Twb ) 1061.8 .44 (Tdb ) for 75F db,70 F wb 1) h v1 1094.07 BTU/ lb dry air 2) h v1 1093.9 BTU/lb dry air 3) h v1 1094.05BTU/lb dry air Exact easiest to use most accurate 4) h v1 1094.80BTU/lb dry air 12

Air at 40 F db, 35F wb is heated and humidified to 70 F db, 40 % relative humidity at 14.7 psia. Find the mass of water added. 35 F 1 40 F 1g 35 F 2 .09998 .00426 14.7 - .09998 c p (T1 - T2 ) ωg1 h fg at 35 1 ω1g .622 ω1 h v at 40 - h l at 35 .24(35 - 40) .00426 1073.5 ω1 1078.7 - 3.004 ω1 .00314 lb water/ lb dry air ω 2 .622 pv p atm - p v p v2 f p g2 .4 .36335 .1453 in Hg .1453 .00621 14.7 - .1453 water added ω 2 .622 ω 2 - ω1 .00649 - .00326 .00323 lb water lb dry air 13 3-10

USCU Psychrometric Chart 14

ENTHALPY h h air ωh vapor To Build a Psychrometric Chart h vapor h g @Tdb select p atm h .24 Tdb ω (1061.8 .44 Tdb ) (1) repeatedly select h and ω Twb h 1.005 Tdb ω (1061.8 1.8 Tdb ) with h find Tdb from (1) p atm SPECIFIC HUMIDITY p atm p vapor p air with ω find p vapor from (2) p vapor ω Tdb p air h v ω f ω p vapor 18 p vapor .622 29 p air p atm - p vapor (ω h fg ) wb c pair (Twb - Tdb ) h vapor - h liquid db (2) SPECIFIC VOLUME RT v v air 1 db p air R T ω air db p vapor with p vapor find φ from (4) with Tdb, p vapor find v from (5) (3) Common HVAC State Point Specifications Twb andTdb wb RELATIVE HUMIDITY p vapor f p saturation @ Tdb v v vapor with ω find Twb from (3) by itteration (4) (5) f andTdb Metric English c p air 1.005 .24 c p liquid 4.18 1.0 water (6) c p water 1.8 vapor .44 15

PSYCHROMETRIC PROCESSES CoolingDehumidification Heating-Cooling w w Tdb Tdb Mixing Humidification w Tdb w Tdb 16

Heating Cooling ω heating heating Tdry bulb Q cooling ω constant p w constant φ, Tdry bulb , v varying Q ΔH ΔH air ΔH water Q m dry air Δh air m dry air ω Δh water vapor Q m dry air c p ΔT m dry air ω c p water ΔT, kJ, BTU Q m dry air .24 ΔT m dry air ω .45 ΔT, kJ, BTU 17

Cooling Dehumidification 1 Q 1 2 2 Tdp 1 apparatus 2 Δω kg water kg dryair Q ΔH dryair ΔH water vapor ΔH condensate condensate ω1 - ω 2 , q m dryair æ ö Δh air ω 2Δh water vapor (ω1 - ω 2 )çç (h1 - h1 ) (h1 - h 2 ) liquid liquid ø è vapor liquid q sensible Δh m dry air air ω 2 (h v1 - h v2 ) (ω1 - ω 2 )(h1 - h2 liquid ) liquid Q sensible c p ΔTdry air ω 2 c p water ΔTdry air (ω1 - ω2 )c p liquidΔTdry air air vapor Q latent (ω1 - ω 2 )(h1 vapor - h1 ) (ω1 - ω 2 )h fg liquid Sensible Heat Factor, SHF water Q sensible Q sensible Q latent 1 18

Conditioned Space R - return, space conditions mass water mass dryair Q ΔH dry air ΔH water vapor ΔH condensate water gain Dω, S - supply q sensible Δh air ωSΔh water vapor (ω R h R vapor - ωS h S vapor ) m dry air q sensible Δh air ωSΔh water c p ΔTdry air ωSc p ΔTdry air (ω R - ωS )c p ΔTdry air m dry air vapor air water liquid vapor water q latent (ω R - ωS )(h R - h R ) (ω R - ωS )h fg m dry air vapor liquid R Sensible Heat Factor, SHF Q sensible Q sensible Q latent 19

Adiabatic Humidification 1 2 2 H1 H w H 2 m a h1 m a h w m a h 2 1 2 h1 (ω2 - ω1 )h w h 2 h 2 - h1 hw ω2 - ω1 Qsensible 32o F water h w 0 BTU/lb 1 30 psi steam h w 1164 BTU/lb Δh hw Δω Q sensible m dry air Δh air m dry air ω1Δh water vapor Q latent (ω 2 - ω1 ) (h 2 vapor - h1 vapor ) steam humidification Q latent (ω 2 - ω1 ) (h 2 vapor - h1 liquid ) water wash 20

q l Δh Δω h fg q s Δh s Δh - Δh l SHF SHF qs ql qs Δh - Δω h fg Δω h fg Δh - Δω h fg ql q qs Δh - h fg SHF Δω Δh h fg - h fg Δω h fg Δh Δω SHF - 1 21

Mixing 2 3 2 m m h m m1h 1 m 2 h 2 m1 m2 hm h1 h2 (m1 m 2 )3 (m1 m 2 ) m1 m2 ωm ω1 ω2 (m1 m 2 ) (m1 m 2 ) ω 1 1 H m H1 H 2 2 3 Tdb m 1 Δq1 m Δq1 m m1c p (Tm - T1 ) m 2 c p (T2 - Tm ) m1 (T2 - Tm ) m 2 (Tm - T1 ) 22

10 cubic meters per second of 10 C db, 5 C wb air is mixed with 6 cubic meters per second of air at 25 C db and 18 C wb. Compute the mixture conditions and compare them to results from the psychrometric chart. Pt 1 - 10 c db, 5 c wb .622p v@ Twb ω g1 p atm - p v 6 7 kg/sec .858 m3 /kg h 2 50.9 kJ/kg m2 m m ω m m1ω1 m 2 ω 2 m m m1 m 2 ωm 1.005 kJ/kgK (5 - 10) (.0054 kg/kg 2489.1 kJ/kg ) ω1 2510.1 kJ/kg - 21.02 kJ/kg ω1 .00338 kg/kg p a V (101.325 kPa - .8725 kPa ) 10 m /sec RT .287 kPa m 3 /kg (273.15 10) m a1 12.36 kg/sec 3 pa V ( .8725 kPa ) 10 m 3 /sec m v1 .0668 kg/sec RT .4615 kPa m 3 /kg (273.15 10) m m 12.36 .0668 12.427 kg/sec h1 c pa (Tdb ) ω1 h v1 h1 1.005 kJ/kg K 10 .00338 kg/kg 2519.2 kJ/kg h1 18.56 kJ/kg v 2 .858 m 3 /kg Calculated Mixing .622 .8725 kPa ω g1 .0054 kg/kg 101.325 kPa - .8725 kPa c (T - Tdb ) (ω g1 h fg )@Twb ω1 pa wb h v@Tdb - h w @Twb m a1 Chart, Pt 2 25 C db, 18 C wb ω 2 10 g/kg m1 m ω1 2 ω 2 mm mm 12.36 7 .00338 .010 19.36 19.36 ω m .00577 kg/kg ωm 12.36 7 18.56 kJ/kg 50.9 kJ/kg 19.36 19.36 h m 30.25 kJ/kg hm Chart Mixing distance from point 2 to point m 12.361 2.65 in 1.686 in 19.428 read ω m 6g/kg and h m 30.5 kJ/kg 23 3-26

24

51.8 BTU/lbm 24 BTU/lbm h h dry air ωh vapor at 100O , f 0% h .24 100 0. 1104.7 24 BTU/lb dry air at 100O , f 60% h .24 100 .0252 1104.7 51.84 BTU/ lb dry air 100 F 25

Combined Processes - mixing, cooling and dehumidification, reheating, conditioned space. 1 1 Outside air R Return air from conditionded space 2 w 2 After mixing 3 After dehumidifucation R 3 S S Supply Tdb 1 2 3 S R Q water Q 26

Combined Air Processes O 2 S 4 R 2 S 3 1 O R Winter - Heating Summer - Cooling cool 3 O o S 2 1 4 Pre-heat R Heat o Humidify 27

Natural Draft Cooling Tower Air water vapor out Hot water Air water vapor in Cold water makeup blowdown Mass Balance Energy Balance m air in m airout net energy lost by liquid water mass water in - mass water out m hot water m makeup m air ωin energy gained by air water vapor m cold m blow down m air ωout water m makeup m air (ωout - ωin ) 28

Cooling Tower Example An evaporative counterflow air cooling tower ω1 removes1 10 BTU/hrfrom a waterflow. 6 18 .6 p g90 o F ( ) 18 .6 .69904 29 (14.3 - .6 .69904 ) The temperature of the wateris reducedfrom120o F 29 14.3 - .6 p g90 o F to110o F. Air enters the cooling towerat 90o F and ω 1 .01876 lb water/lb dry air 60% relative humidity, and the air leaves at 100o and 82% relative humidity. Calculatea) the air flow rate and b) the quantityof makeup water. 2 100 F 82% 1 18 .82 .95052 .03578lb water/lb dry air 29 (14.3 - .82 .95052 ) Mass and Energy Balance ω2 ΔQ air ΔQ water 1,000,000B TU/hr Assume makeup and blowdown at 110 o F Q dryair m a c p ΔT m a .24 (100 - 90 ) 2.4 m a 120 F Q ω1 m a ω 1 c p ΔT m a .01876 .45 (100 - 90) 90 F Q ω1 .0844 m a Q Δω m a (ω 2 - ω 1 ) (h v 100 o F - h f 120 o F ) 60% Q Δω m a (.03578 - .01876 ) (1104.7 - 88. ) 2 Q Δω 17.3 m a 1,000,000 Q drtair Q ω1 Q Δω 19.78 m a 110 F m a 50,556 lb dry air/hr 1 mass air m a ω1 m a (1 ω 1 ) m a 51,504lb/h r make up m a (ω 2 - ω 1 ) 51,504 (.03578 - .01876 ) make up 876.6 lb/hr 29

To Build a Psychrometric Chart db, vapor vapor wb vapor db atm db wb db andT T andT Common HVAC State Point Specifications f f É v h p p p T T air vapor atm wb db c 1.8 .44 c 4.18 1.0 c air 1.005 .24 Metric English vapor p water water p liquid p

Related Documents:

mechanical mixing (rotating, vibrating) hydraulic mixing pneumatic mixing pipeline mixing (turbulent flow, static mixer) Method of mixing fluids A –mechanical mixing using turbines B –mechanical mixing using blade impellers C –hydraulic mixing D –pneumatic mixing with stationary inputs

IDEAL 4810-95 IDEAL 4850-95/EP IDEAL 5221-95EP IDEAL 6550-95EP B C A 4 x Only IDEAL 4810-95, IDEAL 4850-95/EP, IDEAL 6550-95EP Remove the stand from the wooden pallet. Only IDEAL 4810-95, IDEAL 4850-95/EP, IDEAL 6550-95EP 4 strong people are required to lift the machine from the pallet and place it on the stand. Secure with 4 .

Understanding Psychrometrics, Third Edition xii Psychrometrics can be simply explained and is solidly based on: (1) the ideal gas equation, (2) Dalton’s model of partial pressures, (3) con-

Psychrometric Chart C a line) ႔ Air conditioning process ႔ Chapter-2 Understanding Psychrometrics 2-3 Psychrometric c a a u ) cooling process heating process Psychrometric c a Air con ဂ Psychrometrics .

IDEAL 4810-95 IDEAL 4850-95/EP IDEAL 5221-95EP IDEAL 6550-95EP B C A 4 x Only IDEAL 4810-95, IDEAL 4850-95/EP, IDEAL 6550-95EP Remove the stand from the wooden pallet. Only IDEAL 4810-95, IDEAL 4850-95/EP, IDEAL 6550-95EP 4 strong people are required to lift the machine from the pallet and place it on the stand. Secure with 4 .

4 I MIRKA ESSENTIALS PAINT MIXING mirka.com PAINT MIXING SOLUTIONS The Mirka Paint Mixing product range includes mixing cups, lids & systems, mixing sticks, paint strainers, practical dispensers and cloths. Caters for automative refinishing professional paint mixing needs. Size Mirka Code Pcs/pack 180ml 9190170180 50 400ml 9190170400 50

IDEAL 4810-95/EP IDEAL 4850-95/EP IDEAL 5221-95EP IDEAL 6550-95EP C Only IDEAL 4810-95/EP Attach the enclosed hand-wheel for clamping. Parts and tools are in the tool set (C). Plug into socket. The machine must be connected directly to the socket. Installation

Copyright National Literacy Trust (Alex Rider Secret Mission teaching ideas) Trademarks Alex Rider ; Boy with Torch Logo 2010 Stormbreaker Productions Ltd .