Forest Biomass Production Potential And Its Implications .

1y ago
3 Views
2 Downloads
1.84 MB
114 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Jewel Payne
Transcription

Thesis for the degree of Licentiate of PhilosophyForest biomass production potential and its implications forcarbon balanceBishnu Chandra PoudelEcotechnology and Environmental ScienceDepartment of Engineering and Sustainable DevelopmentMid Sweden UniversityÖstersund, Sweden2012Mid Sweden University Licentiate Thesis

Forest biomass production potential and its implications for carbonbalanceBishnu Chandra Poudel 2012 Bishnu Chandra PoudelEcotechnology and Environmental ScienceDepartment of Engineering and Sustainable DevelopmentMid Sweden UniversitySE-83125 ÖstersundSwedenMid Sweden University Licentiate ThesisISBN 978-91-87103-27-8ISSN 1652-8948Cover photo: Managed spruce forest, Sweden, Bishnu Chandra PoudelPrinted by: Kopieringen Mid Sweden University, Sundsvall, Sweden, 2012

AbstractAn integrated methodological approach is used to analyse the forestbiomass production potential in the Middle Norrland region of Sweden, and itsuse to reduce carbon emissions. Forest biomass production, forest management,biomass harvest, and forest product use are analyzed in a system perspectiveconsidering the entire resource flow chains. The system-wide carbon flows as wellas avoided carbon emissions are quantified for the activities of forest biomassproduction, harvest, use and substitution of non-biomass materials and fossil fuels.Five different forest management scenarios and two biomass use alternatives aredeveloped and used in the analysis. The analysis is divided into four main parts. Inthe first part, plant biomass production is estimated using principles of plantphysiological processes and soil-water dynamics. Biomass production is comparedunder different forest management scenarios, some of which include the expectedeffects of climate change based on IPCC B2 scenario. In the second part, forestharvest potentials are estimated based on plant biomass production data andSwedish national forest inventory data for different forest managementalternatives. In the third part, soil carbon stock changes are estimated for differentlitter input levels from standing biomass and forest residues left in the forestduring the harvest operations. The fourth and final part is the estimation of carbonemissions reduction due to the substitution of fossil fuels and carbon-intensivematerials by the use of forest biomass. Forest operational activities such asregeneration, pre-commercial thinning, commercial thinning, fertilisation, andharvesting are included in the analysis. The total carbon balance is calculated bysumming up the carbon stock changes in the standing biomass, carbon stockchanges in the forest soil, forest product carbon stock changes, and the substitutioneffects. Fossil carbon emissions from forest operational activities are calculated anddeducted to calculate the net total carbon balance.The results show that the climate change effect most likely will increaseforest biomass production over the next 100 years compared to a situation withunchanged climate. As an effect of increased biomass production, there is apossibility to increase the harvest of usable biomass. The annual forest biomassproduction and harvest can be further increased by the application of moreintensive forestry practices compared to practices currently in use. Deciduous treesare likely to increase their biomass production because of climate change effectswhereas spruce biomass is likely to increase because of implementation ofintensive forestry practices.I

Intensive forestry practices such as application of pre-commercialthinning, balanced fertilisation, and introduction of fast growing species to replaceslow growing pine stands can increase the standing biomass carbon stock. Soilcarbon stock increase is higher when only stem-wood biomass is used, comparedto whole-tree biomass use. The increase of carbon stocks in wood productsdepends largely on the magnitude of harvest and the use of the harvested biomass.The biomass substitution benefits are the largest contributor to the total carbonbalance, particularly for the intensive forest management scenario when wholetree biomass is used and substitutes coal fuel and non-wood constructionmaterials. The results show that the climate change effect could provide up to 104Tg carbon emissions reduction, and intensive forestry practices may furtherprovide up to 132 Tg carbon emissions reduction during the next 100 years in thearea studied.This study shows that production forestry can be managed to balancebiomass growth and harvest in the long run, so that the forest will maintain itscapacity to increase standing biomass carbon and provide continuous harvests.Increasing standing biomass in Swedish managed forest may not be the mosteffective strategy to mitigate climate change. Storing wood products in buildingmaterials delays the carbon emissions into the atmosphere, and the wood materialin the buildings can be used as biofuel at the end of a building life-cycle tosubstitute fossil fuels.These findings show that the forest biomass production potential in thestudied area increases with climate change and with the application of intensiveforestry practices. Intensive forestry practice has the potential for continuousincreased biomass production which, if used to substitute fossil fuels andmaterials, could contribute significantly to net carbon emissions reductions andhelp mitigate climate change.II

SammanfattningEtt integrerat tillvägagångssätt används för att analysera skogens potentialför produktion av biomassa i mellersta Norrland i Sverige och dess användning föratt minska koldioxidutsläppen. Produktion av skogsbiomassa, skogsskötsel, skördav biomassa och användning av skogsprodukter analyseras i ett systemperspektivmed beaktande av hela resursflödeskedjan. Kolflöden i hela systemet och andeaktiviteteriresursflödeskedjan: Produktion av biomassa, skörd, användning samt labränslen.Femolikaskogsskötselscenarier och två alternativ för användning av biomassa tas fram ochanalyseras. Analysen är uppdelad i fyra huvuddelar. I den första delen uppskattasproduktionen av trädbiomassa baserat på principer för växtfysiologiska processeroch markvattendynamik. Produktion av biomassa jämförs för de olikaskogsskötselscenarierna av vilka några innefattar de förväntade effekterna avklimatförändringar som bygger på IPCC B2-scenariot. I den andra delenuppskattas skogens produktion av biomassa och skördepotentialer utifrånproduktionsdata för trädbiomassa från den svenska riksskogstaxeringen för olikaskogsskötselalternativ. I den tredje delen beräknas förändringar i markenskolförråd för olika tillförselnivåer till förnan från trädbiomassa och skogsavfallsom lämnas kvar efter skörd. I den fjärde och sista delen uppskattas minskningarav koldioxidutsläpp till följd av substitution av fossila bränslen och kolintensivamaterial mot skogsbiomassa. Skogsbruksaktiviteter såsom föryngring, röjning,gallring, gödsling och skörd ingår i analysen. Den totala kolbalansen beräknasgenom summering av kolförrådets förändring i trädbiomassan, skogsmarken ochträprodukter samt summering av substitutionseffekter. Fossila koldioxidutsläppfrån skogsbruket beräknas och dras av från den totala kolbalansen för att beräknanettokolbalansen.Resultaten visar att effekter av klimatförändring sannolikt kommer att ökaproduktionen av skogsbiomassa under de närmaste 100 åren jämfört med ensituation med oförändrat klimat. Som en effekt av ökad produktion av biomassa ärdet möjligt att även öka skörden av användbar biomassa. Årlig produktion ochskörd av skogsbiomassa kan ökas ytterligare genom användning av intensivareskogsbruksmetoder än nuvarande. Lövträd kommer sannolikt att öka sinproduktion av biomassa till följd av klimatförändringens effekter, der.IIIökatillföljdavintensivare

Intensivare skogsskötselmetoder såsom röjning, balanserad gödsling ochintroduktion av snabbväxande arter för att ersätta långsamt växande tallbeståndbidrar till att öka kolförrådet i trädbiomassan. Ökningen av kolförrådet i marken ärhögre när endast stambiomassa skördas jämfört med när hela trädet tas ut.Ökningen av kolförrådet i träprodukter beror till stor del på avverkningsnivåernaoch vad den skördade biomassan används till. Substitution av fossila bränslen ochråvaror mot biomassan ger det största bidraget till den totala kolbalansen, särskiltnär hela trädbiomassan används och när den ersätter fossilt kol som bränsle ratteffektenavklimatförändringar kan ge upp till 104 Tg minskade koldioxidutsläpp, och attintensivare skogsbruk därtill kan ge upp till 132 Tg minskning under de närmastehundra åren i det studerade området.Denna studie visar att ett produktionsskogsbruk kan skötas så att tillväxtoch skörd av biomassa balanseras långsiktigt, så att skogen kommer att bibehållasin förmåga att öka kolförrådet i trädbiomassan och ge kontinuerliga skördar.Ökad trädbiomassa i Sveriges skogar är kanske inte den mest effektiva strateginför att motverka klimatförändringarna. Lagring av trä i byggmaterial fördröjerkoldioxidutsläppen till atmosfären, och vid slutet av byggnaders livscykel kanträprodukterna användas som biobränsle och då ersätta fossila bränslen.Resultaten visar att potentialen för skogens produktion av biomassa i detstuderade området ökar med klimatförändringarna och med ett intensivareskogsbruk. Intensivare skogsbruk har potential att kontinuerligt öka produktionenav biomassa som, om den används till att ersätta fossila bränslen och material, atförändringarna.IVochtillattminska

PrefaceThis work was performed as a doctoral research project in the EcotechnologyResearch Group at Mid Sweden University in Östersund, Sweden. It is a part of aninterdisciplinary programme to study “Forest as a resource in sustainable societaldevelopment”. The financial support of the European Union, Jämtland CountyCouncil, Sveaskog AB, and Swedish Energy Agency is gratefully acknowledged.I would like to thank my supervisor Professor Inga Carlman for her bothprofessional and personal support that motivated me to continue this work.I would like to thank Professor Leif Gustavsson who supervised my work fromMarch 2009 to 2011 December. His professional support helped to improve myknowledge on this work.I would like to thank my co-supervisors Prof. Johan Bergh, and Dr. RogerSathre, for their invaluable guidance in research, without which this work couldnot have been completed.I acknowledge the fellow Ph.D. students and staffs for their cooperationand support. Particularly, I would like express my thanks to Nils Nilsson and UlfPersson who has made my days in Östersund much easier by many reasons. Manydiscussions, including sharing ideas, with you all helped me to understandresearch life both professionally and personally.My parents have dreamed about my higher education and this work is apart of their invaluable support for long time. Finally, I thank my wife, Sabita, forher every support, without which this journey could not have been possible. Mythanks to our sons, Shashwat and Saatvik, who has made our every day special inÖstersund.Bishnu Chandra PoudelÖstersund, 2012V

List of PapersThis licentiate thesis is based on the following papers:1.Poudel, B.C., Sathre, R., Gustavsson, L., Bergh, J., Lundström, A.,Hyvönen, R., 2011. Effects of climate change on biomass production andsubstitution in north-central Sweden. Biomass and Bioenergy 35(10), 43404355.2.Poudel, B.C., Sathre, R., Bergh, J., Gustavsson, L., Lundström, A.,Hyvönen, R., 2012. Potential effects of intensive forestry on ralSweden.Environmental Science and Policy 15(1), 106-124.3. Poudel, B.C., Sathre, R., Gustavsson, L., Bergh, J., 2011. Climate changemitigation through increased biomass production and substitution: A casestudy in north-central Sweden. Peer reviewed conference paper In: WorldRenewable Energy Congress 2011, 8-11 May 2011, Linköping, Sweden.VI

ContentsABSTRACT . ISAMMANFATTNING. IIIPREFACE . VLIST OF PAPERS . VIFIGURES . IXTABLES . X1 INTRODUCTION . 11.1 CLIMATE CHANGE AND FORESTS . 11.2 FOREST MANAGEMENT AND CARBON BALANCE . 21.3 REVIEW OF PREVIOUS STUDIES . 61.3.1 Forest biomass production and harvest . 61.3.2 Soil carbon stock . 71.3.3 Substitution of fossil fuels and carbon-intensive products . 81.4 KNOWLEDGE GAPS . 91.5 STUDY OBJECTIVES . 101.6 THESIS ORGANISATION. 102 METHODS . 112.1 INTEGRATED APPROACH . 112.2 FUNCTIONAL UNIT . 122.3 REFERENCE SYSTEM . 122.4 ACTIVITIES INCLUDED IN SYSTEM ANALYSIS . 132.5 STUDY AREA . 142.6 SCENARIOS. 142.7 CLIMATE CHANGE . 152.8 FOREST BIOMASS PRODUCTION MODELLING WITH BIOMASS . 152.9 FOREST BIOMASS HARVEST MODELLING WITH HUGIN . 162.10 THE USE OF FOREST BIOMASS AS BIOENERGY AND CONSTRUCTION MATERIALS. 172.11 CARBON BALANCE . 172.11.1 Total carbon balance . 172.11.2 Standing biomass carbon stock . 182.11.3 Soil carbon stock . 192.11.4 Wood product carbon stock . 192.11.5 Substitution of fossil fuels and carbon-intensive products . 202.11.6 Forestry operations and carbon emission . 202.12 DATA QUALITY . 203 RESULTS . 22VII

3.1 FOREST BIOMASS PRODUCTION AND HARVEST . 223.2 STANDING BIOMASS CARBON STOCK . 243.3 SOIL CARBON STOCK. 253.4 SUBSTITUTION OF FOSSIL FUELS AND CARBON-INTENSIVE PRODUCTS . 263.5 WOOD PRODUCT CARBON STOCK . 283.6 CARBON EMISSIONS FROM FOREST OPERATIONS . 283.7 TOTAL CARBON BALANCE . 294 DISCUSSIONS . 334.1 FOREST PRODUCTION AND HARVEST . 334.2 CARBON-INTENSIVE PRODUCTS SUBSTITUTION . 344.3 CARBON BALANCE . 344.4 UNCERTAINTIES AND LIMITATIONS . 365 CONCLUSIONS . 386 FUTURE RESEARCH . 397 REFERENCES . 40VIII

FiguresFigure 1 Schematic diagram of carbon balances during forest production andbiomass utilization . 12Figure 2 Annual biomass productions and harvests at the beginning and end of thestudy period for all scenarios. . 22Figure 3 Standing forest biomass carbon stock at the beginning (2010) and end(2109) of the study period in the different scenarios (Paper II, Figure 6). . 25Figure 4 Annual carbon stocks in forest soil in the different scenarios during 100years with whole-tree biomass use. . 26Figure 5 Average annual carbon emission reduction (Tg carbon year-1) for wholestudy area as a result of whole-tree (WT) and stem-wood (SW) biomass use toreplace fossil fuels and non-wood construction materials. . 27Figure 6 Wood product carbon stock (Tg carbon) due to non-wood materialsubstitution (Paper III). 28Figure 7 Carbon emissions due to forest operations and fertilisation for allscenarios for whole-tree biomass (Mg carbon year-1). . 29Figure 8 The average annual carbon emissions reduction (Tg carbon year-1) fordifferent scenarios when whole-tree biomass was used to replace coal and fossilgas. 30Figure 9 The average annual carbon emissions reductions per hectare of forest land(Mg carbon ha-1 year-1) due to the benefits associated with the use of whole-tree(WT) and stem-wood (SW) biomass to replace fossil gas and coal. . 31Figure 10 Differences in cumulative carbon emission reduction (Tg carbon)between the Climate, Environment, Production and Maximum scenarios and theReference scenario for each 10-year period. . 32IX

TablesTable 1 Activities and processes included in the life cycle carbon balance . 13Table 2 Overview of scenarios. 14Table 3 Differences in forest biomass production and harvest between the Referencescenario and other scenarios (Tg dry biomass) . 23Table 4 Average annual tree biomass carbon stock changes during each 10-yearperiod (Tg carbon year-1) for Jämtland and Västernorrland . 24Table 5 Average annual carbon emissions reductions (Tg carbon year-1) due tofossil fuel and carbon-intensive material substitution by the use of stem-wood andwhole-tree biomass during each 10-year period . 27Table 6 The total carbon balance including forest production, forest biomassharvest, soil carbon stock change, and stem-wood and whole-tree biomass use toreplace of fossil fuels and carbon-intensive materials (Tg C year-1) during each 10year period in Jämtland and Västernorrland. . 30X

AbbreviationsCCarbonCO2Carbon dioxideCORRIMConsortium for Research on Renewable Industrial MaterialsCPFCollaborative Partnership in ForestsEUEuropean UnionGHGGreenhouse GasGJGigajoule (109 joules)GJeGigajoule of electricityGPPGross Primary ProductionGtGigatonne (109 tonne)IEAInternational Energy AgencyIPCCIntergovernmental Panel on Climate ChangeISOInternational Organization for StandardizationMgMegagram (106 grams, or 1 tonne)NNitrogenNEPNet Ecosystem ProductivityNFISwedish National Forest InventoryNPKNitrogen Phosphorus and PotassiumNPPNet Primary ProductionOECDOrganization for Co-operation and DevelopmentppmParts per millionSMHISwedish Meteorological and Hydrological InstituteSOMSoil Organic MatterSOUSwedish Government’s Official ReportsTgTeragram (1012 grams, or 106 tonne)UNFCCCUnited Nations Framework Convention on Climate ChangeUSUnited StatesXI

1 Introduction1.1 Climate change and forestsClimate change is one of the most widely recognised environmental issuestoday. A consensus in the climate science research community has emerged thatemissions of anthropogenic greenhouse gases (GHGs) into the atmosphere arealtering the global climate system (2007c). Emissions of GHGs into the atmosphereare likely to increase the earth’s mean surface temperature, thereby affectingphysical and biological systems (Rosenzweig et al., 2008; Trenberth et al., 2009;UNFCCC, 2011). Many effects of temperature increase have been observed,including threats to natural phenomena, societal disturbances, and threats toeconomic growth (IPCC, 2007a; UNFCCC, 2011).The atmospheric concentration of the most significant GHG, carbondioxide (CO2), has increased substantially during the last 20 decades, primarily asa result of fossil fuel combustion (IPCC, 2007c). Currently, fossil fuels provide over80% of the world’s primary energy and are responsible for over 50% of allanthropogenic GHG emissions (OECD/IEA, 2010). The global energy supply islargely dependent on fossil fuels of which 27% of the total primary energy isdependent on coal (OECD/IEA, 2010). The International Energy Agency (IEA) hasexamined the global energy scenarios for future energy supply and has indicatedthat coal fuel use is likely to increase until the year 2035 if the current energypolicies are not changed (OECD/IEA, 2010). These findings may explain theseverity of fossil fuel use in the future which may result in increasing totalanthropogenic GHG emissions in the future (OECD/IEA, 2010).The likely increase of global mean surface temperature (Nakicenovic andSwart, 2000) is expected to be greater at higher latitudes (IPCC, 2001), which mayresult in a temperature increase of up to 1-2 C in summer and 2-3 C in winter innorthern Europe in the next 50 years (Carter et al., 2005). The European Union (EU)suggests that limiting temperature increase to 2 C, relative to pre-industrial levels,may avoid the risks of climate change (European-Commission, 2007). Theprojection of CO2 emissions reduction that is required to avoid climate change isdifficult to predict because of the complexity of the global system. However,stabilising atmospheric GHG concentration levels below 450 ppm CO2-eq is likely toavoid a 50% chance of increasing temperature above 2 C (EU, 2008). Thisstabilisation target is unlikely to be met unless strong and timely actions are taken1

to reduce CO2 emissions, considering the current atmospheric CO2 concentrationlevel of 394 ppm CO2-eq (NOAA/ESRL, 2012).The Intergovernmental Panel on Climate Change (IPCC) has presentedseveral strategies that may help mitigate climate change (IPCC, 2007b). Variousinitiatives have been taken to reduce the atmospheric CO2 concentration such asthe Kyoto protocol requiring industrial countries to reduce GHG emissions below1990 levels by the year 2012. The EU has set an ambitious target of reaching a 20%share of energy from renewable sources by 2020 (European-Commission, 2009) inthe pursuit of reducing CO2 emissions. Sweden, an EU member state, alreadyobtains more than 20% of its energy from renewable sources (Swedish ForestAgency, 2011) and has a target of extending this share to 49% by the year 2020(Swedish Energy Agency, 2008).The global society’s attempt to mitigate climate change may includereducing carbon emissions and increasing carbon sinks. Strategies to reduce CO2emissions by reducing fossil fuel use and by increasing carbon sinks through asustainable production forestry may be one of the practical solutions. ASustainable production forestry in this context may be considered as a practice thatmaintains indefinitely the natural productive capacity of forest ecosystems, whileproviding an opportunity for harvesting and using at least a certain amount offorest product at regular intervals. Thus, such practice will ensure the continuedexistence of forest ecosystems and the availability of forest biomass for use infuture. By doing so, forest biomass use for bioenergy may play a vital role inreplacing fossil fuels and reaching the aim of increasing renewable energy use.Forest biomass can also replace carbon-intensive construction materials. Hence, thegreater the forest biomass production, the greater the amount of harvest that ispossible, and the earlier the biomass is harvested, the earlier the fossil fuels andcarbon-intensive materials can be replaced (Malmsheimer et al., 2008). A strategyaimed to increase forest biomass production and use could thus be effective inmitigating climate change (Easterling et al., 2007).1.2 Forest management and carbon balanceThe role of a sustainable forest management in reducing atmosphericcarbon emissions is very important. The IPCC suggests that the conservation ofbiological carbon in the forest ecosystem, the storage of carbon in wood products,and the use of forest biomass to replace fossil fuels and carbon-intensive materialswould help to mitigate climate change (IPCC, 1996). The strategies of a forest2

management for increasing carbon benefit needs to increase the carbon sink intothe forest biomass by increasing biomass production, increase soil carbon stock,and increase the potential biomass harvest to contribute in obtaining higher carbonbenefits.Forests constitute approximately 30% of the world’s land surface andcontribute to the global net removal of three gigatonnes (Gt) of anthropogeniccarbon per year (Canadell and Raupach, 2008). Forest ecosystems, including forestsoil, store approximately 1200 Gt of carbon, which is considerably more than the762 Gt of carbon present in the atmosphere (Freer-Smith et al., 2009). Annually,global forests turn over approximately one twelfth of the atmospheric stock of CO2through gross primary production (GPP 1), accounting for 50% of all terrestrial GPP(Malhi et al., 2002). It is estimated that, in 2005, forests contained 572 Gt of standingbiomass (equivalent to 280 Gt of carbon) (IPCC, 2007b; CPF, 2008).The carbon stock increase in a forest ecosystem is limited. Phenomena such asplant respiration, soil decomposition processes, plant mortality, fire, and soildisturbance release carbon into the atmosphere. It is estimated that less than 1% ofthe carbon that is taken up by terrestrial ecosystems remains as a long-termterrestrial carbon sink (IPCC, 2000). Several studies suggested that increasingatmospheric CO2 and nitrogen (N) deposition rates are likely to increase the forestbiomass in the future (Norby et al., 1999; Norby et al., 2005; Canadell et al., 2007a;IPCC, 2007c; Galloway et al., 2008; Malmsheimer et al., 2008; Dupre et al., 2010). Luo(2007) observed that elevated atmospheric CO2 concentrations result in enhancedbiomass production and subsequently increased carbon pools in living biomass,litter, and soil. Although uncertain, climate change projections predict temperatureincreases and longer growing seasons at higher latitudes, implying that moresunlight will be utilised for photosynthesis, thereby stimulating the biomassproduction of boreal forests (Bergh et al., 2003; Rosenzweig et al., 2008; Raupachand Canadell, 2010). In addition, biomass production can be further increased byvarious forest management practices (Bergh et al., 2005; Houghton, 2007;Skogsstyrelsen, 2008).Forest management involves the integration of silvicultural practices andeconomic alternatives (Bettinger et al., 2009) to achieve production and ecologicalobjectives through a series of silvicultural operations, such as regeneration,fertilisation, tending operations (commercial and pr

An integrated methodological approach is used to analyse the forest biomass production potential in the Middle Norrland region of , and its Sweden use to reduce carbon emissions. orest biomass production, F forest management, biomass harvest, and forest product use are analyzed in a system perspective considering the entire resource flow chains.

Related Documents:

potential production inputs to analyses comparing the viability of biomass crops under various economic scenarios. The modeling and parameterization framework can be expanded to include other biomass crops. Keywords: biomass crop, biomass production potential, biomass resource map, biomass resources, biomass sorghum, energy-

Limitations on Forest Biomass . Potential Biomass Production Perennial Energy Crops Forest Biomass - Hardwoods Forest Biomass - Softwoods Corn Stover 9.5 million dry tons 14.6 million dry tons 46% 3% 36% 15% 12% 32% 54% 2% Potential biomass production (million odt/yr) in NY from different sources in two scenarios

The case for using forest biomass . 6. 7. 10. 11. Ontario's forest biomass advantage. 12. Leadership in the green economy . Spotlight: Integrating biomass in Resolute Forest Products' Northwestern Ontario operations . Sustainable forest policy framework . Spotlight: Forest biomass and the Managed Forest carbon cycle .

ergy from forest biomass considering economic, legislative and social drivers. The current use of forest biomass for energy (400 kt y 1 of bone dry material) represents about 6% of 's total annual energy supply. The potential supply of forest biomass for energy production is estimated at 1800 kt y 1 of bone dry material equivalent to about 30% of

(A) boreal forest º temperate forest º tropical rain forest º tundra (B) boreal forest º temperate forest º tundra º tropical rain forest (C) tundra º boreal forest º temperate forest º tropical rain forest (D) tundra º boreal forest º tropical rain forest º temperate forest 22. Based on the

Potential of timber biomass for energy from forest territory Forest data -31.12.2019: Ø 4149 351ha forest territories (about 37% of the . Existing problems in using forest biomass for energy purposes More that 1 000 000 house holds use forest biomass for heating (90% in the rural areas)

Biomass Biogas Biomass Biogas Biomass Technology Upgrades Maximum Potential Current. Emissions, metric tonnes (10. 3 . Mg for CO2eq) Feedstocks Collection and Transport Conversion Savings-80 -40 0 40 80 120 160. NOX PM CO2eq NOX PM CO2eq NOX PM CO2eq NOX PM CO2eq NOX PM CO2eq NOX PM CO2eq. Biogas Biomass Biogas Biomass Biogas Biomass Technology .

Asset management A system that manages and maintains an organization’s assets throughout their lifecycle. Examples of popular systems include spreadsheets and software solutions. Asset management software An application used for the purpose of recording and tracking an asset throughout its lifecycle. In addition, it can provide tools for financial reporting, and often offers the ability to .