(HRC) Series Submittal Data Models HRC09 - 18

4m ago
12 Views
1 Downloads
6.87 MB
52 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Azalea Piercy
Transcription

Submittal Data - S-I units Unit Designation: Job Name: Architect: Engineer: Contractor: Performance Data Cooling Capacity: kW EER: Unit shown with optional return air grille. Heating Capacity: kW COP: (HRC) Series Submittal Data Models HRC09 - 18 60Hz - HFC-410A English Language/S-I Units Ambient Air Temp: C Entering Water Temp (Clg): C Entering Air Temp (Clg): C Entering Water Temp (Htg): C Entering Air Temp (Htg): C Airflow: l/s Fan Speed or Motor/RPM/Turns: Operating Weight: (kg) Electrical Data Power Supply: Volts Phase Heat Controller works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact Heat Controller's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely Heat Controller's opinion or commendation of its products. The latest version of this document is available at www.heatcontroller.com. Hz Minimum Circuit Ampacity: Maximum Overcurrent Protection: :HOOZRUWK YH -DFNVRQ 0, 3K ZZZ KHDWFRQWUROOHU FRP Print this PDF file 3/2015

Submittal Data - I-P Units Unit Designation: Job Name: Architect: Engineer: Contractor: Performance Data Cooling Capacity: Btuh EER: Unit shown with optional return air grille. Heating Capacity: Btuh COP: (HRC) Series Submittal Data Models HRC09 - 18 60Hz - HFC-410A English Language/I-P Units Ambient Air Temp: F Entering Water Temp (Clg): F Entering Air Temp (Clg): F Entering Water Temp (Htg): F Entering Air Temp (Htg): F Airflow: CFM Fan Speed or Motor/RPM/Turns: Operating Weight: (lb) Electrical Data Power Supply: Volts Phase Heat Controller works continually to improve its products. As a result, the design and specifications of each product at the time of order may be changed without notice and may not be as described herein. Please contact Heat Controller's Customer Service Department at 1-405-745-6000 for specific information on the current design and specifications. Statements and other information contained herein are not express warranties and do not form the basis of any bargain between the parties, but are merely Heat Controller's opinion or commendation of its products. The latest version of this document is available at www.heatcontroller.com. Hz Minimum Circuit Ampacity: Maximum Overcurrent Protection: :HOOZRUWK YH -DFNVRQ 0, 3K ZZZ KHDWFRQWUROOHU FRP Print this PDF file 3/2015

ENGINEERING DESIGN GUIDE HRC Series Commercial Console Water-Source Heat Pumps 60Hz Heat Controller 1900 Wellworth Ave. Jackson, MI 49203 (517)787-2100 www.heatcontroller.com

Design Guide HRC Series 2 Heat Controller

Heat Controller HRC Series Design Guide Table of Contents *Page Number Unit Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Selection Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 HRC Series Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Performance Data – AHRI/ASHRAE/ISO 13256-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Performance Data – Selection Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Performance Data – HRC09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Performance Data – HRC12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Performance Data – HRC15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Performance Data – HRC18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Performance Data Correction Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Blower Performance & Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Physical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Console Cabinet Dimensions Size 09 -15 - Bottom Return - Left Hand Piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Console Cabinet Dimensions Size 09 - 15 - Front Return - Left Hand Piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Console Cabinet Dimensions Size 09 - 15 - Bottom Return - Right Hand Piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Console Cabinet Dimensions Size 09 - 15 - Front Return - Right Hand Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Console Bottom Return Chassis Dimensions Size 09 - 15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Console Front Return Chassis Dimensions Size 09 - 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Piping Detail Size 09-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Console Cabinet Dimensions Size 18 - Bottom Return - Left Hand Piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Console Cabinet Dimensions Size 18 - Front Return - Left Hand Piping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Console Cabinet Dimensions Size 18 - Bottom Return - Right Hand Piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Console Chassis Dimensions Size 18 - Front Return - Right Hand Piping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Console Bottom Return Chassis Dimensions Size 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Console Chassis Dimensions Size 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Piping Detail Size 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 HRC Series Wiring Diagram Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Typical Wiring Diagram – Manual & Auto Change Over HRC Units with CXM Controller. . . . . . . . . . . . . . . . . . . . . . . 32 Typical Wiring Diagram – Remote Mounted Thermostat HRC Units with CXM Controller . . . . . . . . . . . . . . . . . . . . . . 33 Typical Wiring Diagram – HRC Units with CXM & LON Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Typical Wiring Diagram – HRC Units with CXM & MPC Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Typical Wiring Diagram – Manual & Auto Change Over HRC Units with DXM Controller. . . . . . . . . . . . . . . . . . . . . . . 36 Typical Wiring Diagram – Remote Mounted Thermostat HRC Units with DXM Controller . . . . . . . . . . . . . . . . . . . . . . 37 Typical Wiring Diagram – HRC Units with DXM & LON Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Typical Wiring Diagram – HRC Units with DXM & MPC Controller. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Engineering Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3

Design Guide HRC Series Heat Controller Unit Features console (HRC) Series with HFC-410A refrigerant Unit Features Sizes 09 (3/4 ton, 2.64 kW) through 18 (1-1/2 ton, 5.3 kW Environmentally-friendly (HFC-410A) zero ozone depletion refrigerant High Efficiency Rotary compressors Exceeds ASHRAE 90.1 efficiencies Two-piece chassis/cabinet design Galvanized steel cabinet with durable Polar Ice powder coat finish and black “matte” finish on subbase Slope top/aluminum rigid bar supply air grille UltraQuiet Option TXV metering device Extended range (20 to 120 F, -6.7 to 48.9 C) operation Advanced digital auto change-over unit mounted controls with temperature display and high/low fan speed selection Remote-mounted controls available Microprocessor controls standard (optional DXM and/or DDC controls) LonWorks, BACnet, Modbus and Johnson N2 compatibility options for DDC controls Right or left-hand piping arrangement Front or bottom return air configuration Unit Performance Sentinel performance monitoring system Eight Safeties Standard Wide variety of options including coated air coil, flow regulator, motorized water valve, stainless steel drain pan, locking control door, disconnect switch, and internal pump. (Pump option requires extended cabinet). The Series (HRC) console unit provides a high efficiency WSHP “ductless” solution for spaces where individual, quiet control of the heating and cooling system is important. HRC units are especially ideal where ceiling height and space are limited, or when preserving the integrity of an existing structure. The HRC Series exceeds ASHRAE 90.1 efficiencies, yet maintains small cabinet dimensions. Using HFC-410A refrigerant, the console not only protects the environment, it does so while delivering unprecedented comfort, efficiency, and reliability. Available in sizes 3/4 ton (2.64 kW) through 1-1/2 tons (5.3 kW) with numerous cabinet, water piping and control choices, the HRC Series offers a wide range of units for most any installation. The HRC has an extended range refrigerant circuit, capable of ground loop (geothermal) applications as well as water loop (boiler-tower) applications. Standard features are many. Microprocessor controls, galvanized steel cabinet, polyester powder coat paint and TXV refrigerant metering device are just some of the features of the flexible HRC series. Compressors are mounted on specially engineered sound-tested EPDM grommets for quiet operation. Options such as coated air coil, DDC controls, internal pump and factory-installed water solenoid valves allow customized design solutions. The HRC Series console water-source heat pumps are designed to meet the challenges of today’s HVAC demands with a low cost/high value “ductless” solution. Accessory Louvered, painted black “matte” finish subbase decorative grille for field-installation. 4

HRC Series Heat Controller Design Guide Selection Procedure Reference Calculations Heating Cooling HE LWT EWT GPM x 500 LAT EAT HR LWT EWT GPM x 500 HC CFM x1.08 LC TC - SC SC CFM x1.08 LAT (DB) EAT (DB) - S/T SC TC Legend and Glossary of Abbreviations BTUH BTU( British Thermal Unit) per hour CFM airflow, cubic feet/minute COP coefficient of performance BTUH output/BTUH input DB dry bulb temperature ( F) EAT entering air temperature, Fahrenheit (dry bulb/wet bulb) EER energy efficiency ratio BTUH output/Watt input MPT male pipe thread ESP external static pressure (inches w.g.) EWT entering water temperature GPM water flow in U.S. gallons/minute HE total heat of extraction, BTUH HC air heating capacity, BTUH HR total heat of rejection, BTUH HWC FPT KW LAT LC LWT MBTUH S/T SC TC WB WPD hot water generator (desuperheater) capacity, Mbtuh female pipe thread total power unit input, kilowatts leaving air temperature, F latent cooling capacity, BTUH leaving water temperature, F 1000 BTU per hour sensible to total cooling ratio sensible cooling capacity, BTUH total cooling capacity, BTUH wet bulb temperature ( F) waterside pressure drop (psi & ft. of hd.) To convert Inch-Pound to SI (Metric) Conversion Table(English) - to convert inch-pound (English) to S-I (Metric) Air Flow Water Flow Ext Static Pressure Water Pressure Drop Airflow (L/s) CFM x 0.472 Water Flow (L/s) gpm x 0.0631 ESP (Pa) ESP (in of wg) x 249 PD (kPa) PD (ft of hd) x 2.99 Entering Air Correction Tables Cooling Corrections Heating Corrections Sens Clg Cap Multiplier - Entering DB ϒF Ent Air WB ϒF Total Clg Cap 70 75 80 80.6 60 0.852 0.828 0.980 1.097 65 0.974 0.595 0.808 1.004 66.2 1.000 0.539 0.767 67 1.004 0.501 0.740 70 1.034 0.636 75 1.069 Ent Air DB ϒF Htg Cap Heat of Ext Heat of Rej * 0.996 0.878 * 0.998 0.979 * * 1.000 1.000 1.233 1.276 1.002 1.010 1.136 1.220 1.005 1.029 75 0.980 1.037 0.960 0.973 1.127 1.010 1.058 80 0.967 1.063 0.934 90 95 1.129 * * 1.017 1.194 * 0.967 1.000 1.152 0.939 0.955 1.124 0.810 0.844 1.016 0.514 0.612 0.826 60 1.059 0.947 1.100 65 1.019 0.981 1.032 68 1.000 1.000 1.000 70 0.995 1.010 0.989 Entering air corrections should be multiplied directly to unit performance data to derive performance at entering air condition other than ARI/ISO/ASHRAE 13256-1 ARI/ISO/ASHRAE 13256-1 uses entering air conditions of Clg- 80.6ϒF DB/66.2ϒF WB and Htg- 68ϒF DB/59ϒF WB shown in bold Discontinued Standards ARI 320, 325, and 330 used entering air conditions of Clg- 80ϒF DB/67ϒF WB and Htg- 70ϒF DB Air Flow Correction Table Airflow Power Power 85 Cooling Heating CFM Per Ton of Clg % of Nominal Total Cap Sens Cap Power Heat of Rej Htg Cap Power Heat of Ext 300 75% 1.019 0.902 0.964 1.007 0.957 1.061 0.922 325 81% 1.013 0.928 0.976 1.003 0.968 1.040 0.946 350 88% 1.007 0.953 0.988 1.000 0.979 1.020 0.970 375 94% 1.004 0.977 0.994 1.000 0.989 1.010 0.985 400 100% 1.000 1.000 1.000 1.000 1.000 1.000 1.000 425 106% 0.998 1.023 1.006 1.000 1.011 0.997 1.015 5

Design Guide HRC Series Heat Controller Selection Procedure Step 1 Determine the actual heating and cooling loads at the desired dry bulb and wet bulb conditions. Example Equipment Selection For Cooling Step 2 Obtain the following design parameters: Entering water temperature, water flow rate in GPM, air flow in CFM, water flow pressure drop and design wet and dry bulb temperatures. Air flow CFM should be between 300 and 450 CFM per ton. Unit water pressure drop should be kept as close as possible to each other to make water balancing easier. Go to the appropriate tables and find the proper indicated water flow and water temperature. Assume we have determined that the appropriate cooling load at the desired dry bulb 80 F and wet bulb 65 F conditions is as follows: Step 3 Select a unit based on total and sensible cooling conditions. Select a unit which is closest to, but no larger than, the actual cooling load. Step 2 Design Conditions: Step 1 Load Determination: Total Cooling.10,200 BTUH Sensible Cooling.8,350 BTUH Entering Air Temp.80 F Dry Bulb/65 F Wet Bulb Similarly, we have also obtained the following design parameters: Step 4 Enter tables at the design water flow and water temperature. Read the total and sensible cooling capacities (Note: interpolation is permissible, extrapolation is not). Entering Water Temp.90 F Water Flow (Based upon 12 F rise in temp.).2.3 GPM Air Flow.350 CFM Step 5 Read the heating capacity. If it exceeds the design criteria it is acceptable. It is quite normal for WaterSource Heat Pumps to be selected on cooling capacity only since the heating output is usually greater than the cooling capacity. Step 3, 4 & 5 HP Selection: After making our preliminary selection (HRC12), we enter the tables at design water flow and water temperature and read Total Cooling, Sens. Cooling and Heat of Rej. capacities: Step 6 Determine the correction factors associated with the variable factors of dry bulb and wet bulb. Total Cooling.10,800 BTUH Sensible Cooling.9,200 BTUH Corrected Total Cooling tabulated total cooling x wet bulb correction. Heat of Rejection.13,900 BTUH Step 6 & 7 Entering Air and Airflow Corrections: Corrected Sensible Cooling tabulated sensible cooling x wet/dry bulb correction. Next, we determine our correction factors. Step 7 Compare the corrected capacities to the load requirements. Normally if the capacities are within 10% of the loads, the equipment is acceptable. It is better to undersize than oversize, as undersizing improves humidity control, reduces sound levels and extends the life of the equipment. Table Ent Air Air Flow Corrected Corrected Total Cooling 10,800 x 0.976 x 0.954 10,056 Corrected Sens Cooling 9,200 x 1.071 x 0.927 9,134 Corrected Heat of Reject 13,900 x 0.979 x 0.958 13,037 Step 8 Water Temperature Rise Calculation & Assessment: Step 8 When completed, calculate water temperature rise and assess the selection. If the units selected are not within 10% of the load calculations, then review what effect changing the GPM, water temperature and/or air flow and air temperature would have on the corrected capacities. If the desired capacity cannot be achieved, select the next larger or smaller unit and repeat the procedure. Remember, when in doubt, undersize slightly for best performance. Actual Temperature Rise.11.3 F When we compare the Corrected Total Cooling and Corrected Sensible Cooling figures with our load requirements stated in Step 1, we discover that our selection is within /- 10% of our sensible load requirement. Furthermore, we see that our Corrected Total Cooling figure is slightly undersized as recommended, when compared to the actual indicated load. 6

Heat Controller HRC Series Design Guide HRC Series Nomenclature *Requires extended unit - see cabinet dimensions. 7

HRC Series Design Guide Heat Controller Performance Data – AHRI/ASHRAE/ISO 13256-1 ASHRAE/AHRI/ISO 13256-1. English (I-P) Units Water Loop Heat Pump Model HRC09 Cooling 86 F Ground Water Heat Pump Heating 68 F Capacity Btuh EER Btuh/W Capacity Btuh 8,600 13.3 11,400 Cooling 59 F Ground Loop Heat Pump Heating 50 F COP Capacity Btuh EER Btuh/W Capacity Btuh 4.6 9,200 18.6 Cooling 77 F Heating 32 F COP Capacity Btuh EER Btuh/W Capacity Btuh COP 9,500 4.0 8,800 14.9 7,300 3.3 HRC12 11,300 12.8 14,100 4.5 12,500 18.7 11,800 3.9 11,800 14.5 9,300 3.3 HRC15 13,700 12.8 17,500 5.1 15,700 19.4 14,600 4.0 14,500 14.7 11,400 3.3 HRC18 15,600 12.2 20,100 4.5 17,200 17.9 16,500 3.9 16,100 13.8 13,200 3.3 Cooling capacities based upon 80.6 F DB, 66.2 F WB entering air temperature Heating capacities based upon 68 F DB, 59 F WB entering air temperature All air flow is rated on high speed, Units factory shipped on medium and low motor taps. All ratings based upon operation at lower voltage of dual voltage rated models ASHRAE/AHRI/ISO 13256-1. Metric (S-I) Units Water Loop Heat Pump Model Cooling 30 C Capacity kW EER W/W Ground Water Heat Pump Heating 20 C Capacity kW COP Cooling 15 C Capacity kW EER W/W Ground Loop Heat Pump Heating 10 C Capacity kW COP Cooling 25 C Capacity kW EER W/W Heating 0 C Capacity kW COP HRC09 2.52 3.9 3.34 4.6 2.70 5.5 2.78 4.0 2.58 4.4 2.14 3.3 HRC12 3.31 3.8 4.13 4.5 3.66 5.5 3.46 3.9 3.46 4.3 2.73 3.3 HRC15 4.02 3.8 5.13 5.1 4.60 5.7 4.28 4.0 4.25 4.3 3.34 3.3 HRC18 4.57 3.6 5.89 4.5 5.04 5.3 4.84 3.9 4.72 4.0 3.87 3.3 Cooling capacities based upon 27 C DB, 19 C WB entering air temperature Heating capacities based upon 20 C DB, 15 C WB entering air temperature All air flow is rated on high speed, Units factory shipped on medium and low motor taps. All ratings based upon operation at lower voltage of dual voltage rated models 8

HRC Series Heat Controller Design Guide Performance Data – Selection Notes For operation in the shaded area when water is used in lieu of an antifreeze solution, the LWT (Leaving Water Temperature) must be calculated. Flow must be maintained to a level such WPD*42 F [5.6 C] when Cooling that the LWT is maintained above the - EAT 80/67 F EWT JW3 jumper F is notGPM clipped (see example below). Otherwise, Sens/Tot HR PSI antifreeze FT TC appropriate levels of a proper solutionSC shouldRatio be kW used in systems of 42ºFNot Recommended 1.9leaving 3.7 water 8.5temperatures 20 with Operation [5.6 C] or below and the JW3 jumper should be clipped. This 1.0 of the 1.4refrigerant 3.2 9.7 6.9 being 0.71 as 0.36 10.9 is due to the potential temperature low as 32 F 30 [0 C] with 40 F [4.4 C] LWT, which may lead to a 1.4 2.2 5.1 9.8 6.9 0.70 0.33 10.9 nuisance cutout due to the activation of the Low Temperature 1.9 never 3.3 be 7.6 6.9 0.70 0.31 10.9 Protection. JW3 should clipped9.9 for standard range equipment or systems without antifreeze. 1.0 1.0 2.3 9.4 6.8 0.72 0.41 10.8 Example: 40 COP 5.5 0.50 3.8 91.0 3.22 26.7 6.0 0.51 4.3 93.1 3.44 29.9 6.3 0.52 4.5 94.1 3.55 31.7 6.4 0.52 4.7 94.8 3.62 22.9 6.9 0.53 5.1 96.5 3.79 5.4 97.9 3.91 1.9 Water 2.1 Temperature) 4.9 9.7 and6.9 0.71 0.36 At 50 F EWT (Entering 1.5 gpm/ton, a 3 ton unit has a HE1.0 of 22,500 LWT, rearrange 0.9 Btuh. 2.1 To calculate 9.0 6.7 0.74 0.46 the formula for HE as follows: 10.9 27.4 7.4 0.55 5.6 98.6 3.97 10.6 19.6 7.8 0.56 5.9 100.0 4.10 10.8 22.1 8.2 0.57 6.3 101.6 4.23 10.8 23.4 8.4 0.57 6.5 102.4 4.30 10.4 16.6 8.7 0.58 6.7 103.6 4.39 6.8 0.71 LAT 0.54 9.3 6.9 HE 7.2 3.2 9.6 kW 25.8 1.4 3.5 HC 10.9 1.4 1.5 EER 0.37 50 1.4 Heating - EAT 70 F 0.73 0.42 HE TD x GPM x 500, where HE4.6 Heat9.5 of Extraction (Btuh); 0.40 1.9 2.0 6.8 0.72 TD temperature difference (EWT - LWT) and GPM U.S. 0.8 1.8 8.6 6.5 0.76 0.52 Gallons per Minute.1.0 60 TD HE / (GPM x 500) 1.4 1.3 3.0 8.9 6.6 0.74 0.48 10.5 18.8 9.2 0.59 7.2 105.4 4.53 1.9 1.9 4.4 9.1 6.7 0.74 0.46 10.6 20.0 9.4 0.60 7.4 106.3 4.61 1.0 0.7 1.6 8.1 6.3 0.78 0.58 10.1 14.0 9.6 0.61 7.6 107.1 4.67 1.4 1.2 2.8 8.5 6.5 0.76 0.53 10.3 15.9 10.2 0.62 8.1 109.1 4.82 1.9 1.8 4.2 8.6 6.5 0.76 0.51 10.4 16.9 10.5 0.63 8.3 110.2 4.90 1.0 LWT 50 - 10 40 F 0.7 1.6 7.6 6.1 0.79 0.65 9.8 11.8 10.6 0.63 8.4 110.7 4.93 1.4 1.1 2.5 8.0 6.2 0.78 0.60 10.0 13.3 11.1 0.64 9.0 112.9 5.10 1.0 0.6 1.4 7.4 5.9 0.80 0.68 9.7 10.8 11.0 0.64 8.9 112.5 5.06 1.4 1.0 2.3 7.7 6.1 0.79 0.63 9.9 12.2 11.6 0.65 9.4 114.8 5.24 1.9 1.5 3.5 7.9 6.2 0.78 0.61 10.0 13.0 12.0 0.66 9.7 116.1 5.33 1.0 0.6 1.4 7.2 5.8 0.81 0.72 9.6 9.9 11.5 0.65 9.3 114.2 5.19 1.4 1.0 2.3 7.5 6.0 0.80 0.67 9.8 11.1 12.1 0.66 9.9 116.7 5.38 1.9 1.4 3.2 7.6 6.1 0.79 0.64 9.8 11.9 12.5 0.67 10.2 118.0 5.48 1.0 0.5 1.2 6.7 5.5 0.81 0.81 9.5 8.3 1.4 0.9 2.1 7.0 5.7 0.81 0.75 9.6 9.3 1.9 1.3 3.0 7.2 5.8 0.81 0.72 9.6 9.9 1.0 0.5 1.2 6.4 5.2 0.81 0.91 9.5 7.0 1.4 0.9 2.1 6.6 5.4 0.81 0.84 9.5 7.8 1.9 1.3 3.0 6.7 5.5 0.81 0.81 9.5 8.3 TD 22,500 / (4.5 x 500) TD 10 F 70 LWT EWT - TD 80 In this example, a higher flow rate will be required for EWTs at or below 50 F without antifreeze. At 2 gpm/ton, the calculation above results in a TD 50 - 8.1 7.5 42.5 F, which above10.1 42 F EWT, is acceptable for this application. 1.9 of 7.5. 1.6 LWT3.7 6.3 0.78 is0.57 14.2 and 11.5 0.65 9.3 114.1 5.19 85 90 100 110 Operation Not Recommended Interpolation is permissible; extrapolation is not. All entering air conditions are 80 F DB and 67 F WB in cooling, and 70 F DB in heating. ARI/ISO certified conditions are 80.6 F DB and 66.2 F WB in cooling and 68 F DB in heating. Table does not reflect fan or pump power corrections for ARI/ISO conditions. All performance is based upon the lower voltage of dual voltage rated units. Operation below 40 F EWT is based upon a 15% antifreeze solution. Operation below 60 F EWT requires optional insulated water/refrigerant circuit (standard on residential models). See performance correction tables for operating conditions other than those listed above. See Performance Data Selection Notes for operation in shaded areas. 9

HRC Series Design Guide Heat Controller Performance Data – HRC09 350 CFM Nominal (Rated) Airflow WPD* EWT F GPM 20 30 40 50 60 70 80 85 90 100 110 120 Performance capacities shown in thousands of Btuh Cooling - EAT 80/67 F Sens/ Tot Ratio HC kW HE LAT COP 6.3 0.67 4.0 86.6 2.72 20.6 6.9 0.69 4.6 88.2 2.94 20.7 7.2 0.69 4.8 89.0 3.04 10.2 20.6 7.3 0.69 5.0 89.4 3.11 0.47 11.1 19.9 7.9 0.70 5.5 90.9 3.29 0.73 0.45 10.9 20.5 8.3 0.71 5.9 91.8 3.41 6.7 0.73 0.45 10.7 20.6 8.5 0.71 6.1 92.4 3.48 9.5 7.0 0.74 0.51 11.3 18.5 8.9 0.72 6.5 93.7 3.63 9.5 6.9 0.73 0.49 11.1 19.5 9.3 0.73 6.9 94.7 3.76 TC SC kW HR Heating - EAT 70 F PSI FT 2.2 5.0 11.6 1.1 1.6 3.7 9.2 6.7 0.73 0.44 10.7 1.6 2.6 6.0 8.9 6.6 0.74 0.43 10.4 2.2 4.5 10.4 8.8 6.5 0.74 0.43 1.1 1.4 3.2 9.4 6.9 0.73 1.6 2.3 5.3 9.3 6.8 2.2 4.2 9.7 9.2 1.1 1.2 2.8 1.6 2.2 5.1 EER Operation not recommended 2.2 3.8 8.8 9.4 6.9 0.73 0.47 11.1 19.9 9.6 0.73 7.1 95.4 3.84 1.1 1.1 2.5 9.4 7.1 0.76 0.56 11.3 16.7 10.0 0.74 7.5 96.4 3.95 1.6 2.1 4.9 9.5 7.0 0.74 0.53 11.3 17.9 10.4 0.75 7.9 97.6 4.08 2.2 3.7 8.5 9.5 7.0 0.74 0.51 11.2 18.6 10.7 0.75 8.1 98.3 4.16 1.1 1.0 2.3 9.0 7.1 0.79 0.62 11.2 14.5 11.0 0.76 8.4 99.0 4.23 1.6 2.0 4.6 9.3 7.1 0.77 0.58 11.3 15.9 11.4 0.77 8.8 100.2 4.36 2.2 3.5 8.1 9.4 7.1 0.76 0.56 11.3 16.7 11.7 0.77 9.1 101.0 4.43 1.1 1.0 2.3 8.5 7.0 0.82 0.69 10.9 12.3 11.9 0.78 9.2 101.4 4.47 1.6 1.9 4.4 8.8 7.1 0.80 0.65 11.1 13.7 12.3 0.79 9.6 102.6 4.58 2.2 3.2 7.4 9.0 7.1 0.79 0.62 11.2 14.5 12.6 0.80 9.9 103.4 4.64 1.1 1.0 2.2 8.1 6.9 0.84 0.73 10.6 11.1 12.3 0.79 9.6 102.5 4.56 1.6 1.9 4.4 8.5 7.0 0.82 0.68 10.9 12.5 12.7 0.80 10.0 103.6 4.66 2.2 3.1 7.2 8.8 7.0 0.80 0.66 11.0 13.3 13.0 0.81 10.2 104.3 4.71 1.1 0.9 2.1 7.8 6.7 0.87 0.77 10.4 10.1 12.7 0.80 10.0 103.5 4.66 1.6 1.9 4.4 8.2 6.9 0.84 0.72 10.7 11.4 13.1 0.81 10.3 104.6 4.74 2.2 3.0 6.9 8.5 7.0 0.82 0.69 10.9 12.2 13.3 0.82 10.5 105.2 4.77 1.1 0.9 2.1 6.9 6.3 0.91 0.86 9.8 7.9 1.6 1.8 4.2 7.4 6.6 0.89 0.81 10.2 9.1 2.2 2.9 6.7 7.7 6.7 0.87 0.78 10.4 9.9 1.1 0.9 2.1 5.8 5.6 0.97 0.96 9.1 6.0 1.6 1.8 4.2 6.4 6.0 0.94 0.91 9.5 7.0 2.2 2.9 6.7 6.7 6.2 0.92 0.87 9.7 7.7 1.1 0.9 2.1 4.5 4.6 1.00 1.07 8.2 4.2 1.6 1.8 4.2 5.1 5.1 1.00 1.02 8.6 5.0 2.2 2.8 6.5 5.5 5.4 0.98 0.98 8.9 5.6 Interpolation is permissible; extrapolation is not. All entering air conditions are 80 F DB and 67 F WB in cooling, and 70 F DB in heating. AHRI/ISO certified conditions are 80.6 F DB and 66.2 F WB in cooling and 68 F DB in heating. Table does not reflect fan or pump power corrections for AHRI/ISO conditions. All performance is based upon the lower voltage of dual voltage rated units. Performance stated is at the rated power supply; performance may vary as the power supply varies from the rated. Operation below 40 F EWT is based upon a 15% methanol antifreeze solution. Operation below 60 F EWT requires optional insulated water/refrigerant circuit. See performance correction tables for operating conditions other than those listed above. See Performance Data Selection Notes for operation in the shaded areas. 10 Operation not recommended *WPD Adder for Motorized Valve, HRC09 (Cv 4.9, MOPD 150 psi) GPM WPD Adder PSI FT 1.1 0.3 0.6 1.6 0.6 1.3 2.2 1.2 2.7

HRC Series Heat Controller Design Guide Performance Data – HRC12 450 CFM Nominal (Rated) Airflow *WPD Adder for Motorized Valve, HRC12 (Cv 4.9, MOPD 150 psi) GPM PSI FT 1.5

The Series (HRC) console unit provides a high efficiency WSHP "ductless" solution for spaces where individual, quiet control of the heating and cooling system is important . HRC units are especially ideal where ceiling height and space are limited, or when preserving the integrity of an existing structure . The HRC Series

Related Documents:

101 hb 2 106 hv - hrc 338 n/mm 102 hb 107 hv 2 - hrc 341 n/mm 103 hb 108 hv - hrc 344 n/mm2 104 hb 2 109 hv - hrc 347 n/mm 105 hb 110 hv - hrc 350 n/mm2 106 hb 111 hv 2 - hrc 355 n/mm 107 hb 112 hv 2 - hrc 360 n/mm 108 hb 113 hv - hrc 365 n/mm2 109 hb 2114 hv - hrc 370 n/mm

1. HRC 535 structural connector will be welded onto a steel member. 2. HRC 555 Headed Bar with HRC 500 coupler will then be threaded into a HRC 535 welded structural connector. Option B - The headed bar assembly has a HRC 555 Head on one end and a HRC 300 thread HRC 300 W threaded weldable half coupler on the other end. Installation notes: 1.

ASTM F436 HRC 38-45 HRC 38-45 (Coated) HRC 26-45 (HDG) HRC 38-46 HRC 38-45 (Coated) HRC 26-45 (HDG) 1/4 to 1 1/2 1/4 to 2 1/4 to 1 1/2 1/4 to 1 3/8. STRUCTURAL ASSEMBLIES 10 www.unbrako.com NBRAK U O NB U RAK O 3 0 1 R 8.8 RAKO N B U Metric Size M12 to M36 M12 to M36 M12 to M36 M12 to M

VANADIS 4 EXTRA (PM) (60 - 63 HRC with high toughness) VANADIS 30 (PM) (64 - 66 HRC with high toughness) Hot work tool steel ORVAR 2M (46 - 50 HRC) ORVAR SUP (ESR) (46 - 52 HRC with high thermal resistance) DIEVAR (ESR) (46 - 48 HRC anti-adhesion) Plastic Mould Steels IMPAX SUP (basic hardness 34 HRC)

Class 1 - B8, B8M All Diameters 75 30 30 50 96 HRBc 223 HBC Class 2 - B8 ¾ and under 125 100 12 35 35 HRC 321 HB over ¾ to 1, incl 115 80 15 30 35 HRC 321 HB over 1 to 1¼, incl 105 65 20 35 35 HRC 321 HB over 1¼ to 1½, incla 100 50 28 45 35 HRC 321 HB Class 2 - B8M ¾ and under 110 95 15 45 35 HRC 321 HB over ¾ to 1, incl 100 80 20 45 35 .

hrc hrb hra hb hv hs hb hrc hv hrb hb hv hrc hb hv hrc hb hv hb hrb hb hrb hb hb d/dc 17.9 68.5 59.6 99.6 59.1 85.8 127 651 83 976 32.2 99.5 143 650 20.4 67.1 80 898 46.5 101.7 85 655 85 802 93 334 131 387 19 164 23.8 84.6 40 173 13.5 95.3 60 290 45 315 impace device d 15 19.3 67.9 80 638 80 937 33.3 99.3 19.8 68.2 80 935 c 20.0 69.5 80 683 80 .

DPP Submittal 4 This is mostly an issue with model corrections Example: 1 DPP could be a seasonal model . *If there is a discrepancy in data between the DPP Submittal Form and the IDEV file, the IDEV data is used. . o 46% - DPP Submittal Form issues

The empirical study suggests that the modern management approach not so much substitutes but complements the more traditional approach. It comprises an addition to traditional management, with internal motivation and intrinsic rewards have a strong, positive effect on performance, and short term focus exhibiting a negative effect on performance. These findings contribute to the current .