Approximate Analytical Solution Of One-Dimensional Beam .

2y ago
20 Views
2 Downloads
2.85 MB
13 Pages
Last View : 1m ago
Last Download : 3m ago
Upload by : Gia Hauser
Transcription

HindawiJournal of Applied MathematicsVolume 2020, Article ID 7627385, 13 pageshttps://doi.org/10.1155/2020/7627385Research ArticleApproximate Analytical Solution of One-Dimensional BeamEquations by Using Time-Fractional Reduced DifferentialTransform MethodDessalegn Mekonnen Yadeta , Ademe Kebede Gizaw , and Yesuf Obsie MussaDepartment of Mathematics, College of Natural Sciences, Jimma University, Jimma, EthiopiaCorrespondence should be addressed to Ademe Kebede Gizaw; kebedeademe2020@gmail.comReceived 23 July 2020; Revised 4 November 2020; Accepted 4 December 2020; Published 22 December 2020Academic Editor: Ying HuCopyright 2020 Dessalegn Mekonnen Yadeta et al. This is an open access article distributed under the Creative CommonsAttribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original workis properly cited.In this paper, a recent and reliable method, named the fractional reduced differential transform method (FRDTM) is employed tosolve one-dimensional time-fractional Beam equation subject to the appropriate initial conditions. This method provides thesolutions very accurately and efficiently in convergent series form with easily computable coefficients. The efficacy and accuracyof this method are verified by means of three illustrative examples which indicate that the present method is very effective,simple, and easy to implement. Finally, it is observed that the FRDTM is the prevailing and convergent method for the solutionsof linear and nonlinear fractional-order partial differential equations.1. IntroductionIn last few decades, fractional calculus has been attractedmuch attention due to its enormous numbers of applicationsin almost all disciplines of applied sciences and engineering.The fractional calculus became an aspirant to find out thesolution of complex systems that exist in numerous fields ofsciences (for detail see [1–4]). This branch of mathematicalanalysis, extensively investigated in the recent years, hasemerged as an effective and powerful tool for the mathematical modeling of several engineering and scientific phenomena. One of the key factors for the popularity of the subjectis the nonlocal nature of fractional-order operators. In thefield of mathematical modeling, having partial derivativesof fractional order naturally seems to be dealing with the generality of the current traditional models [5]. In the field ofmodern science and engineering, the fourth-order parabolictime-fractional beam equation plays an important role inmodern science and engineering. For example, airplanewings and transverse vibrations of sustained tensile beamscan be modeled as plates with initial/different boundary supports which are successfully governed by superdiffusionfourth-order differential equations [6].The fourth-order parabolic PDEs are of great importance. These PDEs describe various physical phenomena,including deformation of beams, viscoelastic and inelasticflows, transverse vibrations of a homogeneous beam, platedeflection theory, engineering, and applied sciences [7–13].In this work, we concentrate our discussion on the following classes of time-fractional nonlinear Beam equation(fourth-order time-fractional nonlinear parabolic PDEs) ofthe form [14]. 2α u 4 u Ax,t f ðx, t, u, ut , ux , uxx , uxxx Þ, ðx, t Þ Ω,ðÞ t 2α x4ð1Þwith initial conditionsuðx, 0Þ f ðxÞut ðx, 0Þ gðxÞ, a x b,ð2Þ

2finding the solution of this equation has been the subject ofmany investigators in the recent years.Before the nineteenth century, there was no scheme available for the analytical solutions of the fractional differentialequations. In the beginning of the twentieth century,researchers started to pay attention to find the robust andstable analytical approaches for the exact (approximate)solution of the fractional differential equations [15]. Subsequently, several schemes such as the Adomian decomposition methods [16–18], differential transform method [19–21], Homotopy perturbation method [22–25], Local fractional variation iteration method [26], Variation iterationmethod [27, 28], and Shifted Chebyshev polynomials basedmethod [29] have been developed for the analytical solutionsof fractional differential equations.Most of these methods sometimes require complex andhuge calculation in order to obtain approximate solutions.To overcome such difficulties and drawbacks, an alternativemethod, the so-called fractional reduced differential transform method (FRDTM), has been developed by Keskin andOturanc [30]. FRDTM plays a vital role among all the listedmethods because it takes small size computation, easy toimplement as compared to other techniques [31].The basic motivation of this paper is to propose FRDTMto find an approximate analytical solution of the timefractional Beam equation (the governing equation) given in(1). Using this method, it is possible to find both exact andapproximate solutions in a rapidly convergent power seriesform.It is worth mentioning that the FRDTM is applied without any linearization or discretization or restrictive assumptions. FRDTM is a very reliable, efficient, and effectivepowerful computational technique for solving physical problems [32–37].The rest of this paper is organized as follows: in Section 2,we give some fundamental definitions and lemmas associatedwith fractional calculus. In Section 3, some basic definitionsand properties related to one-dimensional fractional reduceddifferential transformation in the Caputo sense are presented;some lemmas are proved. In Section 4, we present the formulation of the method. Section 6 is devoted to apply themethod to solve linear and nonlinear time-fractional beamequation in one dimension and present graphs to show theeffectiveness, validity, and performance of the FRDTM forsome values of α. Finally, the conclusion is presented in Section 6.2. Fractional CalculusIn this section, some basic definitions and lemmas ofFRDTM associated with fractional calculus are presented.Some of these definitions are due to Riemann Liouville andCaputo sense; for details, see [34, 36, 37].Definition 1. The Gamma function. The Gamma function ΓðzÞ is simply a generalization of the factorial real arguments.The Gamma function can be defined as [3]Journal of Applied MathematicsΓðz Þ ð e t t z 1 dt, z 0:ð3Þ0Definition 2. Let μ ℝ, m ℕ. A function f : ℝ ℝbelongs to the space C μ if there exists a real number k μsuch thatf ðt Þ t p gðt Þ, t 0,ð4ÞðmÞ Cμ :gðt Þ C½0, Þ and f ℂmμ if fð5ÞwhereDefinition 3. Let J αx be Riemann-Liouville fractional integraloperator of order α 0 and let f ℂμ , μ 1, thenJ t α f ðt Þ 1ΓðαÞðtðt τÞα 1 f ðτÞdτ,ð6Þ00J t f ðt Þ f ðt Þ, t 0:Definition 4. If m 1 α m, m ℕ, t 0, then the Caputo’sfractional derivative of f Cμ is defined asDx α f ðxÞ J x m α Dx m f ðxÞ 1Γðm αÞðxðx t Þm α 1 f ðmÞ ðt Þdt:0ð7ÞThe fundamental properties of the Caputo fractionalderivative are given in the following lemma.Lemma 5. If m 1 α m, m ℕ and f ðxÞ C mμ , μ 1,thenβα βðiÞDαt Dt f ðt Þ Dtβf ðt Þ Dt Dαt f ðt ÞðiiÞDαt J αt f ðt Þ f ðt Þ, t 0ðiiiÞJ αt Dαt f ðt Þ m 1f ðt Þ fk 0ðkÞð8Þtkð0 Þ , t 0:k! 3. Fractional Reduced Differential TransformMethod (FRDTM)Definition 6 (see [34, 36, 37]). If uðx, tÞ is analytic and continuously differentiable with respect to space variable x and timevariable t in the domain of interest, then time-fractionalreduced differential transform (or the spectrum function) is"#1 αkU k ðx Þ uðx, t ÞΓðkα 1Þ t αk,ð9Þt t 0where α is a parameter which describes the order of timefractional derivative in the Caputo sense, and k is an integerðk 0Þ.

Journal of Applied Mathematics3Remark 7. In this study, the lowercase uðx, tÞ represents theoriginal function, while the uppercase U k ðxÞ stands for thetransformed function.Definition 8 (see [34, 36, 37]). The fractional reduced differential inverse transform of U k ðxÞ is defined as uðx, t Þ U k ðxÞðt t o Þ :ð10Þkαk 0Substituting Eq. (9) into Eq. (10), we obtain"# 1 kαuðx, t Þuðx, t Þ ðt t o Þkα ,kαΓkα 1ðÞ tk 0ð11Þt t owhich in practical application can be approximated by afinite seriesnun ðx, t Þ U k ðxÞðt t o Þkα ,Lemma 10. If f ðx, tÞ xm cos ðηx θtÞ , then the fractionalreduced differential transform of f isF k ðxÞ xm ðθk /k!Þ cos ðηx ðπk/2ÞÞ , where η and θ areconstants.Proof. From Definition 6 and FRDTM properties, we have."#1 kαf ðx, t ÞF k ðx Þ Γðkα 1Þ t kαt t 0"#1 kα mF k ðx Þ x cos ðηx θt ÞΓðkα 1Þ t kαt t 0"#kα1 F k ðx Þ x mcos ðηx θt ÞΓðkα 1Þ t kα t t 0 θkπkmθ, for k 0, 1, 2, 3, cos ηx F k ðx Þ x2k!ð12Þð16Þk 0where n is the order of this approximate solution. Therefore,the exact solution can be obtained as uðx, t Þ lim un ðx, t Þ U k ðxÞðt t o Þkα :n ð13Þk 0If t 0 0, then Eq. (13) reduces to the form uðx, t Þ lim un ðx, t Þ U k ðxÞðt Þkα :n !kΓðkα 1Þ 4 Ar ðxÞ 4 U k r ðxÞ F ðU k ðxÞÞ ,U k 2 ðxÞ Γðkα 2α 1Þ xr 0ð14Þand using FRDTM to the initial conditions (2), we getk 0Lemma 9. If f ðx, tÞ xm sin ðηx θtÞ , then the fractionalreduced differential transform of f is F k ðxÞ ðθk /k!Þxm sinðηx ðπk/2ÞÞ , where η and θ are constants.Proof. From Definition 6 and FRDTM properties, we have"#1 kαF k ðx Þ f ðx, t ÞΓðkα 1Þ t kαt t 0"#1 kα mF k ðx Þ x sin ðηx θt ÞΓðkα 1Þ t kαt t 0"#kα1 F k ðx Þ x msin ðηx θt ÞΓðkα 1Þ t kα Applying properties of FRDTM to Eq. (1), we obtain thefollowing recurrence relation:ð17ÞSome of the basic properties of one-dimensional fractional reduced differential transform function that are constructed based on Definitions 6 and 8 are given below.t t 0 θ mπk, f ork 0, 1, 2, 3, F k ðxÞ x sin ηx 2k!k4. Solution of the Problem by FRDTMU 0 ðxÞ f ðxÞ, U 1 ðxÞ gðxÞ:ð18ÞUsing Eqs. (17) and (18) and k 0, 1, 2, 3, and by iterativecalculation, the following results are obtained:!1 4 A0 ðxÞ 4 U 0 ðxÞ F ðU 0 ðxÞÞ ,U 2 ðx Þ Γð2α 1Þ x"#!Γðα 1Þ 4 4U 3 ðxÞ A0 ðxÞ 4 U 1 ðxÞ A1 ðxÞ 4 U 0 ðxÞ F ðU 1 ðxÞÞ , x xΓð3α 1Þ2 233 4 4A0 ðxÞ 4 U 2 ðxÞ A1 ðxÞ 4 U 1 ðxÞ 7667Γð2α 1Þ 6 6 x x7 F U x 7,U 4 ðxÞ ð 2 ð Þ Þ76 67Γð4α 1Þ 4 455 4A2 ðxÞ 4 U 0 ðxÞ x130 2 4 4A0 ðxÞ 4 U 3 ðxÞ A1 ðxÞ 4 U 2 ðxÞ 7CB6Γð3α 1Þ B 6 x x7 F U x C:U 5 ðxÞ ð 3 ð ÞÞC7B 6Γð5α 1Þ @ 4A5 4 4A2 ðxÞ 4 U 1 ðxÞ A3 ðxÞ 4 U 0 ðxÞ x xð19Þð15ÞContinuing in a similar fashion the remaining successiveterms of the FRDTM can be obtained.

4Journal of Applied Mathematics30–2201u (x, t)u (x, t)230–120tt1x155x10010(a)(b)1.0u (x, t)320tu (x, x105010(c)0(d)Figure 1: The physical behavior of FRDTM solution of Eq. (21) for (a) α 0:25, (b) α 0:5, (c) α 0:75, and (d) α 1.Then, the fractional reduced differential inverse transform of the set of values of ½U k ðxÞ k 0 giving the series solution of Eq. (1) asuðx, t Þ f ðxÞ gðxÞt α !1 A0 ðxÞ 4 U 0 ðxÞ F ðU 0 ðxÞÞ t 2α :Γð2α 1Þ x4ð20ÞIf α 1, the FRDTM solution (20) gives the exact solutionof Eq. (1).5. Illustrative examplesExample 11. Consider one-dimensional homogeneous timefractional beam equation: 2α 4uðx, t Þ 4 uðx, t Þ 0, x ℝ, t 0, 0 α 1:2α x tð21ÞSubjected to the initial conditions:uðx, 0Þ cos x, ut ðx, 0Þ sin x:ð22ÞApplying properties of FRDTM to Eq. (21), we obtain thefollowing recurrence relation:U k 2 ðxÞ Γðkα 1Þ 4U ðx Þ:Γðkα 2α 1Þ x4 kð23Þand using FRDTM to the initial conditions (22), we getU 0 ðxÞ cos x, U 1 ðxÞ sin x:ð24Þ

Journal of Applied Mathematics5When k 0, 1, 2, 3, , by iterative calculation we obtain cos x,U 2 ðx Þ Γð2α 1ÞU 3 ðx Þ U 4 ðx Þ Γðα 1Þsin x,Γð3α 1Þ1cos x,Γð4α 1ÞU 5 ðx Þ uðx, 0Þ 6 7x and ut ðx, 0Þ 0, 0 x 1, t 0:7!ð29ÞApplying properties of FRDTM to Eq. (28), we obtain thefollowing recurrence relation:ð25ÞU k 2 ðxÞ ! Γðkα 1Þ 461πk ðx 1Þ 4 U k ðxÞ x4 x3 x7,cosΓðkα 2α 1Þ x7!k!2ð30ÞΓ ðα 1 Þsin x:Γð5α 1Þand using FRDTM to the initial conditions (29), we getContinuing in this way, the remaining successive terms ofthe FRDTM can be obtained. Then, the fractional reduceddifferential inverse transform of the set of values of½U k ðxÞ k 0 gives the following approximate analytic solution uðx, t Þ cos x sin x αcos x 2α sin xΓðα 1Þ 3αt t tΓðα 1ÞΓð2α 1ÞΓð3α 1Þcos x 4α sin xΓðα 1Þ 5αt t Γð4α 1ÞΓð5α 1Þð26ÞFinally, for α 1, Eq. (26) reduces to the form: 1111uðx, t Þ cos x 1 t 2 t 4 sin x t t 3 t 5 ,2!4!3!5!U 0 ðx Þ ð31ÞIterative calculations for k 0, 1, 2, 3, gives the following successive values. 16 x7 ,U 2 ðx Þ Γð2α 1Þ7!U 3 ðxÞ 0,ð32Þ Γð2α 1Þ x4 x3x4 x36x7 Γð2α 1Þ,U 4 ðx Þ 7!2!Γð4α 1ÞΓð4α 1Þ2!Γð4α 1ÞU 5 ðxÞ 0, 4 x x3 Γð2α 1Þ 24ðx 1Þ 12ðx 1ÞΓð2α 1Þ 2Γð6α 1ÞΓð6α 1ÞΓð6α 1Þ 4 x x3 Γð4α 1Þ 6x7 Γð4α 1Þ ,4Γð6α 1Þ7!4!Γð6α 1Þ U 6 ðx Þ ð27Þand whose exact solution of the problem is uðx, tÞ cos xcos t sin x sin t cos ðx tÞ [38].The approximate numerical solutions corresponding toExample 11 are given in Figures 1 and 2 and Table 1.6 7x and U 1 ðxÞ 0, 0 x 1:7!U 7 ðxÞ 0,ð33Þ Example 12. Consider the following fourth-order parabolictime-fractional beam equation with variable coefficient: 2α 46 743xux,t x 1ux,t x x cos t, 0ð ÞðÞ 4 ð Þ x7! t 2α x 1, t 0, 0 α 1,ð28Þsubject to the initial conditions:U 8 ðxÞ 12ðx 1ÞΓð2α 1Þ ðx 1ÞΓð4α 1Þ Γð8α 1ÞΓð8α 1Þ 4 4 3x x Γð4α 1Þx x3 Γð6α 1Þ 6x7 Γð6α 1Þ , 7!6!Γð8α 1Þ4!Γð8α 1Þ6!Γð8α 1Þð34Þand so on. Continuing in this manner, the remaining iterativevalues can be obtained. Then, the fractional reduced differential inverse transform of the set of values of ½U k ðxÞ k 0 givesthe following approximate analytic solution 6x76x7Γð2α 1Þ x4 x3x4 x3 ð6/7!Þx7 4α t 2α tΓð4α 1Þ Γð2α 1Þ7!7!Γð2α 1Þ2! Γð4α 1ÞΓð2α 1Þ24x3x4 x3 6x7 6α ðx 1Þ 12 tΓð6α 1ÞΓð4α 1Þ Γð2α 1Þ2!4!7!4! 4 01x x3 Γð4α 1Þ12ðx 1ÞΓð2α 1Þ ðx 1ÞΓð4α 1Þ BCΓð8α 1ÞΓð8α 1Þ4!Γð8α 1ÞBC 8αCt : B 4 BC@Ax x3 Γð6α 1Þ 6x7 Γð6α 1Þ 7!6!Γð8α 1Þ6!Γð8α 1Þ uðx, t Þ ð35Þ

6Journal of Applied MathematicsIf α 1, then Eq. (35) giveswith initial conditions:6x7 6x7 26 7 4 6x7 6 6x7 8 t t t uðx, t Þ x t 7!7!2!7!6!7!8!7!4! 6x7t2 t4 t6 t8 1 :7!2! 4! 6! 8!ð36ÞThe exact solution of the classical form of Eq. (28) isuðx, tÞ ð6x7 /7!Þ cos t [14, 39–42].The approximate numerical solutions corresponding toExample 12 are given in Figures 3 and 4 and Table 2.Example 13. Consider the following one-dimensional nonhomogeneous nonlinear Beam equation 2α 4uðx, t Þ xu2 ðx, t Þ 4 uðx, t Þ 24x9 t 3 , 0 x 1, t 0, 0 α 1:2α t xð37Þuðx, 0Þ 0 and ut ðx, 0Þ x4 :ð38ÞApplying properties of FRDTM to (37), we obtain thefollowing recurrence relationU k 2 ðxÞ k rΓðkα 1Þ 4 x U i ðxÞU r i ðxÞ 4 U k r ðxÞ xΓðkα 2α 1Þr 0 i 0! 24x9 δðkα 3Þ ,ð39Þand using FRDTM to the initial conditions (38), we getU 0 ðxÞ 0 and U 1 ðxÞ x4 :ð40ÞBy iterative calculations for k 0, 1, 2, 3, equations(39) and (40) give the following successive values!1 412 xU 0 ðxÞ 4 U 0 ðxÞ δð 3Þ δð 3Þ,U 2 ðx Þ Γð2α 1ÞΓð2α 1Þ x!!Γ ðα 1 Þ 4 429 x U 0 ðxÞ 4 U 1 ðxÞ 2U 0 ðxÞU 1 ðxÞ 4 U 0 ðxÞ 24x δðα 3Þ ,U 3 ðx Þ Γð3α 1Þ x xU 3 ðx Þ Γ ðα 1 Þ 924x δðα 3Þ ,Γð3α 1Þ0 011 4 4CB U 0 ðxÞ 4 U 2 ðxÞ 2U 0 ðxÞU 1 ðxÞ 4 U 1 ðxÞ CΓð2α 1Þ B x xB xBC 24x9 δ 2α 3 C,U 4 ðx Þ ðÞCB BCΓð4α 1Þ @ @AA 4 42U 0 ðxÞU 2 ðxÞ 4 U 0 ðxÞ U 1 2 ðxÞ 4 U 0 ðxÞ x x Γð2α 1Þ 9U 4 ðx Þ 24x δð2α 3Þ ,Γð4α 1Þ0 011 4 42B B U 0 ðxÞ 4 U 3 ðxÞ 2U 0 ðxÞU 1 ðxÞ 4 U 2 ðxÞ CC x xB BCCB BCC44CBCΓð3α 1Þ B 9B2BC xB 2U 0 ðxÞU 2 ðxÞU 5 ðx Þ 24x δð3α 3ÞCUx UxUx ðÞðÞðÞBC,C11144Γð5α 1Þ B B x xCCB BCC44@ @AA 2U 0 ðxÞU 3 ðxÞ 4 U 0 ðxÞ 2U 1 ðxÞU 2 ðxÞ 4 U 0 ðxÞ x x Γð3α 1Þ 24x9 24x9 δð3α 3Þ ,U 5 ðx Þ Γð5α 1Þ2ð41Þ Γðα 1Þ 9Γð2α 1Þ24x δðα 3Þ t 3α Γð3α 1ÞΓð4α 1Þ 9 4α Γð3α 1Þ 24x δð2α 3Þ t 24x9 24x9 δð3α 3Þ t 5α :Γð5α 1Þuðx, t Þ x4 t α and so on. Then, the fractional reduced differential inversetransform of the set of values of ½U k ðxÞ k 0 gives the following approximate analytic solutionð42Þ

Journal of Applied Mathematics71.00.9u (x, t)0.80.70.60.50.40.20.40.60.81.0x𝛼 0.9𝛼 1Exact𝛼 0.6𝛼 0.7𝛼 0.8(a)u (x, t)0.80.70.60.50.10.20.30.40.5t𝛼 0.9𝛼 1Exact𝛼 0.6𝛼 0.7𝛼 0.8(b)Figure 2: FRDTM solution profile of Eq. (21): (a) uðx, tÞ vs. x for different values α and t 0:15 and (b) uðx, tÞ vs. time t for different values αand x 0:5.Using the definition δðkÞ given in Table 3, Eq. (42)reduces to the formuðx, t Þ x4 t α :ð43ÞIf α 1, then Eq. (42) gives the exact solution uðx, tÞ x4 t of the classical form of Eq. (37) see Ref. [42].The approximate numerical solutions corresponding toExample 13 are given in Figures 5 and 6 and Table 4.Figures 1–6 exhibit the physical behavior of the FRDTMsolutions uðx, tÞ of Example 11, Example 12, and Example 13 for different values of time-fractional order α andtime t. It is evident from the figures that, as the valuesof time-fractional order α approaches to 1, the graph ofthe FRDTM solutions uðx, tÞ of the illustrated examplesresembles to the graph of the exact solutions uðx, tÞ of theircorresponding classical (nonfractional) one-dimensionalbeam equations. Furthermore, Figures 6(c) and 6(d) depictthe long time range physical behavior of the solution ofEq. (37).Table 1 shows the ninth-order approximate numericalsolutions uðx, tÞ of Eq. (21) for different values of α andthe absolute error of FRDTM solution for α 1. Table 2illustrates the eighth-order approximate numerical solutionuðx, tÞ of Eq. (28) for different values of α and the absoluteerror of FRDTM solution for α 0:8. Table 4 reveals thefirst-order approximate numerical solution uðx, tÞ of Eq.(37) for different values of α and the absolute error ofFRDTM solution for α 0:9. Generally, from Tables 1–4, itis distinguished that the approximate solutions obtained byFRDTM are close to the exact solution of the classical formof Examples 11–13 as the values of α are close to 1 for anyvalues of t.

8Journal of Applied MathematicsTable 1: Ninth-order approximate numerical solution by FRDTM of Eq. (21) at different values of α and comparison of absolute error at α 1.x46810tα 0:6uFRDTMα 0:8α 1uExactAbsolute error ( uexact uα 1 70.9600290.96017001:410e 0430.1179910.3656170.7471290.7539026:773e 0310.5157300.6039850.7539030.7539021:000e 0620.241086-0.030377-0.145223-0.1455002:770e 0430.849243-0.183085-0.895349-0.9111301:578e 0.563724-0.839161-0.83907208:900e 053-0.824811-0.213237-0.0019360.0044236:359e 0310.0161130.0426960.0044250.0044262:200e 0720.1863670.4995610.8436510.8438542:040e 043-0.1627580.3605610.8969610.9074471:048e 020.0150.0100.020.40.000.00.2u (x, t)u (x, (b)0.0010u (x, t)0.0020.0010.0000.00.40.20.5xt0.0005u (x, e 3: The physical behavior of FRDTM solution of Eq. (28) for (a) α 0:25, (b) α 0:5, (c) α 0:75, and (d) α 1.

Journal of Applied Mathematics90.00250.0080.00150.006u (x, t)u (x, 20.40.5𝛼 0.9𝛼 1Exact𝛼 0.6𝛼 0.7𝛼 0.8𝛼 0.9𝛼 1Exact𝛼 0.6𝛼 0.7𝛼 0.80.3tx(a)(b)Figure 4: FRDTM solution profile of Eq. (28). (a) uðx, tÞ vs. x for different values α and t 0:15. (b) uðx, tÞ vs. time t for different values α andx 0:5.Table 2: Eighth-order approximate numerical solution by FRDTM of Eq. (28) at different values of α and comparison of absolute errorat α 0:8.x0.1tα 246000.003802710.04531310uFRDTMα 0:8Absolute error ( uexact uα 0:8 )α 1uExact1:19048 10 101:16675 10 101:16675 10 102:37e 12 10 10 109:40e 12 112:08e 11 61:91e 06 61:95e 06 61:1

to find an approximate analytical solution of the time-fractional Beam equation (the governing equation) given in (1). Using this method, it is possible to find both exact and approximate solutions in a rapidly convergent power series for

Related Documents:

Stage / Analytical Chemistry Lecture - 1 Introduction to Analytical Chemistry 1.1 Types of analytical chemistry & their uses . 1.2 Classifying Analytical Techniques. 1.3 Quantitative Analysis Methods. 1.4 Applications of Analytical Chemistry. 1.5 Units For Expressing Concentration of Solutions. 1.6 P Functions. 1.7 Stoichiometric Calculation.

approximate string joins. More formally, we wish to ad-dress the following problem: Problem 1 (Approximate String Joins) Given tables 1 and # 3with string attributes 1 ,an integer ), retrieve all pairs of ecords 1 3 such that edit distance(1 0) 3) . Our techniques for approximate string processing in databases share a principlecommon .

is a query string. Approximate selections are special cases of the similarity join operation. While several predicates are introduced and benchmarked in [5], the extension of ap-proximate selection to approximate joins is not considered. Furthermore, the effect of threshold values on accuracy for approximate joins is also not considered. 3 .

Zeagle Ranger BCD from Boston Scuba. Approximate value 750. * Hollis 200 LX Regulator. Approximate value 650. * 2016 Raffle! 5 per ticket, 3 for 10 The amazing prizes for the 2016 Raffle include: 1-Week Trip to Saba/St. Kitts with Explorer Ventures - Approximate value 2,000. * 4-Night Stay at Maluku Divers, in Indonesia - Approximate value .

Keywords: analytical validation, pharmaceutical analysis, analytical method INTRODUCTION Analytical methods play an essential role in the adequate fulfillment of product quality attributes. However, the proper quality can only be reached if the analytical method undergoes an appropriate validation pr

MATTERS . ISSUE 18 – WINTER EDITION 2021. W elcome to the eighteenth issue of Analytical Matters, the e-newsletter of the Analytical Division of the Royal Society of Chemistry (RSC). Analytical Matters aims to showcase the wide range of analytical science activities being r

Lifecycle Management of Analytical Methods Post-licensure activities for the method lifecycle management 1. Revalidation 2. Analytical Method Comparability Change in method (Method Replacement and modification) Analytical Method Transfer Post marketing changes to analytical pro

Given a power point presentation on . Ramcharitmanas: The Journey of a Text . in India International Centre, New Delhi on 7/3/2003. 7. Participated as a resource person in a refresher course for lecturers on “Hindi Public Sphere” organized by Mahatma Gandhi International University at Nainital on 13. th &14. th. June’2003. 8. Participated in the International Seminar on Fyodor J.Tyutchev .