Gigabit Ethernet UTP-5 PHY PMC-Sierra, Inc.

2y ago
31 Views
3 Downloads
1.28 MB
32 Pages
Last View : 13d ago
Last Download : 3m ago
Upload by : Macey Ridenour
Transcription

Gigabit Ethernet UTP-5PHYPMC-Sierra, Inc. Contacts:––––Barry HagglundVernon LittleBrian GersonSteve DabeckiManager Product Research (presenting)Manager LAN MarketingManager Analog DevelopmentSenior Designer, Gigabit PHYPMC-Sierra, Inc.105-8555 Baxter PlaceBurnaby, B.C. Canadatel: 604.415.60009/23/96V5A 4V7IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19961

Proposed Gigabit EthernetPHYPMC-Sierra, Inc. Gigabit Ethernet PHY interface;– 50 m short-haul - Full Duplex UTP-5, 4-pair interface» one device, roadmap to 100 m– 100 m intermediate - Full Duplex UTP-5, 8-pair interface» two devices plus GMII mux logic, roadmap to 200 m Basic Elements:–––––––Gigabit MII between MAC and PHY (G-MII - ‘jimmy’)Pair division multiplexing4 Level Line encodingZero state frame delineation (4LZS)Data Scrambling for spectrum managementClock and data recoveryBit and word synchronization Continuous time analog, based on existingtechnology9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19962

4 Pair vs. 8 Pair4-Pairs50m8-Pairs100mGMII125 MB/sGMII125 MB/sGigabit EthernetInterface4-pairsUTP-5Gigabit EthernetInterface4-pairsUTP-5GMMIMUXGigabit EthernetInterface9/23/96PMC-Sierra, Inc.IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19964-pairsUTP-53

4-Level CodePMC-Sierra, Inc. When coding n bits per pulse, for a bit rate of B,the pulse (symbol) rate is B/n 4 Level gives 2 bits per symbol– 500 Mbits transmits in 250 Mbaud One dimensional code - one degree of complexityNRZ vs. 4-PAM (2B1Q) Line Codes4-PAM EyeNRZ vs. 4LZS Spectrum at bit rate ‘B’1.44 Level 0-3.00IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19964

Quaternary Slicer SNRPMC-Sierra, Inc. Intrinsic coding power density at slicer is thesymbol variance SNR σ2s / σ2n ; SNR σ2s2B1Q / σ2sNRZ σ2s 1/Lc i ei2 σ2s2B1Q 1/4{(-3)2 (-1)2 (1)2 (3)2} 5σ2sNRZ 1/2{(-1)2 (1)2} 1 SNR σ2s2B1Q / σ2sNRZ 10 log(5/1) 7 dB 4 levels require 7dB higher SNR than doesNRZ for same distance & same symbol rate9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19965

Relative Noise ImmunityPMC-Sierra, Inc. Flat channel noise power is proportional to thesymbol rate [1/T]– σnflat - 10 log [T2B1Q/TNRZ] 2 dB @ 250 Mbaud vs. 155 Mbit NRZ Self-NEXT noise power is proportional to thecubed square root of the symbol rate [T]3/2– σnsnext - 15 log [T2B1Q/TNRZ] 3 dB @ 250 Mbaud vs. 155 Mbit NRZ Pair-pair NEXT noise power is frequency and cablegeometry dependent– N(ƒ) χ ƒ 3/2 G(ƒ) ; χ 6.31 x 10-7 for Category 5 3 dB @ 250 Mbaud 2B1Q vs. 155 Mbit NRZ9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19966

PHY ComparisonsPMC-Sierra, * NRZ 155 UTP155.0105350622.0772454LZS 622 UT1 0 0 0 . 0 Distance5 0 vs. Bit9 9 Rate4LZS 10001250.033768B10B 1000350300Single Reach (m)250Dual Reach (m)200150100500155.0622.01000.01250.0Reach is more sensitive to symbol period than multi-level code9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19967

Modelled EyeDiagram: 20m UTP-5 Unequalized Eyeis open at 20m Simpleequalization willallow operationto 50mPMC-Sierra, Inc.Eye Diagram at 20m on UTP 5 .30.40.50.6Time (seconds)IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19960.70.80.91 8x 108

Modelled Eye Diagram:20m & Magnetics Significantdifference in eyeopening Modelled with266 F/Cmagnetics Lab work withPulse PE65508shows promisePMC-Sierra, 522.533.544.55 8x 109/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 19969

Experimental EyeDiagram: 20m UTP-5PMC-Sierra, Inc. Unequalized Eyeat end of cable 20 meters Belden“DataTwist-5”1583B cable 2x3 meter AMP“Netconnect”patch cords PRBS 27-19/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199610

Experimental EyeDiagram: 26m UTP-5PMC-Sierra, Inc. Unequalized Eyeafter Rx buffer 26 meters AT&T“SystiMax”1061A cable 2x3 meter AMP“Netconnect”patch cords PRBS 27-1 Zero Bit Errorson 15 minuteintervals (10-7)9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199611

Spectrum ManagementPMC-Sierra, Inc. For a similar launch level 4LZS engery is spread over a wider areaHence, lower energy at individual spectral lines Use of a scrambler spreads the energy across the spectrum, reducingthe energy for radiation at a spectral line.NRZ10.90.80.74LZS0.60.50.40.30.20.1150 Mb 5514212911610390776451382512004Pair FCCIEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199612

Frame HandlingPMC-Sierra, Inc. Bytes from GMII word byte mutliplexed ondifferent pairs IDLE pattern maintains bit and word synch IDLE to PREAMBLE code delimits start offrame Zero State signalling delimits end of frame– EOF turns off transmitter for one byte (4 quats)– Receiver requires quiescent detection comparators anddigital decoding IDLE codes could be used to indicate ESCAPE’s– eg. IDLE defined over 3 quats with 4th used for codes IPG used for IDLE codes and Zero State– minimum IPG 96 bits 12 bytes– in 8 pair system - 3 bytes per Tx pair - 1 ZS & 2 IPG Bytes9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199613

Gigabit Media IndependentInterface (G-MII)PMC-Sierra, Inc. Generalize 802.3u MII for Fast Ethernet 8-bit wide data, clocked at 125 MHz– TX ERTX ENTX CLKTXD[7:0]RX ERRX DVRX CLKRXD[7:0]CRSCOLMDCMDIO– 26 pins total– ‘Flow through timing’ - Clocks transmitted with data 16 bit data also considered– 44 pins total– Octet Identification required9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199614

G-MII TimingPMC-Sierra, Inc. 8-bit Timing (Odd number of bytes)FRAMEB1 - B7B8B9 - B14PRESDFDAB15 - B20 B21 - B22SAB23 - B95LENB96 - B99DATCRSTX CLKTX ENTXD[7:0]B1B2B3B4B5B6B7B97B98B99IDLIDLIDLCRS PHY transmitter sources clock; clock flows backwith data to PHYMAC9/23/96PHYIEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199615

Gigabit PHY Block DiagramPMC-Sierra, Inc.TransmitEnd of Frame LogicGigabitMIIEven Framer/ScramblerParallelSerial4LZSEncoderOdd rEqualizerTransmitFilterUTP-5 FacilityEnd of Frame LogicG-MIIEnd of Frame LogicEven Framer/DescramblerOdd Framer/DescramblerSerial-ParallelUTP-5 FacilityEnd of Frame LogicReceive9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199616

Ongoing WorkPMC-Sierra, Inc. BER performance over temperature Confirm spectral and FCC results ‘ESCAPE’ words required– Error conditions, TSC ? DC balance requirements– Decision feedback at receiver vs. transmitter RDS correction Transmit templates and slicing levelsGigabitPHY9/23/962x to 3x Fast Ethernet based on existing technologyIEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199617

PMC-Sierra, Inc.Supplementary Material9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199618

RJ-45 Pin Assignment (DTE)Proposed1000BaseT1 - Tx12 - Tx13 - Rx14 - Rx25 - Rx26 - Rx17 - Tx28 - Tx29/23/96ATM-UTP100BaseT1 - Tx12 - Tx134567 - Rx18 - Rx11 - Tx12 - Tx13 - Rx1456 - Rx178-PMC-Sierra, Inc.T568AT568BPair 3Pair 2Pair 2Pair 3Pair 1Pair 1Pair 4Pair 4IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199619

4LZS Code AssignmentPMC-Sierra, Inc. QPSK & ISDN proven grey code assignment Equal Hamming distance between symbols– Electrical Levels subject to verificationCode 3 1- 1- 39/23/96Bit Pairs10110100Vnom (mV)800500250VminVmax7 0 0 Vcc 200400600200300Vcc - 200100IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199620

Reach Calculations0777Single .13.142.03.04.6NEXTAttenuation0.00.03.14.60777Dual tenuation-4.5-4.5-1.40.1ƒcNRZ 155 UTP4LZS 622 UTP4LZS 1000BaseT8B10B 1000BaseT15531150062577.577.75125312.5ƒcNRZ 155 UTP4LZS 622 UTP4LZS 1000BaseT8B10B 13PMC-Sierra, Inc.Attenuation13.113.217.019.2IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 1996SNRReach19.126.240.261.1105.076.649.932.8 SNRReach1.18.220.326.31819.4245.299.076.221

EIA/TIA-568 Specs for UTPPMC-Sierra, Inc. Characterized to 100 MHz NEXT and Loss limited in length and frequency Empirical results show headroomEIA/TIA-568 Worst-Case Propagation Loss (Lpn) at 20 CCable TypeFrequencyrange (MHz)dB loss per 100mCategory 37.07 ƒ 0.73 ƒ2.33 ƒ .23ƒ1.20%0.3 ƒ 16Category 46.4 ƒ 0.08ƒ2.10 ƒ .026ƒ0.30%0.3 ƒ 20Category 56.4 ƒ 0.04ƒ1.97 ƒ 0.023ƒ0.30%0.3 ƒ 100EIA/TIA-568 Worst-Case NEXT Loss (Lxn)Cable Type9/23/96dB pair-pairNEXT lossConnecting HWNEXT lossFrequencyrange (MHz)Category 37.94 x 10-541 - 15 log ƒ58 - 15 log ƒƒ 16Category 42.51 x 10-656 - 15 log ƒ70 - 15 log ƒƒ 20Category 56.31 x 10-764-15 log(ƒ/0.77)80 - 15 log ƒƒ 100IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199622

Cable Model Match to 568PMC-Sierra, Inc.Magnitude plot of single sided cable transfer function (w/o magnetics)0 TIA ResultMagnitude (dB) 5Measured Result 10 15 20 010121010310Frequency (Hertz)9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199623

Received Data - 155 Mbit/sData eye after50m of cable9/23/96PMC-Sierra, Inc.Data eye after120m of cableIEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199624

Equalized Receiver - 155Mbit/s50m cable9/23/96PMC-Sierra, Inc.120m cableIEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199625

FCC Radiated EmissionLimitsPMC-Sierra, Inc. Radiated Emission Limits65.055.0Measurement Distance - 3mClass A50.0StrengthEN55022CISPR 2245.0FCCClass BCISPR 2240.0(dBµV/m)55.0FieldFieldStrength(dBµV/m)Part 1560.035.050.0FCC45.0CISPR 22Class A40.035.0FCCCISPR 22Class (MHz)CIPSR - Comite International Spécial des Perturbations Radio-électriques9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199626

FCC AmbientEnvironmentPMC-Sierra, Inc. Horizontal Antennae9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199627

FCC AmbientEnvironmentPMC-Sierra, Inc. Vertical Antennae9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199628

Workstation RadiatedPMC-Sierra, Inc. Horizontal AntennaeDB9/23/96CEFGIEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 1996JKLNP29

Workstation RadiatedPMC-Sierra, Inc. Vertical AntennaeBA9/23/96CDEFGHIEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 1996I JK LO PQM30

155-UTP RadiatedPMC-Sierra, Inc. Horizontal AntennaABCEHF9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199631

155-UTP RadiatedPMC-Sierra, Inc. Vertical AntennaeFDE G9/23/96IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 199632

9/23/96 2 PMC-Sierra, Inc. IEEE 802.3z Task Force, Couer d’Alene, Sept. 9th-11th, 1996 Proposed Gigabit Ethernet PHY Gigabit Ethernet PHY interface; – 50 m short-haul - Full Duplex UTP-5, 4-pair interface » one device, roadmap to 100 m – 100 m intermediate - Full Duplex UTP-5, 8-pair interface » two device

Related Documents:

principles of network operation and management. Under the Open Systems Interconnection (OSI) model, Ethernet is fundamentally a Layer 1 and 2 protocol. 10 Gigabit Ethernet retains key Ethernet architecture, including the Media Access Control (MAC) protocol, the Ethernet frame format, and the minimum and maximum frame size. Just as Gigabit Ethernet,

Forty-eight 10/100/1000 Ethernet ports 4 mini Gigabit Interface Converter (mini-GBIC) slots (shared with 4 Ethernet ports) for fiber Gigabit Ethernet expansion IEEE 802.3af PoE delivered over any of the forty-eight 10/100/1000 ports 15.4W available power to a Gigabit Ethernet po

Figure 4 demonstrates the use of the Cisco 1-Port 10 Gigabit Ethernet WAN Service Module as part of the Cisco IWAN solution. At the regional office, the Cisco 6-Port Gigabit Ethernet WAN Service Module aggregates the sub-rate Gigabit Ethernet WAN connections from different Internet service providers (ISPs). The remote branch-office

They provide 24 and 48 Gigabit Ethernet ports, with Power over Ethernet/Power over Ethernet Plus (PoE/PoE ) support and four Gigabit Ethernet SFP or two 10 Gigabit Ethernet Small Form-Factor Pluggable Plus (SFP ) uplinks. 2.1.2. Cisco ASA 5505 Firewalls: Cisco A

MIPI CSI-2 RX Subsystem v2.2 www.xilinx.com 6 PG232 April 05, 2017 Chapter 1: Overview Sub-Core Details MIPI D-PHY The MIPI D-PHY IP core implements a D-PHY RX interface and provides PHY protocol layer support compatible with the CSI-2 RX interface. See the MIPI D-PHY LogiCORE IP Product Guide (PG202) [Ref 3] for details. MIPI D-PHY .

VI-4 Programs of Study (Section VI) PHI 215, PHI 230, PHI 240 PHy 110, PHy 110a, PHy 151, PHy 152, PHy 251, PHy 252 POL 110, PoL 120, POL 210, POL 220 Psy 150, PSY 231, PSY 237, PSY 239, PSY 241, PSY 281 REL 110, REL 211, REL 212, REL 221 RUS 111, RUS 112, RUS 211, RUS 212 soC 210, SOC 213, SOC 220, SOC 225, SOC 240 SPA 111, SPA 112, SPA 161, SPA 211, SPA 212

Wireless AC3200 Tri Band Gigabit Cloud Router Wireless AC3150 Ultra-WiFi Gigabit Cloud Router Wireless AC1900 Gigabit Cloud Router Wireless AC1750 Gigabit Cloud Router Wireless AC1750 High-Power Gigabit Router Wireless AC1200 Gigabit Cloud Router Wireless Technology Tri Band Wireless AC (5300

INTRODUCTION 5 562, 579, 582, 585, 591, 592, 610). Population genetics, for example, identifies the conditions—selection pressures, mutation rates, population