Research Article Nonlinear Adaptive Equivalent Control Based . - Hindawi

1y ago
6 Views
2 Downloads
2.79 MB
11 Pages
Last View : 6d ago
Last Download : 3m ago
Upload by : Kairi Hasson
Transcription

Hindawi Publishing CorporationJournal of Applied MathematicsVolume 2013, Article ID 560785, 10 pageshttp://dx.doi.org/10.1155/2013/560785Research ArticleNonlinear Adaptive Equivalent Control Based onInterconnection Subsystems for Air-Breathing HypersonicVehiclesChaofang Hu and Yanwen LiuSchool of Electrical Engineering and Automation, Tianjin University, Tianjin 300072, ChinaCorrespondence should be addressed to Chaofang Hu; cfhu@tju.edu.cnReceived 14 May 2013; Accepted 22 July 2013Academic Editor: Tao ZouCopyright 2013 C. Hu and Y. Liu. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.For the nonminimum phase behavior of the air-breathing hypersonic vehicle model caused by elevator-to-lift coupling, a nonlinearadaptive equivalent control method based on interconnection subsystems is proposed. In the altitude loop, the backstepping strategyis applied, where the virtual control inputs about flight-path angle and attack angle are designed step by step. In order to avoid theinaccurately direct cancelation of elevator-to-lift coupling when aerodynamic parameters are uncertain, the real control inputs,that is, elevator deflection and canard deflection, are linearly converted into the equivalent control inputs which are designedindependently. The reformulation of the altitude-flight-path angle dynamics and the attack angle-pitch rate dynamics is constructedinto interconnection subsystems with input-to-state stability via small-gain theorem. For the velocity loop, the dynamic inversioncontroller is designed. The adaptive approach is used to identify the uncertain aerodynamic parameters. Simulation of the flexiblehypersonic vehicle demonstrates effectiveness of the proposed method.1. IntroductionHypersonic vehicles have a promising prospect in bothmilitary and commercial applications as its flight speed canbe more than 5 times of the speed of sound. However, sincethe model of hypersonic vehicle is nonlinear, multivariable,uncertain, and coupling [1], it is unstable and extremely sensitive to changes in flight condition and parameters. This bringsa great challenge to controller design [2]. At present, mostresearches focus on dealing with nonlinearity and uncertaintyof hypersonic vehicles. For example, linear control methodsare attempted according to linearized hypersonic vehiclemodels, such as pole placement techniques [3], LQR method[4], linear output feedback control [5], and LPV control [6].In addition, nonlinear control strategies are widely used aswell, such as feedback linearization approach [7], slidingcontrol [8, 9], and backstepping technique [10]. For uncertainty of hypersonic vehicles, besides adaptive approaches[11], robust strategies are common tools, for example, ๐œ‡synthesis, ๐ป control [12], stochastic robustness control [13],and nonlinear disturbance observer-based robust control[14]. Although these methods are proven to be effective, theydo not usually consider the coupling problems existing inhypersonic vehicles. These problems lead to more difficultiesin the flight controller design. In an air-breathing hypersonicvehicle, it is known that there are structural dynamics, flexibleeffect, elevator-to-lift coupling, and the coupling betweenthrust and pitch moment, where elevator-to-lift coupling isnot neglectable, and it will generate unstable zero dynamicsexponentially, that is, the nonminimum phase behavior inpitch rate model, if the controller is designed directly by theinversion.With regard to the elevator-to-lift coupling problem,some strategies have been tried. The basic method usuallyignores this coupling, and then the nonminimum phase canbe removed from the model during the controller design [2],where this coupling is only regarded as unmodeled dynamics.However, this manner cannot ensure the stability of thecontrol system. The other common approach is to offset theinfluence of the coupling. For example, a canard is adoptedto cancel the influence of elevator on lift, and an adaptiverobust controller based on nonlinear sequential loop-closure

2Journal of Applied Mathematicsapproach is developed [15, 16]. Nevertheless, the changes ofthe uncertain parameters are not considered. This may resultin the inaccurate cancellation, which means elevator and liftare not decoupled completely. Simultaneously, this approachhas an adverse influence on the pitch rate dynamics sinceits inputs also consist of elevator and canard. In addition,for thermal protection problem resulted from the canard,only the elevator is taken as aerodynamic control surfacein reference [17]. The system model is transformed intothe interconnection of systems in feedback and feedforwardforms to eliminate the nonminimum phase. But the robustness with regard to uncertainty of the hypersonic vehiclemodel is not addressed totally.From the analysis, we know that adding canard controlsurface is an effective and simple way to suppress the nonminimum phase behavior, even though the strict cancellationof the elevator-to-lift coupling cannot be realized actually.In this paper, the flexible air-breathing hypersonic vehiclemodel is considered. For the tracking requirement of altitudeand velocity, a nonlinear adaptive equivalent control methodbased on interconnection subsystems is proposed by incorporating canard. Firstly, in the altitude loop, the virtual controlinputs about flight-path angle and attack angle are designedstep by step according to the backstepping strategy. Secondly,the terms about the real control inputs, that is, the elevatorand canard deflection in the flight-path angle dynamicsand the pitch rate dynamics, are linearly converted into theequivalent control inputs instead of direct cancelation ofthe elevator-to-lift coupling. By designing the new inputsindependently, the altitude control loop is reformulated. Andthe adaptive technique is used to identify the uncertain aerodynamic parameters. Then the interconnection subsystemsincluding the altitude-flight-path angle dynamics and theattack angle-pitch rate dynamics are constructed. Via thesmall-gain method, the system is proven to be input-to-statestable. In the velocity loop, the adaptive dynamic inversioncontroller is designed. Simulation results show the power ofour approach.In Section 2, the air-breathing hypersonic vehicle modelis presented. The nonlinear adaptive equivalent control basedon interconnection subsystems is introduced in Section 3.Section 4 presents the simulation. The conclusion is drawnin Section 5.๐›ผฬ‡ ๐‘„ ๐›พ,ฬ‡๐‘€,๐‘„ฬ‡ ๐ผ๐‘ฆ๐‘ฆ2๐œ‚๐‘– ๐‘๐‘– ;๐œ‚๐‘–ฬˆ 2๐œ๐‘š ๐œ”๐‘š,๐‘– ๐œ‚๐‘–ฬ‡ ๐œ”๐‘š,๐‘–(1)where ๐‘š, ๐ผ๐‘ฆ๐‘ฆ , ๐‘” represent mass of the aircraft, moment ofinertia, gravitational acceleration; damping ratio and naturalfrequency of the flexible motion are denoted by ๐œ๐‘š and ๐œ”๐‘š,๐‘– ,respectively; ๐‘‡, ๐ท, ๐ฟ, and ๐‘๐‘– and ๐‘€ are thrust, drag, lift,generalized forces and moment๐ฟ ๐‘ž๐‘†๐ถ๐ฟ ,๐‘‡ ๐‘ž (๐ถ๐‘‡,๐œ™ ๐œ™ ๐ถ๐‘‡ ) ,๐ท ๐‘ž๐‘†๐ถ๐ท,In this study, the flexible air-breathing hypersonic vehiclemodel [18] is considered. This model is composed of fiverigid-body states, that is, velocity ๐‘‰, altitude โ„Ž, flight-pathangle ๐›พ, attack angel ๐›ผ, pitch rate ๐‘ž, and six flexible states,that is, ๐œ‚1 , ๐œ‚1ฬ‡ , ๐œ‚2 , ๐œ‚2ฬ‡ , ๐œ‚3ฬ‡ , and ๐œ‚3ฬ‡ . The equations of motion arewritten as๐‘‡ cos ๐›ผ ๐ท๐‘‰ฬ‡ ๐‘” sin ๐›พ,๐‘šโ„Žฬ‡ ๐‘‰ sin ๐›พ,๐›พฬ‡ ๐‘‡ sin ๐›ผ ๐ฟ ๐‘” cos ๐›พ ,๐‘š๐‘‰๐‘‰(2)๐‘€ ๐‘ง๐‘‡ ๐‘‡ ๐‘ž๐‘†๐‘๐ถ๐‘€,๐‘๐‘– ๐‘ž๐ถ๐‘๐‘– .The aerodynamic parameters in the above formulation aredescribed as follows:๐›ฟ๐›ฟฮ”๐œฮ”๐œ๐ถ๐ฟ ๐ถ๐ฟ๐›ผ ๐›ผ ๐ถ๐ฟ๐‘’ ๐›ฟ๐‘’ ๐ถ๐ฟ๐‘ ๐›ฟ๐‘ ๐ถ๐ฟ0 ๐ถ๐ฟ 1 ฮ”๐œ1 ๐ถ๐ฟ 2 ฮ”๐œ2 ,๐›ฟฮ”๐œฮ”๐œ๐›ผ๐›ฟ๐‘0๐ถ๐‘€ ๐ถ๐‘€๐›ผ ๐ถ๐‘€๐‘’ ๐›ฟ๐‘’ ๐ถ๐‘€๐›ฟ๐‘ ๐ถ๐‘€ ๐ถ๐‘€ 1 ฮ”๐œ1 ๐ถ๐‘€ 2 ฮ”๐œ2 ,๐›ฟ๐›ฟฮ”๐œฮ”๐œ๐›ผ0๐ถ๐‘๐‘– ๐ถ๐‘๐›ผ ๐ถ๐‘๐‘’๐‘– ๐›ฟ๐‘’ ๐ถ๐‘๐‘๐‘– ๐›ฟ๐‘ ๐ถ๐‘ ๐ถ๐‘๐‘– 1 ฮ”๐œ1 ๐ถ๐‘๐‘– 2 ฮ”๐œ2 ,๐‘–๐‘–(๐›ผ ฮ”๐œ1 )2๐ถ๐ท ๐ถ๐ท2(๐›ผ ฮ”๐œ1 )(๐›ผ ฮ”๐œ1 ) ๐ถ๐ท๐›ฟ2๐›ฟ๐›ฟ๐›ผ๐›ฟฮ”๐œ(๐›ผ ฮ”๐œ1 ) ๐ถ๐ท 2 ฮ”๐œ22๐›ผ๐›ฟ๐›ฟ๐‘ 2 ๐ถ๐ท๐‘’ ๐›ฟ๐‘’2 ๐ถ๐ท๐‘’ ๐›ฟ๐‘’ ๐ถ๐ท ๐‘’ ๐›ผ๐›ฟ๐‘’ ๐ถ๐ท๐›ฟ๐‘0 ๐ถ๐ท๐‘ ๐›ฟ๐‘ ๐ถ๐ท ๐‘ ๐›ผ๐›ฟ๐‘ ๐ถ๐ท,๐›ผ๐‘€ 2๐‘€ 2๐›ผ 2 20๐›ผ ๐ถ๐‘‡,๐œ™ ๐›ผ๐‘€ ๐ถ๐‘‡,๐œ™ ๐‘€ ๐ถ๐‘‡,๐œ™๐ถ๐‘‡,๐œ™ ๐ถ๐‘‡,๐œ™ฮ”๐œ2๐›ผฮ”๐œฮ”๐œ ๐ถ๐‘‡,๐œ™ 1 ๐›ผฮ”๐œ1 ๐ถ๐‘‡,๐œ™1 ฮ”๐œ12 ๐ถ๐‘‡,๐œ™1 ฮ”๐œ1 ,๐‘€ 22. Air-Breathing Hypersonic Vehicle Model๐‘– 1, 2, 3,๐ดฮ”๐œ 2 ๐ถ๐‘‡ ๐‘‘ ๐ด ๐‘‘ ๐ถ๐‘‡ 1 ฮ”๐œ1 ๐ถ๐‘‡0 ,๐ถ๐‘‡ ๐ถ๐‘‡๐›ผ ๐›ผ ๐ถ๐‘‡ ๐‘€ (3)where the control inputs are fuel-to-air ratio ๐œ™, elevator deflection ๐›ฟ๐‘’ , and canard deflection ๐›ฟ๐‘ ; ๐‘ž, ๐‘†, ๐‘ง๐‘‡ , ๐‘, ๐‘€ denote dynamic pressure, reference area, thrust moment arm,mean aerodynamic chord, and Mach number; ฮ”๐œ1 and ฮ”๐œ2are the forebody turn angle and the aftbody vertex anglewhich are linear mapping of elastic states ๐œ‚๐‘– .In (3), the elevator-to-lift coupling orients from that ๐ถ๐ฟincludes the term of ๐›ฟ๐‘’ , which leads to the nonminimumphase behavior. If ๐›ฟ๐‘’ is designed by the dynamic inversiondirectly, the pitch rate dynamics will become a hyperbolicsaddle equilibrium. This unstable zero dynamic brings greatdifficulties to the controller design.

Journal of Applied Mathematics3where ๐ถ1 and ๐›ฝ1 are the terms containing the uncertainaerodynamic parameters. They can be expressed as thefollowing equations:3. Nonlinear Adaptive EquivalentControllers DesignIn order to track the altitude and velocity command signalsโ„Žref and ๐‘‰ref , two controllers will be designed independentlyfor the altitude loop and the velocity loop. During thecontroller design, the flexible motion is viewed as externalperturbation, and its influence on aerodynamic model (3) isneglected.3.1. Altitude Controller. In the altitude loop, the controller isdesigned according to the backstepping approach. Then thevirtual control inputs about flight-path angle and attack angleare determined, respectively.For the altitude dynamics, let ฬƒโ„Ž โ„Ž โ„Žref ; then its errordynamics is written in the following:ฬ‡โ„Žฬƒ ๐‘‰ sin ๐›พ โ„Žฬ‡ ref ๐‘‰๐›พ โ„Žฬ‡ ref .๐›ฝ1 ๐œƒ1๐‘‡ ๐œ‰2 ๐‘˜ฬƒโ„Ž ฬƒโ„Ž โ„Žฬ‡ ref,๐‘‰๐‘‡ sin ๐›ผ ๐ฟ ๐‘” cos ๐›พ ๐›พ๐‘‘ฬ‡ .๐›พฬƒฬ‡ ๐‘š๐‘‰๐‘‰๐œƒ1 , ๐œƒ2 are vectors of the uncertain parameters๐›ผ๐‘€ 2๐‘€ 2๐›ฟ๐ถ๐‘‡0 ). As the variation range of the attack angle issmall, (6) will be expanded around the final expectation ๐›ผ .To handle the nonminimum phase problem, the MIMOequivalent method is applied in this paper, which is differentfrom the previous research results [17]. The terms about theelevator and canard deflection are linearly equivalent to thecontrol input vector U [๐‘ˆ1 , ๐‘ˆ2 ]. The error model of theflight-path angle (6) can be rewritten as๐›ฟ๐ถ ๐‘’ ๐›ฟ๐‘’๐ถ ๐ถ ๐›ฟ๐ถ ๐‘‡๐›ผ sin ๐›ผ ๐‘‡0 sin ๐›ผ ๐‘ž๐‘†๐ถ๐ฟ๐›ผ ๐›ผฬƒฬ‡ ๐‘ž๐‘† ๐ฟ ๐‘ž๐‘† ๐ฟ๐›พ๐‘š๐‘‰๐‘š๐‘‰๐‘š๐‘‰๐‘ž๐‘†๐ถ๐ฟ0 ๐‘š๐‘” cos ๐›พ ๐‘š๐‘‰๐›พ๐‘‘ฬ‡ ๐‘š๐‘‰๐›ฟ๐›ฟ๐ถ ๐‘’ ๐›ฟ๐‘’ ๐ถ๐ฟ๐‘ ๐›ฟ๐‘ ๐‘‡ sin ๐›ผ ๐‘‡๐›ผ cos ๐›ผ ๐‘‡0 cos ๐›ผ ๐‘ž๐‘†๐ถ๐ฟ๐›ผ๐›ผ ๐‘ž๐‘† ๐ฟ ๐‘š๐‘‰๐‘š๐‘‰๐›ฟand ๐œ‰1 , ๐‘– 1 . . . 3 are regressors๐œ‰1 ๐‘ž[(sin ๐›ผ ๐›ผ cos ๐›ผ ) ๐œ™; (sin ๐›ผ ๐›ผ cos ๐›ผ ) ;๐‘š๐‘‰ 2 2(sin ๐›ผ ๐›ผ cos ๐›ผ ) ๐‘€ ๐œ™; cos ๐›ผ ๐‘€ ๐œ™; 2cos ๐›ผ ๐œ™; cos ๐›ผ ๐‘€ ; cos ๐›ผ ๐ด ๐‘‘ ; cos ๐›ผ ; ๐‘†; 0] ,๐œ‰2 ๐‘ž222 2๐œ™;[ ๐›ผ cos ๐›ผ ๐œ™; ๐›ผ cos ๐›ผ ; ๐›ผ cos ๐›ผ ๐‘€ ๐‘š๐‘‰ 2(sin ๐›ผ ๐›ผ cos ๐›ผ ) ๐‘€ ๐œ™; (sin ๐›ผ ๐›ผ cos ๐›ผ )๐œ™; 2(sin ๐›ผ ๐›ผ cos ๐›ผ ) ๐‘€ ; (sin ๐›ผ ๐›ผ cos ๐›ผ )๐ด ๐‘‘ ;(sin ๐›ผ ๐›ผ cos ๐›ผ ) ; 0; ๐‘†] ,๐œ‰3 ๐‘ž๐‘†[๐›ฟ ; ๐›ฟ ] .๐‘š๐‘‰ ๐‘’ ๐‘(10)Therefore the dynamics (7) is reformulated as๐‘” cos ๐›พ๐›พฬƒฬ‡ ๐œƒ1๐‘‡ ๐œ‰1 ๐›ผ ๐œƒ2๐‘‡ ๐œ‰3 ๐œƒ1๐‘‡ ๐œ‰2 ๐›พ๐‘‘ฬ‡ .๐‘‰๐‘ˆ1(11)Then the virtual command of the attack angle is chosen as๐›ผ๐‘‘ ๐›ผ ๐›พฬƒ.Let ๐›ผฬƒ ๐›ผ ๐›ผ๐‘‘ ; the error dynamic of the attack angle isformulated asฬƒฬ‡ ๐‘„ ๐›พฬ‡ ๐›ผฬ‡๐‘‘ ๐‘„ ๐›พ๐‘‘ฬ‡ .๐›ผ๐‘ž๐‘†๐ถ๐ฟ0 ๐‘š๐‘” sin ๐›พ ๐‘š๐‘‰๐›พ๐‘‘ฬ‡๐‘‡ sin ๐›ผ ( ๐‘‡๐›ผ cos ๐›ผ ๐‘‡0 cos ๐›ผ ) ๐›ผ 0 ๐‘š๐‘‰๐‘š๐‘‰ ๐ถ1 ๐›ผ ๐‘ˆ1 ๐›ฝ1 ,๐ด(9)๐‘€ 2๐ถ1๐‘€ 2๐œƒ2 [๐ถ๐ฟ๐‘’ ; ๐ถ๐ฟ๐‘ ] ,Here, the thrust is described as the function about the attack๐›ผ๐‘€ 2 2angle. Define ๐‘‡ ๐‘‡๐›ผ ๐‘‡0 , where ๐‘‡ ๐‘ž(๐ถ๐‘‡,๐œ™ ๐‘€ ๐œ™ ๐›ฟ๐‘€ 2๐›ผ0; ๐ถ๐‘‡๐›ผ ; ๐ถ๐‘‡,๐œ™ ; ๐ถ๐‘‡,๐œ™ ; ๐ถ๐‘‡,๐œ™; ๐ถ๐‘‡ ; ๐ถ๐‘‡ ๐‘‘ ; ๐ถ๐‘‡0 ; ๐ถ๐ฟ๐›ผ ; ๐ถ๐ฟ0 ] ,๐œƒ1 [๐ถ๐‘‡,๐œ™(6)๐›ผ 20 2๐œ™ ๐ถ๐‘‡๐›ผ ) and ๐‘‡0 ๐‘ž(๐ถ๐‘‡,๐œ™ ๐œ™๐‘€ ๐ถ๐‘‡,๐œ™๐œ™ ๐ถ๐‘‡ ๐‘€ ๐ถ๐‘‡,๐œ™(8)๐‘ˆ1 ๐œƒ2๐‘‡ ๐œ‰3 .(5)where ๐‘˜ฬƒโ„Ž 0 is the design parameter for ฬƒโ„Ž.Let ๐›พฬƒ ๐›พ ๐›พ๐‘‘ ; the error dynamic of flight-path angle ispresented as follows:๐ด๐ถ๐‘‡ ๐‘‘ ๐ด ๐‘‘๐‘” cos ๐›พ ๐›พ๐‘‘ฬ‡ ,๐‘‰(4)So the flight-path angle command ๐›พ๐‘‘ is designed into thefollowing equation:๐›พ๐‘‘ ๐ถ1 ๐œƒ1๐‘‡ ๐œ‰1 ,(12)A new variable ๐‘ is defined as ๐‘ ๐‘„ ๐›พ๐‘‘ฬ‡ ๐‘˜๐›ผฬƒ ๐›ผฬƒ, where ๐‘˜๐›ผฬƒ 0is a design parameter for ๐›ผฬƒ. Then (12) is rewritten as๐›ฝ1(7)ฬƒฬ‡ ๐‘ ๐‘˜๐›ผฬƒ ๐›ผฬƒ.๐›ผ(13)

4Journal of Applied MathematicsUsing the equivalent control method, the time derivative of ๐‘can be formulated with the new input ๐‘ˆ2 . It includes the pitchrate dynamics๐‘ง ๐‘‡ ๐‘ž๐‘†๐‘๐ถ๐‘€ฬƒฬ‡ ๐‘˜๐›ผฬƒ ๐›ผ๐‘ฬ‡ ๐‘‡๐ผ๐‘ฆ๐‘ฆ๐›ฟ๐‘ˆ2๐ถ2ฬ‚2 ๐œƒฬ‚๐‘‡ ๐œ‰6 ๐›พ๐‘‘ฬˆ (๐œƒฬ‚๐‘‡ ๐œ‰5 ๐‘˜๐›ผฬƒ ๐›ผฬƒฬ‡ ) ๐œƒฬ‚3๐‘‡ ๐œ‰4 ๐›ผ ๐‘ˆ43(14)๐›ฝ2 ๐ถ2 ๐›ผ ๐‘ˆ2 ๐›ฝ2 ,where ๐ถ2 and ๐›ฝ2 are similar terms containing the uncertainparameters. They can also be presented by the vectors of theuncertain parameters and the regressors๐ถ2 ๐œƒ3๐‘‡ ๐œ‰4 ,ฬƒฬ‡ ๐›พ๐‘‘ฬˆ ,๐›ฝ2 ๐œƒ3๐‘‡ ๐œ‰5 ๐‘˜๐›ผฬƒ ๐›ผ(15)๐œƒ4๐‘‡ ๐œ‰6 , 2๐‘€ 2๐‘€ ๐ด๐›ผ0๐›ผ0; ๐ถ๐‘‡๐›ผ ; ๐ถ๐‘‡,๐œ™ ; ๐ถ๐‘‡,๐œ™ ; ๐ถ๐‘‡,๐œ™; ๐ถ๐‘‡ ; ๐ถ๐‘‡ ๐‘‘ ; ๐ถ๐‘‡0 ; ๐ถ๐‘€; ๐ถ๐‘€],๐œƒ3 [๐ถ๐‘‡,๐œ™๐›ฟ ๐‘˜๐‘ ๐‘ (๐œƒฬ‚3๐‘‡ ๐œ‰4 1) ๐›ผฬƒ,ฬ‚๐‘ˆ๐›ฟ[ ๐‘’ ] ๐ต 1 [ ฬ‚1 ] .๐›ฟ๐‘๐‘ˆ2๐›ฟ๐œƒ4 [๐ถ๐‘€๐‘’ ; ๐ถ๐‘€๐‘ ] ,๐œ‰4 ๐‘ž[๐‘ง ๐œ™; ๐‘ง ; ๐‘ง ๐‘€ 2 ๐œ™; 0; 0; 0; 0; 0; ๐‘†๐‘; 0] ,๐ผ๐‘ฆ๐‘ฆ ๐‘‡ ๐‘‡ ๐‘‡ ๐œ‰5 ๐‘ž 2 2[0; 0; 0; ๐‘ง๐‘‡ ๐‘€ ๐œ™; ๐‘ง๐‘‡ ๐œ™; ๐‘ง๐‘‡ ๐‘€ ; ๐‘ง๐‘‡ ๐ด ๐‘‘ ; ๐‘ง๐‘‡ ; 0; ๐‘†๐‘] ,๐ผ๐‘ฆ๐‘ฆ๐œ‰6 ๐‘ž๐‘†๐‘[๐›ฟ ; ๐›ฟ ] .๐ผ๐‘ฆ๐‘ฆ ๐‘’ ๐‘(16)ฬ‡โ„Žฬƒ ๐‘˜ฬƒโ„Ž ฬƒโ„Ž ๐‘‰ฬƒ๐›พ,๐›พฬƒฬ‡ ๐‘˜๐›พฬƒ๐›พฬƒ ๐‘‰ฬƒโ„Ž ๐‘ฆ๐›ผฬƒ ๐œƒฬƒ1๐‘‡ ๐œ‰1 ๐›ผ ๐œƒฬƒ1๐‘‡ ๐œ‰2 ๐œƒฬƒ2๐‘‡ ๐œ‰3 ,where ๐‘ฆ๐›ผฬƒ ๐œƒฬ‚1๐‘‡ ๐œ‰1 ๐›ผฬƒ, ๐‘ฆ๐›พฬƒ ๐œƒฬ‚3๐‘‡ ๐œ‰4 ๐›พฬƒ.For ensuring the stability of the altitude loop, the newformulation (20) is divided into the altitude-flight-path anglesubsystem and the attack angle-pitch rate subsystem. Asillustrated in Figure 1, these two subsystems constitute astructure of interconnection. It is seen that ๐‘ฆ๐›ผฬƒ and ๐‘ฆ๐›พฬƒ actas the input and output of the altitude-flight-path anglesubsystem and ๐‘ฆ๐›พฬƒ, ๐‘ฆ๐›ผฬƒ are the input and output of the attackangle-pitch rate subsystem, respectively.For the above interconnection subsystems, input-to-statestability will be analyzed via small gain theorem. Firstly, thedefinition of the asymptotic ๐ฟ norm โ€– โ€–๐‘Ž is given [19]โ€–๐œ†โ€–๐‘Ž : lim sup ๐œ† .๐‘ก (17)Due to the uncertainty of the aerodynamic parameters, ๐œƒ๐‘– ,๐‘– 1, . . . , 4 will change with flight of hypersonic vehicles.Therefore it is necessary to estimate their values by theadaptive technique. Let ๐œƒฬ‚๐‘– , ๐œƒฬƒ๐‘– be the estimate vector and theestimate error vector of ๐œƒ๐‘– , where ๐œƒฬƒ๐‘– ๐œƒ๐‘– ๐œƒฬ‚๐‘– , ๐‘– 1, . . . , 4.Assumption 1. The aerodynamic parameters ๐œƒ๐‘– , ๐‘– 1, . . . , 4are bounded; they lie in a compact convex set.In order to guarantee tracking performance of hypersonic vehicles, the equivalent control inputs ๐‘ˆ1 and ๐‘ˆ2 are(20)๐‘ฬ‡ ๐‘˜๐‘ ๐‘ ๐›ผฬƒ ๐‘ฆ๐›พฬƒ ๐œƒฬƒ3๐‘‡ ๐œ‰4 ๐›ผ ๐œƒฬƒ3๐‘‡ ๐œ‰5 ๐œƒฬƒ4๐‘‡ ๐œ‰6 ,So (14) can be reformulated asฬƒฬ‡ ๐›พ๐‘‘ฬˆ .๐‘ฬ‡ ๐œƒ3๐‘‡ ๐œ‰4 ๐›ผ ๐œƒ4๐‘‡ ๐œ‰6 ๐œƒ3๐‘‡ ๐œ‰5 ๐‘˜๐›ผฬƒ ๐›ผ(19)Combining (18), the state error dynamics about thealtitude loop is transformed into the following equations:ฬƒฬ‡ ๐‘ ๐‘˜๐›ผฬƒ ๐›ผฬƒ,๐›ผwhere 2๐›ผ๐‘€ (18)where ๐‘˜๐›พฬƒ 0, ๐‘˜๐‘ 0 are the design parameters for ๐›พฬƒ and ๐‘.Let ๐›ฟ [๐›ฟ๐‘’ , ๐›ฟ๐‘ ]. There is U ๐ต๐›ฟ according to(7) and (14). ๐ต is a coefficient matrix and is equal to[(๐‘ž๐‘†/๐‘š๐‘‰)๐œƒฬ‚2๐‘‡ ; (๐‘ž๐‘†๐‘/๐ผ๐‘ฆ๐‘ฆ )๐œƒฬ‚4๐‘‡ ]. The real inputs of the altitude loopcan be obtained as follows:0๐‘ง๐‘‡ ๐‘‡0 ๐‘ž๐‘†๐‘๐ถ๐‘€ฬƒฬ‡ ๐›พ๐‘‘ฬˆ ๐‘˜๐›ผฬƒ ๐›ผ๐ผ๐‘ฆ๐‘ฆ ๐‘ˆ2 ฬ‚1 ๐œƒฬ‚๐‘‡ ๐œ‰3 ๐œƒฬ‚๐‘‡ ๐œ‰1 ๐›ผ (๐œƒฬ‚๐‘‡ ๐œ‰2 ๐‘” cos ๐›พ ๐›พ๐‘‘ฬ‡ )๐‘ˆ211๐‘‰ (๐œƒฬ‚1๐‘‡ ๐œ‰1 ๐‘˜๐›พฬƒ) ๐›พฬƒ ๐‘‰ฬƒโ„Ž,๐›ฟ๐‘๐›ผ๐ถ ๐‘’ ๐›ฟ ๐ถ๐‘€๐›ฟ๐‘ ๐‘ง๐‘‡ ๐‘‡ ๐‘ž๐‘†๐‘๐ถ๐‘€ ๐‘ž๐‘†๐‘ ๐‘€ ๐‘’ ๐›ผ๐ผ๐‘ฆ๐‘ฆ๐ผ๐‘ฆ๐‘ฆ designed, respectively, by replacing the uncertain parametervector ๐œƒ๐‘– with its estimate vector and estimate error vector(21)Then, define ๐œ“1 ฬƒโ„Ž2 ๐›พฬƒ2 , and choose the Lyapunov function candidate of the altitude-flight-path angle subsystem as๐‘Š1 1 ฬƒ211(โ„Ž ๐›พฬƒ2 ) ๐œƒฬƒ1๐‘‡ ๐œ1 1 ๐œƒฬƒ1 ๐œƒฬƒ2๐‘‡ ๐œ2 1 ๐œƒฬƒ2 .222(22)Its time derivative isฬ‡ฬ‡ฬ‡๐‘Šฬ‡ 1 ฬƒโ„Žโ„Žฬƒ ๐›พฬƒ๐›พฬƒฬ‡ ๐œƒฬƒ1๐‘‡ ๐œ1 1 ๐œƒฬ‚1 ๐œƒฬƒ2๐‘‡ ๐œ2 1 ๐œƒฬ‚2ฬ‡ ๐‘˜ฬƒโ„Ž ฬƒโ„Ž2 ๐‘˜๐›พฬƒ๐›พฬƒ2 ๐›พฬƒ๐‘ฆ๐›ผฬƒ ๐œƒฬƒ1๐‘‡ ๐œ1 1 {๐œ1 ๐›พฬƒ (๐œ‰1 ๐›ผ ๐œ‰2 ) ๐œƒฬ‚1 }ฬ‡ ๐œƒฬƒ2๐‘‡ ๐œ2 1 (๐œ2 ๐›พฬƒ๐œ‰3 ๐œƒฬ‚2 ) .(23)

Journal of Applied Mathematics5Substituting (29) in (28), we can acquirey๐›ผฬƒ 2 ๐‘Šฬ‡ 2 min {๐‘˜๐›ผฬƒ , ๐‘˜๐‘ } ๐œ“2 ๐œ“2 ๐‘ฆ๐›พฬƒ .Altitude-๏ฌ‚ight-pathangle(30)When ๐œ“2 ๐‘ฆ๐›พฬƒ / min{๐‘˜๐›ผฬƒ , ๐‘˜๐‘ }, ๐‘Šฬ‡ 2 0. Similarly, โ€–๐œ“2 โ€–๐‘Ž โ€–๐‘ฆ๐›พฬƒโ€–๐‘Ž / min{๐‘˜๐›ผฬƒ , ๐‘˜๐‘} can be obtained, and ๐‘Š2 is input-to-statestable as well. Because ๐‘ฆ ๐œƒฬ‚๐‘‡ ๐œ‰ ๐›ผฬƒ, there is๐›ผฬƒAttack angle-pitchy๐›พฬƒ๐œƒฬ‚1๐‘‡ ๐œ‰1 ๐‘‡ ๐‘‡ ๐‘ฆ . (31) ๐‘ฆ๐›ผฬƒ ๐‘Ž ๐œƒฬ‚1 ๐œ‰1 ๐›ผฬƒ ๐‘Ž ๐œƒฬ‚1 ๐œ‰1 ๐œ“2 ๐‘Ž min {๐‘˜๐›ผฬƒ , ๐‘˜๐‘ } ๐›พฬƒ ๐‘ŽrateThe interconnection formulation (20) is input-to-state stableaccording to small-gain theorem if we choose proper designparameters to make the following equation holdsFigure 1: Interconnection subsystem structure.๐œƒฬ‚3๐‘‡ ๐œ‰4๐œƒฬ‚1๐‘‡ ๐œ‰1 1.min {๐‘˜ฬƒโ„Ž , ๐‘˜๐›พฬƒ} min {๐‘˜๐›ผฬƒ , ๐‘˜๐‘ }The adaptive laws of ๐œƒฬ‚1 , ๐œƒฬ‚2 are designed asฬ‡๐œƒฬ‚1 ๐œ1 ๐›พฬƒ (๐œ‰1 ๐›ผ ๐œ‰2 ) ,ฬ‡๐œƒฬ‚2 ๐œ2 ๐›พฬƒ๐œ‰3 ,(24)where ๐œ1 and ๐œ2 are the adaptive parameters.By (24), (23) becomes 2 ๐‘Šฬ‡ 1 min {๐‘˜ฬƒโ„Ž , ๐‘˜๐›พฬƒ} ๐œ“1 ๐œ“1 ๐‘ฆ๐›ผฬƒ .(25)As a consequence, it satisfies ๐‘Š1 which is negative definitewhen ๐œ“1 ๐‘ฆ๐›ผฬƒ / min{๐‘˜ฬƒโ„Ž , ๐‘˜๐›พฬƒ}. Then ๐‘Š1 is a input-to-statestable Lyapunov function. According to the lemma in [19],we know that โ€–๐œ“1 โ€–๐‘Ž โ€–๐‘ฆ๐›ผฬƒ โ€–๐‘Ž / min{๐‘˜ฬƒโ„Ž , ๐‘˜๐›พฬƒ}. As ๐‘ฆ๐›พฬƒ ๐œƒฬ‚3๐‘‡ ๐œ‰4 ๐›พฬƒ,the following formulation is obtained:๐œƒฬ‚3๐‘‡ ๐œ‰4 ๐‘ฆ๐›พฬƒ ๐œƒฬ‚3๐‘‡ ๐œ‰4 ๐›พฬƒ ๐œƒฬ‚3๐‘‡ ๐œ‰4 ๐œ“1 ๐‘Ž ๐‘ฆ๐›ผฬƒ ๐‘Ž . ๐‘Ž ๐‘Ž min {๐‘˜ฬƒโ„Ž , ๐‘˜๐›พฬƒ}(26)For the attack angle-pitch rate subsystem, ๐œ“2 ๐›ผฬƒ2 ๐‘2is defined, and the following Lyapunov function candidate ischosen:๐‘Š2 1 211(ฬƒ๐›ผ ๐‘2 ) ๐œƒฬƒ3๐‘‡ ๐œ3 1 ๐œƒฬƒ3 ๐œƒฬƒ4๐‘‡ ๐œ4 1 ๐œƒฬƒ4 .2221 1(27) (32)Therefore the tracking errors and estimate errors of thealtitude loop can converge to a small neighborhood of origin.3.2. Velocity Controller. Since velocity is controlled by ๐œ™directly, the adaptive dynamic inversion method is used. Letฬƒ ๐‘‰ ๐‘‰ref ; the error dynamics of velocity is written as๐‘‰ฬƒฬ‡ ๐‘‡ cos ๐›ผ ๐ท ๐‘” sin ๐›พ ๐‘‰refฬ‡๐‘‰๐‘š ๐‘ž (๐ถ๐‘‡,๐œ™ ๐œ™ ๐ถ๐‘‡ ) cos ๐›ผ ๐‘ž๐‘†๐ถ๐ท๐‘š(33)ฬ‡ . ๐‘” sin ๐›พ ๐‘‰refFor existence of uncertain parameters, the following vectorsand repressors are defined(๐›ผ ฮ”๐œ1 )๐œƒ5 [๐ถ๐ท๐›ผ๐›ฟ(๐›ผ ฮ”๐œ1 )2๐›ฟ22๐›ฟ๐›ฟ; ๐ถ๐ท๐›ฟ๐‘; ๐ถ๐ท๐‘’ ; ๐ถ๐ท๐‘’ ; ๐ถ๐ท; ๐ถ๐ท๐‘ ;๐›ผ๐›ฟ๐ด๐‘€ 20; ๐ถ๐‘‡ ๐‘‘ ; ๐ถ๐‘‡๐›ผ ; ๐ถ๐‘‡ ; ๐ถ๐‘‡0 ] ,๐ถ๐ท ๐‘’ ; ๐ถ๐ท ๐‘ ; ๐ถ๐ท๐›ผ๐‘€ 2๐‘€ 2๐›ผ0; ๐ถ๐‘‡,๐œ™ ; ๐ถ๐‘‡,๐œ™ ; ๐ถ๐‘‡,๐œ™],๐œƒ6 [๐ถ๐‘‡,๐œ™๐œ‰7 ๐‘ž [๐‘†๐›ผ; ๐‘†๐›ผ2(34); ๐‘†๐›ฟ๐‘’2 ; ๐‘†๐›ฟ๐‘’ ; ๐‘†๐›ฟ๐‘2 ; ๐‘†๐›ฟ๐‘ ; ๐‘†๐›ผ๐›ฟ๐‘’ ; ๐‘†๐›ผ๐›ฟ๐‘ ; ๐‘†; 2cos ๐›ผ; cos ๐›ผ] , ๐ด ๐‘‘ cos ๐›ผ; ๐›ผ cos ๐›ผ; ๐‘€ Its time derivative isฬ‡ฬ‡ฬƒฬ‡ ๐‘๐‘ฬ‡ ๐œƒฬƒ3๐‘‡ ๐œ3 1 ๐œƒฬ‚3 ๐œƒฬƒ4๐‘‡ ๐œ4 1 ๐œƒฬ‚4๐‘Šฬ‡ 2 ๐›ผฬƒ๐›ผ 2 2; ๐‘€ ; 1] .๐œ‰8 ๐‘ž cos ๐›ผ [๐›ผ; ๐›ผ๐‘€ ฬ‡ ๐‘˜๐›ผฬƒ ๐›ผฬƒ2 ๐‘˜๐‘ ๐‘2 ๐‘๐‘ฆ๐›พฬƒ ๐œƒฬƒ3๐‘‡ ๐œ3 1 {๐œ3 ๐‘ (๐œ‰4 ๐›ผ ๐œ‰5 ) ๐œƒฬ‚3 }ฬ‡ ๐œƒฬƒ4๐‘‡ ๐œ4 1 (๐œ4 ๐‘๐œ‰6 ๐œƒฬ‚4 ) ,(28)ฬ‡๐œƒฬ‚4 ๐œ4 ๐‘๐œ‰6 .๐œƒ๐‘‡ ๐œ‰ ๐œ™ ๐œƒ5๐‘‡ ๐œ‰7ฬƒฬ‡ 6 8ฬ‡ .๐‘‰ ๐‘” sin ๐›พ ๐‘‰ref๐‘š(35)Then the control input ๐œ™ is designed aswhere the adaptive laws of ๐œƒฬ‚3 , ๐œƒฬ‚4 are determined asฬ‡๐œƒฬ‚3 ๐œ3 ๐‘ (๐œ‰4 ๐›ผ ๐œ‰5 ) ,Consequently,๐œ™ (29)ฬƒ ๐‘š๐‘‰refฬ‡ ๐‘š๐‘” sin ๐›พ ๐œƒฬ‚๐‘‡ ๐œ‰7 ๐‘š๐‘˜ฬƒV ๐‘‰5,๐œƒฬ‚๐‘‡ ๐œ‰6 8where ๐‘˜ฬƒV 0 is a design parameter.(36)

6Journal of Applied Mathematics 10479608.7579408.77920V (ft/s)h (ft)8.658.6790078808.55786078408.501020304050 60t (s)7080090 100hrefh1020304050 60t (s)708090 100VrefV(a) Altitude(b) Velocity 1080.023 370.02265๐›พ (rad)0.020.0194320.01810.01700.01601020304050 60t (s)7080 190 1000102030405060708090 100t (s)๐›พd๐›พ๐›ผd๐›ผ(c) Attack angle๐œ‚ (ftยทslug )๐›ผ (rad)0.021(d) Flight-path 0.10.50 0.10.480102030405060708090 1000t (s)๐œ‚1๐œ‚21020304050 60t (s)๐œ‚3(f) Fuel-to-air ratio(e) Flexible statesFigure 2: Continued.708090 100

Journal of Applied Mathematics70.11 0.050.1 0.06 0.07๐›ฟc (rad)๐›ฟe (rad)0.090.080.07 0.08 0.09 0.10.06 0.110.05 0.120.0401020304050 60t (s)708090 100(g) Elevator deflection 0.1301020304050 60t (s)708090 100(h) Canard deflectionFigure 2: Climbing maneuver with longitudinal acceleration for case one.Determine the Lyapunov function candidate as1 ฬƒ2 1 ฬƒ๐‘‡ 1 ฬƒ 1 ฬƒ๐‘‡ 1 ฬƒ ๐œƒ5 ๐œ5 ๐œƒ5 ๐œƒ6 ๐œ6 ๐œƒ6 .๐‘Š3 ๐‘š๐‘‰222(37)Its time derivative isฬƒ (๐œƒ๐‘‡ ๐œ‰8 ๐œ™ ๐œƒ๐‘‡ ๐œ‰7 ๐‘š๐‘” sin ๐›พ ๐‘š๐‘‰refฬ‡ )๐‘Šฬ‡ 3 ๐‘‰65ฬ‡ฬ‡ ๐œƒฬƒ5๐‘‡ ๐œ5 1 ๐œƒฬ‚5 ๐œƒฬƒ6๐‘‡ ๐œ6 1 ๐œƒฬ‚6ฬƒ ๐œƒฬƒ๐‘‡ ๐œ‰7 ) ๐œƒฬƒ๐‘‡ ๐œ 1 ๐œƒฬ‚ฬ‡ 5 ๐œƒฬƒ๐‘‡ ๐œ 1 ๐œƒฬ‚ฬ‡ 6ฬƒ (๐œƒฬƒ๐‘‡ ๐œ‰8 ๐œ™ ๐‘š๐‘˜ฬƒV ๐‘‰ ๐‘‰655 56 6ฬƒ2 ๐œƒฬƒ๐‘‡ ๐œ 1 (๐œ5 ๐‘‰๐œ‰ฬƒ 7 ๐œƒฬ‚ฬ‡ 5 ) ๐œƒฬƒ๐‘‡ ๐œ 1 (๐œ6 ๐œ™๐œ‰8 ๐œƒฬ‚ฬ‡ 6 ) . ๐‘š๐‘˜ฬƒV ๐‘‰5 56 6(38)The adaptive laws of ๐œƒฬ‚5 , ๐œƒฬ‚6 are obtained in the following:ฬ‡ฬƒ 7,๐œƒฬ‚5 ๐œ5 ๐‘‰๐œ‰ฬ‡๐œƒฬ‚6 ๐œ6 ๐œ™๐œ‰8 .(39)ฬƒ2 0; that is, when ๐‘ก Thus (38) becomes ๐‘Šฬ‡ 3 ๐‘š๐‘˜ฬƒV ๐‘‰ , the tracking errors and estimate errors of the velocitysubsystem can converge to zero finally.Therefore the accurate tracking performance and thestability of altitude and velocity can be guarranteed by theproposed method.4. Numerical SimulationThe feasibility of the proposed method is verified based ona flexible model (1)โ€“(3). The initial trim conditions are โ„Ž 85000 ft, ๐‘‰ 7846 ft/s, ๐›ผ 0.0174 rad, ๐›พ 0 rad, ๐‘ž 0 rad/s, ๐œ‚1 0.4588 ft sulg, ๐œ‚2 0.08726 ft sulg, and ๐œ‚3 0.03671 ft sulg. Two cases are studied here.Case one is a climbing maneuver with longitudinal acceleration, and the expected equilibrium is ๐›ผ 0.0219 rad.The increments of altitude and velocity are 2000 ft, and100 ft/s respectively. Case two is a descending maneuver withvelocity reducing gradually, and its corresponding equilibrium is ๐›ผ 0.0158 rad. The decreasing of altitude is 1000 ftand that of velocity is 100 ft/s.For these two cases, The corresponding reference commands are generated by filtering step reference commandswith a second-order profiler with ๐œ” 0.1 rad/s and ๐œ‰ 0.9.The simulation results of case one are shown in Figure 2.The simulation results of case two are shown in Figure 3.From Figures 2(a), 2(b), 3(a), and 3(b), it is seen thatthe controller can provide stable and accurate tracking ofthe reference trajectories for the two cases, and the trackingerrors of altitude and velocity remain remarkably small.Figures 2(c), 2(d), 3(c), and 3(d) show that both the signalsof the flight-path angle and the attack angle can also followthe change of virtual control commands closely.For the flexible dynamics, its effect on aerodynamicmodel is neglected, and its motion is taken as externalperturbation during the control design. That means thatthe forebody turn angle ฮ”๐œ1 and the aftbody vertex angleฮ”๐œ2 are equal to zero in model (3) when the controller isdesigned. Simultaneously, the second-order equation aboutflexible states ๐œ‚๐‘– and ๐œ‚๐‘–ฬ‡ is not considered. From Figures 2(e)and 3(e), we can know that the flexible states can converge tostable states ultimately although the flexible dynamics is nottaken into account directly. This denotes that our controllerhas the strong robustness, and it is suitable to control theflexible hypersonic vehicle.Moreover, the variation ranges of the control inputs thatis, fuel-to-air ratio, elevator deflection, and canard deflectionare bounded according to Figures 2(f), 2(g), 2(h), 3(f), 3(g),and 3(h).In summary, the nonminimum phase behavior is suppressed successfully, and the excellent closed-loop behaviorof air-breathing hypersonic vehicle can be obtained by theproposed controller for the cases of maneuver of altitude andvelocity.

8Journal of Applied Mathematics8.5278608.578408.487820V (ft/s)h (ft) 0090 10010203040t (s)hrefh50 60t (s)708090 100VrefV(a) Altitude(b) Velocity 10 30.50.017500.017 0.5๐›พ (rad)0.016 1.5 2 2.5 30.0155 3.50.01501020304050 60t (s)7080 490 100010๐›ผd๐›ผ304050 60t (s)708090 1008090 100(d) Flight-path angle0.80.580.70.560.60.540.50.520.4๐œ™ 0.50.30.480.20.10.4600.44 0.120๐›พd๐›พ(c) Attack angle๐œ‚ (ftยทslug )๐›ผ (rad) 10.01650.420102030405060708090 1000๐œ‚1๐œ‚2102030405060t (s)t (s)๐œ‚3(f) Fuel-to-air ratio(e) Flexible statesFigure 3: Continued.70

90.13 0.030.12 0.040.11 0.050.1 0.06๐›ฟc (rad)๐›ฟe (rad)Journal of Applied Mathematics0.090.08 0.07 0.08 0.090.07 0.10.06 0.110.05 0.120.040102030405060708090 100 0.13t (s)(g) Elevator deflection01020304050 60t (s)708090 100(h) Canard deflectionFigure 3: Descending maneuver with velocity reducing gradually for case two.5. ConclusionFor the flexible air-breathing hypersonic vehicle with canardcontrol surface, the controller is designed based on thenonlinear adaptive equivalent control strategy under interconnected structure. The equivalent control inputs are introduced and designed to replace the terms about elevator andcanard in the flight-path angle dynamics and the pitchrate dynamics for eliminating the nonminimum phase. Theuncertain aerodynamic parameters are identified online bythe adaptive method. And input-to-state stability of theinterconnection subsystems is guaranteed by small-gain theorem. Similarly, the adaptive dynamic inversion approach isadopted in the velocity loop. With our approach, the stableand accurate tracking of the hypersonic vehicle model withnonminimum phase can be realized.AcknowledgmentsThis work is supported by National Natural Science Foundation of China under Grant 61074064 and Natural Science Foundation of Tianjin 12JCZDJC30300. The authorsare grateful to the anonymous reviewers for their helpfulcomments and constructive suggestions with regard to thispaper.[4][5][6][7][8][9]References[1] M. A. Bolender and D. B. Doman, โ€œNonlinear longitudinaldynamical model of an air-breathing hypersonic vehicle,โ€ Journal of Spacecraft and Rockets, vol. 44, no. 2, pp. 374โ€“387, 2007.[2] J. T. Parker, A. Serrani, S. Yurkovich, M. A. Bolender, and D. B.Doman, โ€œControl-oriented modeling of an air-breathing hypersonic vehicle,โ€ Journal of Guidance, Control, and Dynamics, vol.30, no. 3, pp. 856โ€“869, 2007.[3] B. Fidan, M. Kuipers, P. A. Ioannou, and M. Mirmirani, โ€œLongitudinal motion control of air-breathing hypersonic vehiclesbased on time-varying models,โ€ in Proceedings of the 14thAIAA/AHI International Space Planes and Hypersonics Systems[10][11][12]Technologies Conference, pp. 1705โ€“1717, AIAA, Canberra, Australia, November 2006.K. P. Groves, D. O. Sigthorsson, A. Serrani, S. Yurkovich, M.A. Bolender, and D. B. Doman, โ€œReference command trackingfor a linearized model of an air-breathing hypersonic vehicle,โ€in Proceedings of the AIAA Guidance, Navigation, and ControlConference, pp. 2901โ€“2914, AIAA, San Francisco, Calif, USA,August 2005.D. O. Sigthorsson, P. Jankovsky, A. Serrani, S. Yurkovich,M. A. Bolender, and D. B. Doman, โ€œRobust linear outputfeedback control of an airbreathing hypersonic vehicle,โ€ Journalof Guidance, Control, and Dynamics, vol. 31, no. 4, pp. 1052โ€“1066, 2008.L. G. Wu, X. B. Yang, and F. B. Li, โ€œNonfragile output trackingcontrol of hypersonic air-breathing vehicles with LPV model,โ€IEEE/ASME Transactions on Mechatronics, vol. 18, no. 4, pp.1280โ€“1288, 2013.H. P. Lee, S. E. Reiman, C. H. Dillon, and H. M. Youssef, โ€œRobustnonlinear dynamic inversion control for a hypersonic cruisevehicle,โ€ in Proceedings of the AIAA Guidance, Navigation, andControl Conference and Exhibit, pp. 3380โ€“3388, Hilton Head,SC, USA, August 2007.H. J. Xu, M. D. Mirmirani, and P. A. Ioannou, โ€œAdaptive slidingmode control design for a hypersonic flight vehicle,โ€ Journal ofGuidance, Control, and Dynamics, vol. 27, no. 5, pp. 829โ€“838,2004.B. L. Tian, Q. Zong, J. Wang, and F. Wang, โ€œQuasi-continuoushigh-order sliding mode controller design for reusable launchvehicles in reentry phase,โ€ Aerospace Science and Technology,vol. 28, no. 1, pp. 198โ€“207, 2013.B. Xu, F. Sun, H. Liu, and J. Ren, โ€œAdaptive Kriging controllerdesign for hypersonic flight vehicle via back-stepping,โ€ IETControl Theory and Applications, vol. 6, no. 4, pp. 487โ€“497, 2012.T. E. Gibson, L. G. Crespo, and A. M. Annaswamy, โ€œAdaptivecontrol of hypersonic vehicles in the presence of modelinguncertainties,โ€ in Proceedings of the 2009 American ControlConference (ACC โ€™09), pp. 3178โ€“3183, St. Louis, Mo, USA, June2009.H. Buschek and A. J. Calise, โ€œUncertainty modeling and fixedorder controller design for a hypersonic vehicle model,โ€ Journal

10[13][14][15][16][17][18][19]Journal of Applied Mathematicsof Guidance, Control, and Dynamics, vol. 20, no. 1, pp. 42โ€“48,1997.Q. Wang and R. F. Stengel, โ€œRobust nonlinear control of a hypersonic aircraft,โ€ Journal of Guidance, Control, and Dynamics, vol.23, no. 4, pp. 577โ€“585, 2000.J. Yang, S. H. Li, C. Y. Sun, and L. Guo, โ€œNonlinear-disturbanceobserver-based robust flight control for airbreathing hypersonicvehicles,โ€ IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 2, pp. 1263โ€“1275, 2013.L. Fiorentini, A. Serrani, M. A. Bolender, and D. B. Doman,โ€œNonlinear robust/adaptive controller design for an airbreathing hypersonic vehicle model,โ€ in Proceedings of the AIAAGuidance, Navigation, and Control Conferenc and Exhibit, pp.269โ€“284, AIAA, Hilton Head, SC, USA, August 2007.L. Fiorentini, A. Serrani, M. A. Bolender, and D. B. Doman,โ€œNonlinear robust adaptive control of flexible air-breathinghypersonic vehicles,โ€ Journal of Guidance, Control, and Dynamics, vol. 32, no. 2, pp. 401โ€“416, 2009.L. Fiorentini, A. Serrani, M. A. Bolender, and D. B. Doman,โ€œNonlinear control of nonminimum phase hypersonic vehiclemodels,โ€ in Proceedings of the 2009 American Control Conference(ACC โ€™09), pp. 3160โ€“3165, St. Louis, Mo, USA, June 2009.D. O. Sigthorsson and A. Serrani, โ€œDevelopment of linearparameter-varying models of hypersonic air-breathing vehicles,โ€ in Proceedings of the AIAA Guidance, Navigation, andControl Conference and Exhibit, pp. 2009โ€“6282, AIAA, Chicago,Ill, USA, August 2009.A. R. Teel, โ€œA nonlinear small gain theorem for the analysisof control systems with saturation,โ€ IEEE Transactions onAutomatic Control, vol. 41, no. 9, pp. 1256โ€“1270, 1996.

Advances inOperations ResearchHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Advances inDecision SciencesHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Journal ofApplied MathematicsAlgebraHindawi Publishing Corporationhttp://www.hindawi.comHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Journal ofProbability and StatisticsVolume 2014The ScientificWorld JournalHindawi Publishing Corporationhttp://www.hindawi.comHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014International Journal ofDifferential EquationsHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Volume 2014Submit your manuscripts athttp://www.hindawi.comInternational Journal ofAdvances inCombinatoricsHindawi Publishing Corporationhttp://www.hindawi.comMathematical PhysicsHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Journal ofComplex AnalysisHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014InternationalJournal ofMathematics andMathematicalSciencesMathematical Problemsin EngineeringJournal ofMathematicsHindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Hindawi Publishing Corporationhttp://www.hindawi.comVolume 2014Volume 2014Hindawi Publish

dynamic parameters. en the interconnection subsystems including the altitude- ight-path angle dynamics and the attack angle-pitch rate dynamics are constructed. Via the small-gain method, the system is proven to be input-to-state stable. In the velocity loop, the adaptive dynamic inversion controller is designed. Simulation results show the .

Related Documents:

Chapter Two first discusses the need for an adaptive filter. Next, it presents adap-tation laws, principles of adaptive linear FIR filters, and principles of adaptive IIR filters. Then, it conducts a survey of adaptive nonlinear filters and a survey of applica-tions of adaptive nonlinear filters. This chapter furnishes the reader with the necessary

Amendments to the Louisiana Constitution of 1974 Article I Article II Article III Article IV Article V Article VI Article VII Article VIII Article IX Article X Article XI Article XII Article XIII Article XIV Article I: Declaration of Rights Election Ballot # Author Bill/Act # Amendment Sec. Votes for % For Votes Against %

2540 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 10, OCTOBER 2003 A Fully Adaptive Normalized Nonlinear Gradient Descent Algorithm for Complex-Valued Nonlinear Adaptive Filters Andrew Ian Hanna and Danilo P. Mandic, Member, IEEE Abstractโ€” A fully adaptive normalized nonlinear com-plex-valued

Sybase Adaptive Server Enterprise 11.9.x-12.5. DOCUMENT ID: 39995-01-1250-01 LAST REVISED: May 2002 . Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replication, Adaptive Server Everywhere, Adaptive Se

Nonlinear Finite Element Analysis Procedures Nam-Ho Kim Goals What is a nonlinear problem? How is a nonlinear problem different from a linear one? What types of nonlinearity exist? How to understand stresses and strains How to formulate nonlinear problems How to solve nonlinear problems

Third-order nonlinear effectThird-order nonlinear effect In media possessing centrosymmetry, the second-order nonlinear term is absent since the polarization must reverse exactly when the electric field is reversed. The dominant nonlinearity is then of third order, 3 PE 303 ฮตฯ‡ The third-order nonlinear material is called a Kerr medium. P 3 E

Outline Nonlinear Control ProblemsSpecify the Desired Behavior Some Issues in Nonlinear ControlAvailable Methods for Nonlinear Control I For linear systems I When is stabilized by FB, the origin of closed loop system is g.a.s I For nonlinear systems I When is stabilized via linearization the origin of closed loop system isa.s I If RoA is unknown, FB provideslocal stabilization

approach and an adaptive architecture may be required.2 This is in fact the most common strategy adopted in the past few years for helicopter nonlinear ๏ฌ‚ight con-trol:3,4,5 a Nonlinear Dynamic Inversion (NDI) of an ap-proximate model (linearized at a pre-speci๏ฌed trim con-dition) together with adaptive elements to compensate