How A Designer Can Make The Most Of . - STMicroelectronics

1y ago
20 Views
2 Downloads
1.13 MB
65 Pages
Last View : 2d ago
Last Download : 3m ago
Upload by : Mollie Blount
Transcription

AN2014Application noteHow a designer can make the most ofSTMicroelectronics serial EEPROMsIntroductionElectrically Erasable and PROgrammable Memory (EEPROM) devices are standardproducts used for the non-volatile storage of data parameters, with a fine-granularity.This application note describes most of the internal architecture and related functionality ofthe STMicroelectronics EEPROM, such as the storage mechanism, interface circuits,optimal settings of hardware, software and data management.With these guidelines, an application designer gains a better understanding of the device’soperation and can profit from these recommendations to significantly improve the reliabilityof the application.February 2015DocID10701 Rev 101/65www.st.com

AN2014ContentsContents1EEPROM cell and memory array architecture . . . . . . . . . . . . . . . . . . . . 71.11.2231.1.1Reading the value stored in a memory cell . . . . . . . . . . . . . . . . . . . . . . . 91.1.2Writing a new value to the memory cell . . . . . . . . . . . . . . . . . . . . . . . . . . 91.1.3Cycling limit of EEPROM cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Electrical architecture of ST serial EEPROM arrays . . . . . . . . . . . . . . . . 131.2.1Memory array architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131.2.2Decoding architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.2.3Intrinsic electrical stress induced by programming . . . . . . . . . . . . . . . . 14Choosing a suitable EEPROM for your application . . . . . . . . . . . . . . . 162.1Choosing a memory type suited to the task to be performed . . . . . . . . . . 162.2Choosing an appropriate memory interface . . . . . . . . . . . . . . . . . . . . . . . 162.3Choosing an appropriate supply voltage and temperature range . . . . . . 17Recommendations to improve EEPROM reliability . . . . . . . . . . . . . . . 183.13.23.34Floating gate operation within an EEPROM cell . . . . . . . . . . . . . . . . . . . . 7Electrostatic discharges (ESD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.1.1What is ESD? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.1.2How to prevent ESD? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183.1.3ST EEPROM ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Electrical overstress and latchup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.2.1What are EOS and latchup? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193.2.2How to prevent EOS and latchup events . . . . . . . . . . . . . . . . . . . . . . . . 193.2.3ST EEPROM latchup protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Power supply considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.3.1Power-up and power-on-reset sequence . . . . . . . . . . . . . . . . . . . . . . . . 213.3.2Stabilized power supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.3.3Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Hardware considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.1I2C family (M24xxx devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.1.1Chip enable (E0, E1, E2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234.1.2Serial data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244.1.3Serial clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25DocID10701 Rev 102/654

ContentsAN20144.24.34.45Write control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264.1.5Recommended I2C EEPROM connections . . . . . . . . . . . . . . . . . . . . . . 27SPI family (M95xxx devices) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.2.1Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.2.2Write Protect (W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.2.3Serial Data input (D) and Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . 304.2.4Hold (HOLD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.2.5Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.2.6Recommended SPI EEPROM connections . . . . . . . . . . . . . . . . . . . . . . 31MICROWIRE family (M93Cxxx and M93Sxxx devices) . . . . . . . . . . . . . 334.3.1Chip Select (S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.3.2Serial Data (D) and Serial Clock (C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.3.3Organization Select (ORG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.3.4Serial Data output (Q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.3.5Don’t use (DU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.3.6Recommended MICROWIRE EEPROM connections . . . . . . . . . . . . . . 35PCB Layout considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.4.1Cross coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.4.2Noise and disturbances on power supply lines . . . . . . . . . . . . . . . . . . . 36Software considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.1EEPROM electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.2Optimal Write control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.35.45.53/654.1.45.2.1Page mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375.2.2Data polling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.3.1Software write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415.3.2Hardware write protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Data integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.4.1The checksum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.4.2Data redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.4.3Checksum and data redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445.4.4Extra redundancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Cycling endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.5.1Cycling and data retention qualification procedures . . . . . . . . . . . . . . . 455.5.2Optimal cycling with ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45DocID10701 Rev 10

AN20146ContentsCycling and temperature dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 465.5.4Defining the application cycling strategy . . . . . . . . . . . . . . . . . . . . . . . . 475.5.5Overall number of write cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Power supply loss and application reset . . . . . . . . . . . . . . . . . . . . . . . 496.16.26.375.5.3Application reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496.1.1I2C family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 496.1.2SPI family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516.1.3MICROWIRE family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52Power supply loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536.2.1Hardware recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536.2.2Supply voltage energy tank capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . 536.2.3Interruption of an EEPROM request . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Robust software and default operating mode . . . . . . . . . . . . . . . . . . . . . . 58Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597.1Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597.2Humidity and chemical vapors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597.3Mechanical stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6110Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62DocID10701 Rev 104/654

AN2014List of tablesList of tablesTable 1.Table 2.Table 3.Table 4.Table 5.Table 6.Table 7.Table 8.Table 9.Table 10.Table 11.Three serial bus protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17ESD generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Typical POR threshold values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Connecting the Ei inputs of I²C products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Calculation rules for pull-up resistor on SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Connecting WC inputs in I2C products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Calculation for external pull-up and pull-down resistors in SPI products . . . . . . . . . . . . . . 32Calculating external pull-up and pull-down resistors in MICROWIRE products . . . . . . . . . 35Column and page address bits according to page length. . . . . . . . . . . . . . . . . . . . . . . . . . 43Application cycling profile evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62DocID10701 Rev 105/655

AN2014List of figuresList of figuresFigure 1.Figure 2.Figure 3.Figure 4.Figure 5.Figure 6.Figure 7.Figure 8.Figure 9.Figure 10.Figure 11.Figure 12.Figure 13.Figure 14.Figure 15.Figure 16.Figure 17.Figure 18.Figure 19.Figure 20.Figure 21.Figure 22.Figure 23.Figure 24.Figure 25.Figure 26.Figure 27.Figure 28.Figure 29.Figure 30.Figure 31.Figure 32.Figure 33.Figure 34.Figure 35.Figure 36.Figure 37.Figure 38.Figure 39.Figure 40.Figure 41.Figure 42.Figure 43.Figure 44.Figure 45.Figure 46.Structure of an EEPROM floating gate transistor, and circuit symbol. . . . . . . . . . . . . . . . . . 7MOSFET-like operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Floating gate reservoir full of electrons (Erased state) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Floating gate reservoir empty of electrons (Written state) . . . . . . . . . . . . . . . . . . . . . . . . . . 8Using the voltage on the Control Gate to determine the chargeon the floating gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9During erase, electrons go through the tunnel oxide into the floating gate. . . . . . . . . . . . . 10During write, electrons go through the tunnel oxide out of the floating gate . . . . . . . . . . . . 10VPP signal applied to EEPROM cells(HiV is the output of the charge pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Accumulation of negative or positive charges in the tunnel oxide . . . . . . . . . . . . . . . . . . . 12Architecture of the memory array (showing the grouping in bytes). . . . . . . . . . . . . . . . . . . 13Decoding block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Latchup mechanism and protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Latchup test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Power-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Local EEPROM supply filtering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Chip Enable inputs E0, E1, E2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Serial Data input/output SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25SDA bus conflict with push-pull buffers (NOT RECOMMENDED) . . . . . . . . . . . . . . . . . . . 25Serial clock input SCL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Write control input (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Recommended I²C connections – safe design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Recommended I²C connections – robust design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Chip Select, Clock, Data, Hold input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Write Protect input W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Output pin tri-state buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Recommended SPI connections - safe design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Recommended SPI connections - robust design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Chip Select, Clock, Data input pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Organization input ORG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Recommended MICROWIRE connections - safe design . . . . . . . . . . . . . . . . . . . . . . . . . . 35Recommended MICROWIRE connections - robust design . . . . . . . . . . . . . . . . . . . . . . . . 35PCB decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36I2C data polling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39SPI data polling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40MICROWIRE data polling algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.Recommended use of the WC pin in I²C products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Recommended use of the W pin in SPI products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42Example of how to duplicate data safely . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44Write cycling versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46I2C bus enters the high impedance state (Master reset) . . . . . . . . . . . . . . . . . . . . . . . . . . 50SPI bus enters the high impedance state (Master reset) . . . . . . . . . . . . . . . . . . . . . . . . . . 51MICROWIRE bus enters the high impedance state (Master reset) . . . . . . . . . . . . . . . . . . 52EEPROM power backup capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54Emergency sequence I2C products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55Emergency sequence SPI products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56Emergency sequence MICROWIRE products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57DocID10701 Rev 106/656

AN2014EEPROM cell and memory array architecture1EEPROM cell and memory array architecture1.1Floating gate operation within an EEPROM cellFrom the user’s point of view, this EEPROM device is a circuit for storing digital information.To interface with the EEEPROM device a set of standard instructions are used. Behind thissimple interface, however, there are a number of sensitive analog and physical processes.Figure 1. Structure of an EEPROM floating gate transistor, and circuit symbolControl GateControl GateFloating GateOxideFloating GateGate OxideSourceTunnel OxideSourceDrainDrainChannel RegionAI10227Figure 1. shows the key component of a single EEPROM cell, the floating gate transistor(also known as a FLOTOX transistor). Figure 2. shows how it can be considered to be justlike any other type of MOSFET device. As the voltage, Vg, is increased on the Control Gateelectrode, so the current flowing through the drain, Id, increases in proportion. For thepresent, we can assume that this is a fairly linear relationship.Figure 2. MOSFET-like operation)D!)D6G RAIN3OURCE66G!) BFigure 3 shows what happens if the floating Gate can be made more negatively charged, byfilling it with extra electrons. This is used for the Erased state of the EEPROM cell. Figure 4shows what happens if the floating Gate can be made less negatively charged, by emptyingit some of its normal electrons. This is used for the Written state of the EEPROM cell.DocID10701 Rev 107/6564

EEPROM cell and memory array architectureAN2014Figure 3. Floating gate reservoir full of electrons (Erased state)VgIdControl GateOxide- - - - - - - - - - - - - - - - - - - - Gate OxideTunnel OxideSourceChannel RegionDrainVth.eraseVgAI102281. Control Gate threshold value (Vth.erase) is positive.2. Id f(Vg) characteristic shows Id 0 for Vg Vth.erase.The effect, as viewed from the channel region of the transistor, is that the Control Gatevoltage, Vg, is offset by an extra negative or positive amount. Viewed from the outside,black-box electrical behavior of the device, the charge on the floating gate has the effect ofmoving the threshold MOSFET voltage, Vth, at which the linear conduction region begins. Inother words, a FLOTOX transistor is a MOS transistor with a variable Control Gate thresholdvalue, Vth.The floating gate acts as the storage element, and, being completely surrounded byinsulating oxide, as shown in Figure 1, keeps its charge even when there is no powersupply.Figure 4. Floating gate reservoir empty of electrons (Written state)VgIdControl GateOxide Gate OxideTunnel OxideSourceChannel RegionDrainVth.writeVgAI102291. Control Gate threshold value (Vth.write) is negative2. Id f(Vg) characteristic shows Id 0 for Vg Vth.write.8/65DocID10701 Rev 10

AN20141.1.1EEPROM cell and memory array architectureReading the value stored in a memory cellFigure 5 puts the three curves together, by way of comparison. It shows that for a givenControl Gate voltage, Vg, the current that flows through the drain, Id, will be detectablyhigher or lower than that of the neutral device, depending on whether the reservoir ofelectrons on the floating gate has been filled up, or emptied. This, then, is the basis of howthe memory cell can be read.Figure 5. Using the voltage on the Control Gate to determine the chargeon the floating gateIdIId.refVg.refVgAI102341. A written cell draws a current I µA (where IµA Id.ref); an erased cell does not draw any current (0 µA).In most of ST EEPROM products, a predetermined biasing condition on the Control Gateand the drain makes it possible to compare the current absorbed by the FLOTOX transistorwith a reference. Basically, with the predetermined biasing condition an erased FLOTOXcell is not able to sink as much current as the reference (ideally the transistor is off). On theother hand, a written FLOTOX cell sinks a current that is superior to the reference (thetransistor is on). By comparing to a reference current, the device is able to retrieve thestored information as a digital signal on the output pins of the memory device.1.1.2Writing a new value to the memory cellThe next question, of course, is how the charge can be changed on the floating gate, giventhat it is so well insulated by oxide, and keeps its charge even when there is no powersupply. The answer is that the Tunnel Oxide, shown in Figure 1, is very thin, and can beused to transfer charge, when much higher voltages are applied than those normally usedduring Read operations.Filling the floating gate reservoir with negative charges (electrons) is called erase. Aftererase, the FLOTOX transistor is in the Erased State (see Figure 3). Pulling out negativecharges from the floating gate is called Program. After Program, the FLOTOX transistor is inthe Written State (see Figure 4). One state is used to represent logic-0, and the other logic1, but the exact choice is manufacturer and product-type dependent).Both operations use the Fowler-Nordheim tunneling effect. For this, a high electric field(1 million V/mm, or more) is needed to make electrons pass through the thin Tunnel Oxide.For a Tunnel Oxide thickness of 100Å, the high voltage needs to be at least 10V.DocID10701 Rev 109/6564

EEPROM cell and memory array architectureAN2014In fact, higher voltages, in the range 15 to 18V, are normally used, to reduce the time takenfor the operation. Voltages higher than this cannot be used, since they would damage thethin Tunnel Oxide.For erase, the cell Control Gate is made positive, and the source-drain region is grounded(as shown in Figure 6). The electric field makes electrons move from the substrate towardsthe floating gate, thereby filling the reservoir, and increasing the characteristic thresholdvoltage of the transistor (as shown in Figure 3).Figure 6. During erase, electrons go through the tunnel oxide into the floating gateVg 18VControl GateOxideFloating GateElectric Fielde-Gate OxideTunneling ElectronsSourceChannel RegionDrainVd 0VAI102321. Characteristic threshold Vth increases and becomes positive as shown in Figure 3For write, the Control Gate is grounded and the source-drain region is made positive (asshown in Figure 7). The electric field is the opposite of that for erase, and so electrons moveout from the floating gate, thereby emptying the reservoir, and decreasing the characteristicthreshold voltage of the transistor (as shown in Figure 4).Figure 7. During write, electrons go through the tunnel oxide out of the floating gateVg 0VControl GateOxideFloating GateElectric Fielde-Gate OxideTunneling ElectronsSourceChannel RegionDrainVd 18VAI102331. Characteristic threshold decreases and becomes negative as shown in Figure 4.Typically EEPROM erase/write cycles require a high voltage of about 15 to 18V forapproximately 5ms.10/65DocID10701 Rev 10

AN2014EEPROM cell and memory array architectureAs EEPROM devices use a single supply voltage, the high voltage must be generated andmanaged internally. A set of analog circuits is available to generate and control the highvoltage from the single external power supply: voltage and current references to control oscillators and timings. a regulated charge pump that generates a stable 15 to 18V voltage, HiV, from thesingle external power supply. a ramp generator that, from the stable HiV voltage, makes the specific waveform(shown in Figure 8) that is to be applied to the cells.VPP is the high voltage that is directly applied to the FLOTOX cell, as described earlier. Theprecise shape of the VPP voltage waveform is critical, and has a direct effect on the reliabilityand endurance of the memory cells. The slope, plate time and maximum level areparameters that are very carefully controlled.Writing new data in an EEPROM array triggers an auto-erase of all the addressed bytes,resets them all to the Erased state, and then selectively programs those bits that should beset to the Written state.Figure 8. VPP signal applied to EEPROM cells(HiV is the output of the charge pump)HiV18VVPPAuto-EraseProgram5mst(ms)Write Cycle Auto-Erase ProgramAI10235To summarize: Binary information is coded by means of a FLOTOX transistor. The floatinggate is a reservoir filled with negative electric charges that modify its electricalcharacteristics. The electric charges can be made to migrate into or out of the reservoir byapplying a high voltage to a thin Tunnel Oxide. The binary information is read by comparingthe cell (FLOTOX transistor) current to a reference.DocID10701 Rev 1011/6564

EEPROM cell and memory array architecture1.1.3AN2014Cycling limit of EEPROM cellsWhen a cell is cycled (repeatedly erased and programmed) two common phenomena occurand are amplified during the memory cell lifetime. When tunneling, negative charges caneither be trapped in some imperfection of the oxide or damage the Tunnel Oxide:1.Charge trappingThe accumulation of negative charges in the thin Tunnel Oxide creates an electricbarrier in the Tunnel Oxide. The high voltage needed for the tunneling effect becomeseven higher: programming high voltages are no more able to move enough charges toprogram the cell properly. The Erased and Written states become undifferentiated.2.Stress on oxideWhen the Tunnel Oxide deteriorates, a positive charge path may appear, thatfacilitates undesirable leakage through the Tunnel Oxide. The floating gate is no more100% insulated, and loses its charges, and so the data retention time drops drastically.Figure 9. Accumulation of negative or positive charges in the tunnel oxideControl GateOxideFloating GateGate OxideSource - - - - Horizontal electric barrierdisturbing erase and writeChannel RegionVertical electric pathleading to leakageAI10251Charge trapping and oxide damage are accelerated at high temperatures. They are directlyinvolved in cell cycling and endurance limitations.Permanent digital information storage has to cope with physical phenomena and analognonlinear behaviors that have natural limits and are sensitive to wear-out and improper useconditions.12/65DocID10701 Rev 10

AN20141.2EEPROM cell and memory array architectureElectrical architecture of ST serial EEPROM arraysIn the previous section, the EEPROM functionality was considered at the single bit level.We will now zoom out of the memory cell to the full EEPROM array, in order to give anoverview of the architecture of an EEPROM device.1.2.1Memory array architectureAn EEPROM device is made of an array of memory cells whose organization allows bytegranularity, the automatic erasing of the addressed bytes (Erased state), and theprogramming of only those bits that are to be changed to ‘1’ (Written state). The array (asshown in Figure 10) is organized as follows: Each memory cell consists of one Select transistor in series with a FLOTOX transistorand each byte is made up of eight memory cells and a Control Gate transistor with adrain that is common to the Control Gates of all eight FLOTOX transistors. Rows (in the horizontal direction) are made up of 16 bytes (or more, depending on thememory size (the number of bytes within each row being a function of the array size).For each row, all Select transistors and all Control Gate transistors are connected tothe Row line. Columns are grouped by eight bit-lines plus one Cg-line. This is then repeated as manytimes as the number of bytes in a row. A bit-line is common to all the drains of the Select transistors of each memory celllocated in the column. A Cg-line is common to all the sources of the Control Gatetransistors of the column.Figure 10. Architecture of the memory array (showing the grouping in bytes)Cg-Line ibi78 Bit-Line Latchesbi6bi0Bit lineb07Bit lineCg lineCg-Line 0Column i8 Bit-Line Latchesb06b00Bit lineColumn 08 SelecttransistorsRowLine 08 FLOTOXtransistorsControlGatetransistorByteMemory CellSelecttransistorRowLine nFLOTOXtransistorAI10224bNote:Figure 10 corresponds to a memory array without ECC (Error Correction Code) logic (seeSection 5.5: Cycling endurance and data retention and AN2440 for more details).DocID10701 Rev 1013/6564

EEPROM cell and memory array architecture1.2.2AN2014Decoding architectureTo address a single byte in a full array, decoding circuits are necessary. One logical addressis associated with one byte location. The address bits are inserted serially into a ShiftRegister. Then, with parallel output, the decoding structures receive all of the bits at thesame time, to perform the decoding and addressing. The row decoder decodes and bringscorrect biasing to a single row line. As one or more bytes of the same row can beprogrammed at the same time, the column decoder decodes one or more column(s), and aRAM buffer memorizes the data to write, and enables the right path for Cg-line and Bit-linebiasing.Figure 11. Decoding block diagramSerial InputAddress Shift RegisterMSB Address BitsRead/Write AnalogVoltagesLSB Address BitsColumnDecoderBit-line and Cg-line Latches: RAM BufferCg-lines and nsic electrical stress induced by programmingWhatever the d

How a designer can make the most of STMicroelectronics serial EEPROMs Introduction Electrically Erasable and PROgrammable Memory (EEPROM) devices are standard products used for the non-volatile storage of data parameters, with a fine-granularity. This application note describes most of the internal architecture and related functionality of

Related Documents:

Design Fundamentals* *Fashion and Textiles Food Technology Industrial Technology Multimedia Photography (Video and Digital Imaging)* Visual Arts *Subject is non ATAR. Designer: graphic designer, fashion designer, furniture designer, industrial designer, interior designer, jewellery designer, landscape designer, textile designer

Wedding Invitation Designer - Social Media Promotional’ s Designer and Marketer -Flyer Designer Corporate Gift: Mug Corporate Event Invitation Card Designer Web Banner Designer -Magazine Cover Designer Slideshows & Promo Videos Creator -Poster Designer Data Entry Operator News

DESIGNER Line Comparison Chart 1.2 2 FEATURES DESIGNER EPIC 2 DESIGNER BRILLIANCE 80 DESIGNER TOPAZ 50 DESIGNER TOPAZ 40 DESIGNER JADE 35 Multi-Size Embroidery Fonts 8 5 2/1 1 Embroidery Unit Size Large Large Medium/Small Small Imperial Hoop 14¼”x10¼” (360x260mm) Included

- TPS62800 WEBENCH Power Designer - TPS62801 WEBENCH Power Designer - TPS62802 WEBENCH Power Designer - TPS62806 WEBENCH Power Designer - TPS62807 WEBENCH Power Designer - TPS62808 WEBENCH Power Designer 2 Applications Wearable electronics, IoT applications 2 AA battery-powered applications Smartphones 3 .

Support for SAP Lumira Designer Client Version Visual BI Extensions 12 SAP Lumira Designer Release Supported Visual BI Extensions (VBX) Release Lumira Designer 2.0 or higher Till Release 2.0 Lumira Designer (2.1 or hi

Analytics Designer Cloud first strategy Lumira Designer State-of-the art Analytics Designer for professional users spanning across BI, Planning & Predictive SAP Analytics Cloud SAP is committed to delivering innovative analytics designer

BSC Designer Online - Balanced Scorecard Software Use BSC Designer Online to create a Balanced Scorecard with KPIs, strategy maps, and dashboards. Sign-up with a free plan at BSC Designer Online. No credit card is required. Get start with a template. Use BSC Designer Online to follow the Balanced Scorecard approach using a real template with a

Median Salary Art Director 72,000 Creative / Design Director 98,600 Designer 45,000 Entry-Level Designer 35,000 Owner, Partner, Principal 113,000 Print Production Artist 44,800 Senior Designer 62,000 Solo Designer 60,000 Web Designer 55,000 *Information comes from the American Institute of Graphic Arts (AI