1. Fundamental Concepts - DSpace@MIT Home

3y ago
18 Views
3 Downloads
395.02 KB
28 Pages
Last View : 9d ago
Last Download : 3m ago
Upload by : Annika Witter
Transcription

1.Fundamental Concepts1.1IntroductionTheoretical framework of classical physics: state (at fixed t) is defined by a point {xi , pi } in phase space F G F G (flat space, symplectic Poisson bracket {xi , pj } δij {F G} i xi pi pi ximfld) Observables are functions O(xi , pj ) on phase space [ex: x2 y 2 z 2 , p2 /2m, . . .] Hamiltonian H(x, p) defines dynamicsq̇ {q, H} for q xi , pj , . . . I BI (x, p)qM z phase spaceqMFramework describes all of mechanics. E & M including fluids, materials, etc. . . . Simple, intuitive conceptual framework Deterministic Time-reversible dynamicsExample: Classical simple harmonic oscillator (SHO)H 1 2k 2px 22mp !' 2X X"x

1pmṗ {p, H} kx( mẍ)ẋ {x, H} Theoretical framework of quantum physics state defined by (complex) vector v in vector space H. (Hilbert space) Observables are Hermitian operators Odagger O Dynamics: v(t) e iHt/ v(0) (H hermitian, constant) “Collapse postulate”[(subtleties:(simple version) If φ αi λi , λjwith A λi λi λi , λi 2Then with prob. αi , measure A λi , φ λi after measurementdegeneracy,cts. spectrum)]This framework [(with suitable generalizations, i.e. field theory)] describes all quantum sys tems, and all experiments not involving gravitational forces.– Atomic spectra (quantization of energy)– Semiconductors transistors, (quantum tunneling) Counterintuitive conceptual framework Nondeterministic Irreversible dynamicsBoth classical & quantum conceptual frameworks useful in certain regimes.Classical picture not fundamental — replaced by QM.Is QM fundamental?Perhaps not, but describes all physics of current relevance to technology & society.Simple example of QM: 2-state system (spin123particle)

Stern & Gerlach 1922 S --- ' -AgatomsOven I B NscreenSilver: 47 electrons, angular momentum µ (mag. dipole moment) from spin of 47thelectron.U µ · B U BzFz µz Z ZGives force along ẑ depending on µz .EnergyClassically, expect& Actually see#%#%4

ee Sz2mcmc [ 1.0546 10 27 ergs] 2µz SzSo measuring Sz discrete values (2 states)Can build sequential S G experiments, using componentsSz splitterZSz filters Z Sz ZSz (Can also form splitter, filters on x-axis, etc.)Single particle experimentsi) Sz Zii) Sz Z Sz Z Sx X Sx 5100%0%50%50%

iii) Sz ZSx X Sz ZSx Sz 100%0%BUTiv) Sz Zv) Sx X Sz Z X Sx Sz Z Sz Sz Z Sz 50%50%50%50%Cannot simultaneously measure Sz , Sx“incompatible observables”S z Sx Sx S zAnalogous to 2-slit experiment for photons.In iii), not measuring Sx .in iv), v) measuring Sx .iii) needs “interference” of probability wave — no classical interpretation.iii), iv) Irreversible, nondeterministic dynamics (assuming locality)1.21.2.1Mathematical PreliminariesHilbert spacesFirst postulate of QM: The state of a QM system at time t is given by a vector (ray) α in a complex Hilbertspace H. [[will state more precisely soon.]]Vector spacesA vector space V is a collection of objects (“vectors”) α having the following proper ties:6

A1: α β gives a unique vector γ in V .A2: (commutativity) α β β α A3: (associativity) ( α β ) δ α ( β δ )A4: vector φ such that φ α α α A5: For all α in V , α is also in V so that α ( α ) φ .[(A1–A5): V is a commutative group under ]For some Field F (i.e., R, C, with , defined) scalar multiplication of any c F with any α V gives a vector c α V . Scalar multiplication has the following propertiesM1: c(d α ) (cd) α M2: 1 α α M3: c( α β ) c α c β M4: (c d) α c α d α .V is called a “vector space over F .”F R:“real v.s.”F C:“complex v.s.”Examples of vector spacesa) Euclidean D-dimensional space is a real v.s. a1 .aDb) State space of spin 12 particle is 2D cpx v.s.states: c c , c C [[note: certain state are physically equivalent]]c) space of functions f : [0, L] CHenceforth we always take F CSubspacesV W is a subspace of a v.s. W if V satifies all props of a v.s. and is a subsetof W .[suffices for V to be closed under , scalar mult.]RayA ray in V is a 1D subspace {c α }.7

Linear independence & bases α1 , α2 , . . . , αn are linearly independent iffc1 α1 c2 α2 · · · cn αn 0has only c1 c2 · · · cn 0 as a solution.If α1 , . . . , αn in V are linearly independent, but all sets of n 1 vectors are linearlydependent, then V is n-dimensional (n may be finite, countably , or uncountably .) α1 , . . . , αn form a basis for the space V .If α1 , . . . , αn form a basis for V , then any vector β can be expanded in the basis as ci αi .(Thm.) β iUnitary spacesA complex vector space V is a unitary space (a.k.a. inner product space)if given α , β V there is an inner product α β C with the followingproperties:I1: α β β α I2: α ( β β ) α β α β I3: α (c β ) c α β I4: α α 0I5: α α 0 iff α 0 α β is a sesquilinear form (linear in β), conj. lin. in α Examples: z1 . , zi C.zN wN z w zI w1 z2 w2 · · · zNa) V CN , N-tuples z b) V {f : [0, L] C} L f g 0 f (x)g(x) dxTerminology: α β norm of α (sometimes, α if α β 0, α , β are orthogonal8

Dual SpacesFor a (complex) vector space V , the dual space V is the set of linear functions β : V C.Given the inner product β α , can construct isomorphism. α α V V note: c α c α .Physics notation (Dirac ”bra-ket” notation) α V β V ketbraHilbert spaceA space V is complete if every Cauchy sequence { αn } converges in V N : αn αm m, n N (i.e., α : limn α αn 0.)A complete unitary space is a (complex) Hilbert space.Note: an example of an incomplete unitary space is the space of vectors with a finite numberof nonzero entries. The sequence { (1, 0, 0, . . . ),(1, 12 , 0, 0, . . . ),(1, 12 , 13 , 0, . . . ).}is Cauchy, but doesn’t converge in V . This is not a Hilbert space.A Hilbert space can be:a) Finite dimensional (basis α1 , . . . , αn )Ex. spin 12 particle in Stern-Gerlach expt.b) Countably infinite dimensional (basis α1 , α2 , . . .)Ex. Quantum SHOc) Uncountably infinite dimensional (basis αx , x R)[Technical aside: V.A space V is separable if countable set D V so that D(D dense in V : , x V y D : x y )(a), (b) are separable, (c) is not.non-separable Hilbert spaces are very dicey mathematically.Generally, separability implicit in discussion — e.g., label basis αi , i takes discretevalues ]9

Orthonormal basisAn orthonormal basis is a basis ϕi with ϕi ϕj δijAny basis α1 , α2 , . . . can be made orthonormal by Schmidt orthonormalization α1 φ1 α1 α1 α2 α2 φ1 φ1 α2 α φ2 2 α2 α2 α3 α3 φ1 φ1 α3 φ2 φ2 α3 .Gives φi with φi φj δij .If { φi } are an orthonormal basis then for all α , ci φi ,ci φi α . α iCan write as α i φi φi α .(Completeness relation)Schwartz inequality α α β β α β 2 α , β .Proof: write γ α λ β γ γ α α λ α β λx β α λ 2 β β β α set λ β β β α γ γ α α 0 β β [Second postulate of QM: Observables are (Hermitian) operators on H [self-adjoint]10

1.2.2OperatorsLinear operatorsA linear operator from a VS V to a VS W is a transformation such thatA α β A α A β α , β .We write A B iff A α B α α .A acts on V through ( β A) α β (A α ) (acts on right on bras.)Outer productA simple class of operators are outer products β α ( β α ) γ β α γ AdjointRecall correspondenceV V α α Given an operator A, define A† (adjoint of A) (Hermitian conjugate) by A† α α AExample ( β α )† α β . Follows that α A† β ( β A α ) .Hermitian operatorsA is Hermitian if A A† ( self-adjoint) Technical aside: mathematically, Hermitian called ”symmetric”. Self-adjoint iff symmetric A & A† have same domain of definition, relevant to i.e., Dirac op. in monopole background(symmetric op. with several self-adjoint extensions) more: Reed & Simon, Jackiw 02Example of domain of def: Consider H L2 (R) {funs f : R C : f f 0 e x H,2O mult by ex 22Oe x / H, so e x not in domain D(O).Linear operators A form a vector space under addition ( commutative, associative)(A B) α A α B α Mult. defined by(AB) α A(B α )Generally AB BABut (AB)C A(BC)Note: (XY ) Y X 11

Identity operator: 1111 α α . Functions of one operator f (A) Cn An can be expanded as power series (must be carefuloutside ROC — can do in general if diagonalizable)Diagonalizable operators: can always compute f (A) if f defined for diagonal elements (eval ues)Functions f (A, B) must have definable ordering prescription. (e.g. eA Be A B AB BA · · · )Inverse A 1 satisfies AA 1 A 1 A 11Does not always exist. (Ex. if A has an ev. 0.) Note: BA 11 does not imply AB 11(Ex. later)IsometriesU is an isometry if U U 11, since preserves inner product ( β U )(U α ) β α Unitary operatorsU is unitary if U † U 1 .Example: non-unitary isometries. (Hilbert Hotel)Consider the shift operator S n n 1 acting on H with countable on basis { n , 0, 1, . . . }S n 1 n satisfies S S 11 but not SS 11. (SS 11 0 0 ).S has no (2-sided) inverse.Projection operatorsA is a projection if A2 A.Ex. A α α for α α 1.Eigenstates & EigenvaluesIf A α a α then α is an eigenstate (eigenket) of A and a is the associated eigenvalue.SpectrumThe spectrum of an operator A is its set of eigenvalues {a}[technical aside: this is the “point spectrum”, mathematically, spectrum of A set ofλ : A λ11 is not invertible]12

Important theoremIf A A† , then all eigenvalues ai of A are real, and all eigenstates associated with distinctai are orthogonal.Proof:A a a a a A† a a b (A A ) a (a b ) b a 0ififa a is real. b a 0a b,a b, Consequence of theorem:For any Hermitian A, can find an O.N. set of eigenvectors ai (ai not necc. distinct— can be degenerate)A ai ai ai ,[Proof: use Schmidt orthog. for each subspace of fixed evalue a — OK as long as countable #of (indep.) states for any a (e.g. in separable H) [caution: this set spans space of eigenvectors,but may not be complete basis]Completeness relationIf φi are a complete on basis for H. α φi φi α α ,i (completeness)soi φi φi 11(sum of projections onto 1D subspaces)Matrix and vector representationsIf H is separable, a countable on basis, φi φ1 α φ2 α can write α i φi φi α . β β φi φi ( β φ1 β φ2 · · · )i13

φ A φ φ A φ ···1112 A φi φi A φj φj φ2 A φ1 φ2 A φ2 · · · .i,j.If ai are a basis of O.N. eigenvectors w.r.t. A, ai A aj ai δij a1 a2 A ai ai ai a3 .Usual matrix interpretation of adjoint, dual correspondence(adjoint conjugate transpose) φi A φj φj A† φi c1 c2 dualdual: α α (c 1 c 2 · · · ). α β c i diinner product. d 1 c1 c2 · · · d2 .When do eigenvectors of A A† form a complete basis for H?True when H is finite dimensional (explicit construction from diagonalization), not neces sarily when H infinite dimensional.Defs. A is bounded iff sup α H α 0 α A α α α A is compact if every bounded sequence { αn } ( αn αn β) has a subsequence { αnk } sothat {A αnk } is norm convergent in H.Facts: A compact A bounded. Every compact A A† has a complete set of eigenvectors. (compactness sufficient) not necessarily true for bounded A A† . (neither necessary nor sufficient)Ex. H L2 ([0, 1])A x. A is bounded, not compact. ( αn xn 2n 1)A has no eigenvectors in H.For physics: Only interested in operators with a complete set of eigenvectors. These arecalled observables. Observables need not be bounded or compact. (note: will reverse thisstance a bit for cts systems!)14

TraceThe trace of an operator A isTr A φi A φi ,i ai i φi ON basisAii .i(ai eigenvalues of A)Unitary transformationsIf ai , bi are two complete ON bases, [(Ex. eigenkets of 2 Hermitian operators)]can define U so that U ai bi (since ai a basis defines U on all of H).so bi ai U † . U U11 U i ai ai i bi ai U† i ai bi so UU † i,j bi ai aj bj δij ij bi bj 11 and UU † 11, so U 1 U , U unitary.We have– Analogous to rotations in Euclidean 3-space M : M M MM 11. U are symme tries of H.Unitary transforms of vectors & operatorsA vector α has representations in two bases as di bi . α ci ai How are these related? dj bj dj U aj j dj ai ai U aj i,jso ci Uij dj ,Uij ai U aj are mtx elements of U in a rep.Similarly, X ai Xij aj bk Yk b gives Xij Uik Yk Ulj† .15

Diagonalization of Hermitian operatorsTheorem. A Hermitian matrix (finite dim) Hij φi H φj can always be diagonalized bya unitary transformation.Proof. if φi a general ON basis, ON eigenvectors hi related to φi throughunitary . hi U φi , hi H hj δij hi φi U † HU φj Hk U j is diagonal.so Uik(generalizes to any observable)Algorithm for explicit diagonalization of a matrix H (finite dimensional):1) Solve det(H λ11) 0 for N N matrices, N solutions are eigenvalues of H.2) Solve Hij cj λci for ci ’s for each λ. N linear eqns. in N unknowns.Gives eigenvalues & eigenvectors.InvariantsSome functions of an operator A are invariant under U : Tr A φi A φi , φi ON basis †Tr U † AU Uij Ajk Ukj δjk Ajk Tr Ai,j,k[Technical note: careful for matrices — need all sums converging.]Another invariant: det A: det(U † AU ) det U det A det U † det UU † det A det A[Note: full spectrum of ev’s is invariant!]Simultaneous diagonalizationTheorem. Two diagonalizable operators A, B are simultaneously diagonalizable iff[A, B] 0 sayA αi ai αi ,B αi bi αi AB αi BA αi ai bi αi . Say AB BA ,A αi ai αi .AB αi ai B αi ,so B keeps state in subspace of e.v. ai . Thus, B is block-diagonal, can be diagonalized ineach ai subspace 16

1.3The rules of quantum mechanics[[Developed over many years in early part of C20. Cannot be derived — justified by logicalconsistency & agreement with experiment.]]4 basic postulates:1) A quantum system can be put into correspondence with a Hilbert space H so thata definite quantum state (at a fixed time t) corresponds to a definite ray in H.so α c α represent same physical stateconvenient to choose α α 1, leaving phase freedom eiφ α Note: still a classical picture of state space (“realist approach”). Path integral approachavoids this picture. “state” really should apply to an ensemble of identically prepared experiments (“pureensemble” pure state.)Ex. states coming out of SG filter Sz Z α . 2) Observable quantities correspond to Hermitian operators whose eigenstates form acomplete set.Observable quantity something you can measure in an experiment.[[Note: book constructs H from eigenstates of A: logic less clear as HA HB for someA, B.]]3) An observable H H † defines the time evolution of the state in H throughi d ψ(t Δt) ψ(t) ψ(t) i lim H ψ(t) .Δt 0dtΔt(Schrödinger equation)17

4) (Measurement & collapse postulate)If an observable A is measured when the system is in a normalized state α , whereA has an ON basis of eigenvectors ai with eigenvalues ai .a) The probability of observing A a is aj α 2 α Pa α j:aj awhere Pa j:aj a aj aj is the projector onto the A a eigenspace.b) If becomes αa Pa α A a is observed, after the measurement the state a a α (normalizedstateis α α / αa αa ).jaaj:aj a jDiscussion of rule (4):Simplest case: nondegenerate eigenvalues α ci ai ,ai aj .Then probability of getting A ai is ci 2 . 2Norm of α α 1 ci 1.After measuring A ai , state becomes α i ai .This postulate involves an irreversible, nondeterministic, and discontinuous change in thestate of the system.– source of considerable confusion– less troublesome picture: path integrals.– alternatives: non-local hidden variables (’t Hooft?), string theory — new principles (?)For purposes of this course, take (4) as fundamental, though counterintuitive, postulate.To discuss probabilities, need ensembles.Consequence of (4):Expectation value of an observable A in state α is 2 ai ai ai . ci ai α A α since A A iiSo for:4 basic postulates of Quantum Mechanics:18

1) State ray in H[incl. def of H space]2) Observable Hermitian operator with complete set of eigenvectors3) i dtd ψ(t) H ψ(t) 4) Measurement & collapseProbability A a: α P a α After measurement, system α a Pa α / α Pa α Pa aj aj j:aj a Expectation value of A: A α A α ci 2 ai if α ci ai 4 These are the rules of the game.Rest of the course:Examples of physical systems, tools to solve problems.An example revisited in detailBack to spin- 12 system. State space H { α C C , C C} P 1 Unit norm condition α α C 2 C 2 1 eiθ α , α are physically equivalentOperators:Sz σ2 z 2Sx σ2 x 2Sy σ2 y 2 1 00 10 1 measures spin along z-axis measures spin along x-axis 1 0 0 ii 0measures spin along y-axisFor general axis n̂:Sn S · n̂(HW #2) 2 .has eigenvalueseigenstates Sn ; : Sn Sn ; 2 Sn ; form complete basis.19

Sx ; 12 Sy ; 12 Sz ; 1 2 i 2 in Sz basis.Some further properties of Si :[Si , Sj ] i ijk Sk{Si , Sj } Si Sj Sj Si 12 2 δij33 2 1 0 S 2 S · S Sx2 Sy2 Sz2 2 11 0 144And[S 2 , Si ] 0 .MeasurementIf α c c , α α 1,prob. that Sz prob. that Sz 2 2isis c 2 c 2Consider single particle experiments from lecture 1.Sz 2i)Sz 2 Sz Sz 100% 0%Sz 2 α Repeated measurement of Sz gives 2 100% of the time.Sz ii) Sz Sx α Sx ; soso 1 ( )2 α 12 [ Sx ; Sx ; ]prob. Sx 2 is 12 (50%)prob. Sx 2 is 12 (50%)20Sx Sx 50%50%

iii)Sz Sx SzSz Sx α Sz B Sx 1 100% 0%Sz α 2 ( ) α 12 ( ) α α α Combined state α enters last measurement apparatus, since Sx not measured.Gives Sz 2 100% of time.iv)Sz Sx Sz 12 Sx α α state α Sz 12Sz ( ) 50% 50%Sz ( ) enters last apparatus.Prob.Sx 2: (50%)Prob.Sx 2: (50%)Compatible vs. incompatible observablesObservables A, B are:Compatible if [A, B] AB BA 0incompatible if [A, B] 0.Examples: S 2 , SzSx , Syare compatibleare not compatible.Theorem. Compatible observables A, B can be simultaneously diagonalized, and have eigen vectors ai , bi withA ai , bi ai ai , bi B ai , bi bi ai , bi .21

(Proof in last lecture: AB α aB α if A α a α so B Ha Ha , diagonalize in eachblock.)A complete set of commuting observables (CSCO) is a set of observables {A, B, C, . . .} suchthat all observables in the set commute:[A, B] [A, C] [B, C] · · · 0and such that for any a, b, . . . at most one solution exists to the eigenvalue equationsA α a α B α b α .Tensor product spaces useful for many-particle systems [ quantum computing, . . . ]bigr)Given two Hilbert spaces H(1) , H(2) , with complete ON bas

1. Fundamental Concepts 1.1 Introduction Theoretical framework of classical physics: state (at fixed t) is defined by a point {xi,p i} in phase space Poisson bracket {xi,p F G F G j} δ ij {FG} i xi pi pi xi (flat space, symplectic mfld) Observables iare functions O(x,p j) on phase space [ex: x2 y2 z2, p2/2m,. Hamiltonian H(x,p) defines .

Related Documents:

Interface in Simulink Azad Ghaffari San Diego State University Department of ECE San Diego CA 92182-1309 12/20/2012 This document provides a tutorial introduction to the dSPACE software (ControlDesk Next Generation version 4.2.1), the dSPACE DS1104 R&D controller board, and their use

PowerBook 145B/80 B1433 MIT 1370 PowerBook Duo 230/ 120 B1432 MIT 2480 ThinkPad 720/160 9552-308 MIT 3245 ThinkPad 720C/160 9552-30J MIT 4540 DeskJet 500 HP-C2106A MIT 370 LaserJet lIP Plus HP-C2007A MIT 790 Value Bundle 4MB RAM/120MB hard disk MIT 1215 Value Bundle

djain@mit.edu, sra@mit.edu, jguo01@risd.edu, rvictor@mit.edu, raywu22@mit.edu, juschiu@mit.edu, geek@mit.edu ABSTRACT We present Amphibian, a simulator to experience scuba diving virtually in a terrestrial setting. While existing diving simulators mostly focus on visual and aural di

For Peer Review A OverCode: Visualizing Variation in Student Solutions to Programming Problems at Scale ELENA L. GLASSMAN, MIT CSAIL JEREMY SCOTT, MIT CSAIL RISHABH SINGH, MIT CSAIL PHILIP J. GUO, MIT CSAIL and University of Rochester ROBERT C. MILLER, MIT CSAIL In MOOCs, a single programming exercise may produce thousands of solutions from learners.

3.2.1 Fokussieren mit »autofocus« 60 3.2.2 Platzhalter-Text mit »placeholder« 61 3.2.3 Verpflichtende Felder mit »required« 62 3.2.4 Noch mehr neue Attribute für das »¡nput«-Element 62 3.3 Neue Elemente 65 3.3.1 Anzeigen von Messgrdfien mit »meter« 65 3.3.2 Fortschrittsanzeige mit »progress« 68 3.3.3 Auswahllisten mit »datalist« 69

MIT 401(k) Oversight Committee, 2014-2019. MIT Committee on Graduate Programs, 2017-2019. MIT International Advisory Committee . MITx Faculty Advisory Committee . MIT Sloan: International Initiatives Committee, Co-Chair of Space Committee, Chair of Load Committee, and Member of various standing committees, MIT Sloan School of Management, 2011-2015.

The MIT EMBA is an entire experience. Outside of the classroom you are part of the MIT ecosystem, which includes a rich set of extracurricular activities and resources across MIT, the Sloan School of Management, and the EMBA program. MIT OPPORTUNITIES MIT SLOAN OPPORTUNITIES EMBA OPPORTUNITIES 100K Competition Sloan Senate Student Fireside Chats

Adventure tourism is a “ people business ”. By its very nature it involves risks. Provid-ers need to manage those risks, so partici-pants and staff stay safe. The consequences of not doing so can be catastrophic. ISO 21101 : Adventure tourism – Safety management systems – A practical guide for SMEs provides guidance for small businesses to design and implement safety management systems .